US3196958A - Offshore drilling method and apparatus - Google Patents

Offshore drilling method and apparatus Download PDF

Info

Publication number
US3196958A
US3196958A US19720A US1972060A US3196958A US 3196958 A US3196958 A US 3196958A US 19720 A US19720 A US 19720A US 1972060 A US1972060 A US 1972060A US 3196958 A US3196958 A US 3196958A
Authority
US
United States
Prior art keywords
float
drilling
tubular
tubular member
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US19720A
Inventor
William J Travers
William D Leake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richfield Oil Corp
Original Assignee
Richfield Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richfield Oil Corp filed Critical Richfield Oil Corp
Priority to US19720A priority Critical patent/US3196958A/en
Application granted granted Critical
Publication of US3196958A publication Critical patent/US3196958A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • E21B7/128Underwater drilling from floating support with independent underwater anchored guide base

Definitions

  • the present invention relates to a method and apparatus for drilling a well bore in a formation underlying at body of water and more particularly relates to a method and apparatus for drilling in deep water utilizing a float device submerged below the surface of the water for mounting well head drilling and production equipment.
  • Offshore drilling operations in water deeper than approximately 200 feet present difliculties with respect to making the necessary connections and repairs, and the replacement of various equipment by a diver as the drilling operation proceeds. Diving equipment does not enable the diver to remain submerged at such depths for long periods, hence Work at greater depths is accomplished only with numerous short dives, which are expensive and time consuming.
  • FIGURE 1 shows the float submerged below the drilling barge and the equipment arranged for drilling the initial hole for placement of the conductor pipe and base plate.
  • FIGURE 2 shows the surface casing and conductor pipe cemented in the hole and a surface casing extension or casing riser extending up through the float.
  • FIGURE 3 shows the blowout prevention equipment mounted on the float and a flexible casing riser which extends from the float to the drilling barge.
  • FIGURE 4 shows the Well completion equipment in the well and at the well head after the drilling equipment has been removed and the barge disconnected from the float device.
  • FZGURE 5 shows the completed well with flow lines extended to separating and gauging facilities.
  • my invention utilizes an unanchored float submerged to a relatively shallow depth as a base for locating well control equipment for drilling from a floating barge and provides for a suflicient buoyant restoring moment in the float to resist any forces that tend to displace the float from a location directly above the well bore on the ocean floor sufficiently to interfere with insertion, retraction, or rotation of the drill string.
  • the float is provided with an opening through which the drilling operation is conducted. When the drilling operation is finished and the well completed, the float serves as a base for the well head control equipment.
  • a float 1 shown in FTGURE 1 is towed to the drilling location with a drilling barge 3 and a negative buoyancy imparted thereto to position the float as shown, beneath the well 5 of the drilling barge.
  • wire lines 7 are connected to the float and mounted on pulleys 9 which, in turn, are mounted on the barge deck.
  • the buoyancy control hoses 11 extend from the float to the ship.
  • the float may be a chambered structure to facilitate controlling its buoyancy as by evacuation through hoses 11.
  • a well head base plate 13 is suspended from the barge below the float on cables 15 which are slidably connected to the float by means of books 17.
  • the upper end of a conductor pipe 18 is afflxed to the base plate 13 with a sleeve 19.
  • a two-stage expanding bit 23 is lowered to the formation on a drill string 21 through a central opening 25 in the float and through the conductor pipe and base plate 13. The expanding bit is set at its large opening and a hole 27 drilled for the landing of the conductor pipe.
  • the conductor pipe and base plate are then lowered over the drill pipe 21 to the formation so that the conductor pipe extends into the initial hole 27, as shown in FIGURE 2.
  • the hole 27 is deepened to exceed the desired surface casing length.
  • Surface casing 29, of smaller diameter than the conductor pipe 18, is then lowered through the float and the conductor pipe over the drill string and landed when a ring 31 externally provided on the surface casing, engages the base plate 13.
  • the casing extends from the ocean floor through the float 1 and is equipped with a massive collar 33 at its upper extremity to support the casing extension 39 and to restrain the float.
  • An anchor mandrel 37 for the blowout prevention and well head equipment is affixed to the upper end of the surface casing 39.
  • the casing extension or riser 39 is provided with swivel spherical couplings 41 to permit the casing to flex laterally to a limited extent.
  • the massive collar 33 enables the float 1 with its reserve buoyancy to hold the surface casing riser 39 in tension and thus prevent substantial lateral movement of the float about the vertical.
  • the surface casing and conductor pipe are cemented in the hole 27 by pumping cement through the drill pipe 21 in the conventional manner.
  • the float 1 has a negative buoyancy and is supported by cables 7.
  • the float is evacuated to impart a positive or reserve buoyancy to the float which tends to cause the float to move upward. This upward force is resisted by the casing riser 39 through collar 33 which results in a tensioning of the casing 39.
  • blowout prevention equipment 42 With the drill string extending through the float, blowout prevention equipment 42 is lowered to the float on suitable cable lines (not shown). The lower end of the blowout prevention assembly 42 is landed on the surface casing mandrel 37 and the rams of the blowout preventer 38 closed to latch the blowout prevention equipment onto the surface casing and float assembly. The drill pipe over which the blowout prevention equipment is lowered, provides positive guidance onto the surfacecasing landing mandrel 37.
  • a flexible casing riser 47 having spherical swivel joints 41 and a slip joint 49 and equipped at its lower end with a casing riser hold down mandrel 51 is lowered over the drill pipe 21 down to the blowout prevention assembly with the hold down mandrel extending into the upper end of the blowout prevention assembly. Latching pins 43 are then actuated to engage groove 53 of the hold down mandrel to secure the casing riser to the top of the blowout prevention equipment.
  • a pitcher nipple 57 is provided at the upper end of the casing riser and return hose 59 permits drilling fluid to return to the storage tank (not shown) for recirculation into the well through the drill string.
  • a production'liner 61 is hung inside the surface casing 29 and cemented from the top of the producing formation 62 to the bottom of the surface casing.
  • the liner 61 which may be a combination blank and perforated liner, is hung from the liner hanger 63 which mechanically grips the lower end of surface casing 29 in the conventional manner.
  • a conventional hydraulic tubing hanger and packer 65 may be used to land and hang tubing 67 inside the liner 61.
  • An additional packer 69 may be positioned just above the perforated interval of -liner61, to center tubing 67 and seal between the tubing and liner.
  • Tubing 67 may contain conventional fittings such as gas lift valves 71, closable circulating port 73, and a safetyvalve 77.
  • a safety valve 77 may be held open with hydraulic pressure through a surface control unit 79 or equivalent mechanical means in such a manner that sharp pressure fluctuations or a sudden pressure reduction in the fluid flowing beyond this safety valve causes it to shut off all flow into the flow pipe 81.
  • the safety valve protects against the loss of oil in case of damage to the casing or tubing above the ocean floor, the float and well head equipment, or tothe flow line.
  • Flowpipe or tubing extension 31 extends from the tubing hanger 63 to the tubing head 85 where it is threadably connected at its upper end 83.
  • the tubing head 85 is lowered andlanded on the massive collar 33 and is latched and sealed onto mandrel 37 with sealing rams 3'7 providcdin the tubing head.
  • These rams may be operated mechanically (as shown) by a diver or remotely by hydraulic means.
  • the particular flow control arrangement in the wellhead is dependent upon-the formation and the type of well being produced.
  • the illustration shown in FIGURE 4 shows a master flow valve 89 with double exit flow line' equipped with exit valves 91 which control the flow of well fluid into the flow line 93.
  • An access head 95 is provided for re-entry into the tubing-casing annulus through a re-entry valve 97 and is equipped with a quick release re-entry cap 99.
  • Each of the aforementioned valves can be remotely controlled at the gauging and separating facilities by laying control lines with the flow lines.
  • the well head control equipment is thus permanently located on' the float and since it is beyond thelarea of extreme oxidation can be expected to last the life of the well. 7
  • FIGURE shows the flow lines in place after the barge has left the immediate vicinity and the float device 1 is marked with marker buoys 101.
  • the float suspension lines 11 are buoyed off when the drilling barge leaves the well site and thus can be relocated whenever necessary.
  • Flow lines 192 may be equipped with swivel couplings N93 to provide flexibility. Two flow lines may be used as shown in FIGURE 5, to permit the recirculation of hot oil to eliminate paraflin deposition and plugging in the flow line.
  • the flow lines 102 descend gradually to the ocean floor in the. direction of the land based separating and gauging facilities (not shown) and extend thereto on the ocean floor. The graduation may be facilitated by providing one or more auxiliary buoys 105.
  • the present invention provides an unanchored submerged float which serves as a base for drilling and producing well control equipment which float is readily accessible to a diver for inspection or repairing.
  • the float By providing flexible couplings in the casing riser between the ocean floor and the float and between the float and the drilling barge and in the flow lines, the float can move laterally to a certain degree without creating severe fiexure stresses.
  • suflicient reserve buoyancy into the float and securing the casing riser 39 thereto it will inherently resist any force that tends to dis place it from a point directly above the well location on the ocean floor.
  • This designed buoyant restoring moment of the float can be made great enough so that the floats lateral movement will at no time cause sufiicient curvature in the casing below or above the submerged float to interfere with the operation of the drill string or injure equipment used in the operation.
  • Apparatus for use with a floating vessel for drilling a well in the formation underlying a body of water comprising in combination: a bottom structure fixed on the formation, and underwater float of controllable buoyancy, a tubular member fixed to said structure and extending upward to said float, said tubular member having longitudinally spaced laterally flexible joints therein, tubular apparatus secured relative to the float and resting thereon and including a blowout prevention device, said tubular apparatus extending upward above said float and being fixed at its upper end to said floating vessel and having a telescopic joint therein, the buoyancy of the float serving to maintain said tubular member in suflicient tension to retain said float in substantial alignment with said vessel and said bottom structure and serving to support the weight of said tubular apparatus and means for operating drilling tools from the floating vessel through the interior of the tubular apparatus, underwater float and tubular member and said bottom structure.
  • tubular apparatus includes a laterally flexible joint above and below said telescopic joint.
  • the apparatus of claim 1 including means for varying the buoyancy of said float.
  • a method for drilling a well bore from a floating vessel into a formation underlying a body of water comprising; imparting a negative buoyancy to an apertured float of controllable buoyancy to submerge said float to an accessible diving depth, operating a drill string extending through the interior of said float from said vessel to drill a hole in said formation, lowering a tubular member through the interior of said float and into said drilled hole, securing the lower extremity of said tubular member to said formation and the upper end of said tubular member to said float thereafter imparting a positive buoyancy to said float suificient to tension said tubular member and maintain said float in 5 substantial alignment with said vessal and said formation and operating drilling tools from said vessel through said tubular member.

Description

y 1965 w. J. TRAVERS ETAL 3,196,958
OFFSHORE DRILLING METHOD AND APPARATUS Filed April 4, 1960 3 Sheets-Sheet l MAL/47M J ZZQVEQS (fill/14M 0. 4634756- INVENTORS BY M//M July 27, 1965 w. J. TRAVERS ETAL OFFSHORE DRILLING METHOD AND APPARATUS Filed April 4, 1960 3 Sheets-Sheet 2 .J: Zfil/EQS 40/4444 0. (59%;?
INVENTORS' July 2 7, 1965 w. J. TRAVERS ETAL 3,196,953
I OFFSHORE DRILLING METHOD AND APPARATUS Filed April 4, 1960 3 Sheets-Sheet 3 (0/44/4411 Z'ZQVEIQS 4/2164 Z9. ZSQZE' v INVENTORS United States Patent 0 "ice 3,196,953 (PFFSHGRE BRILLHJG R iETHGD ANB APEARATUS William E. Travers, Pasadena, and William D. Leal-ie,
Long Beach, Calif., assignors to Richiield Oil Corporation, Los Angelas, Caliil, a corporation of Delaware Filed Apr. 4, 1964 Ser. No. 19,720 4 Claims. (Cl. 175-7) The present invention relates to a method and apparatus for drilling a well bore in a formation underlying at body of water and more particularly relates to a method and apparatus for drilling in deep water utilizing a float device submerged below the surface of the water for mounting well head drilling and production equipment.
Heavy waves and wind conditions normally encountered in the open ocean, pose difliculties in drilling with equipment based on a ship floating on the ocean.
Movement of the drilling vessel relative to the ocean floor not only makes it diflicult to re-enter the well bore with the necessary drilling equipment but also greatly hampers the drilling operation when the drill string or casing extension deviate from vertical.
Offshore drilling operations in water deeper than approximately 200 feet present difliculties with respect to making the necessary connections and repairs, and the replacement of various equipment by a diver as the drilling operation proceeds. Diving equipment does not enable the diver to remain submerged at such depths for long periods, hence Work at greater depths is accomplished only with numerous short dives, which are expensive and time consuming.
It has heretofore been proposed to locate submarine well head equipment on a submerged float platform positioned beneath the surface of the water deep enough to avoid the disturbances due to wind and waves. These prior proposals, however, required an anchoring of the submerged float to prevent lateral movement of the float. This lateral movement is particularly undesirable in that during the drilling operation departure of the drill string from vertical will cause rapid wear on the casing and any bearing surfaces or packing equipment engaging the drill string. The use of anchors for guiding the float as proposed in the prior art is accomplished only with difliculty due to the serious limitations in presently known means for permanently anchoring equipment in deep water.
Accordingly, it is an object of the present invention to provide apparatus and a method for drilling into a formation underlying a body of water utilizing a submerged buoyant platform.
It is a further object of this invention to provide apparatus and a method for drilling in deep water whereby the equipment which normally wears out and requires servicing is positioned at an accessible depth beneath the surface of the ocean.
It is also an object of the present invention to provide apparatus and a method for drilling into the ocean floor in deep water utilizing a submerged buoyant platform which is unanchored laterally.
Other objects and a fuller understanding of our invention may be had by referring to the following specification and the appending claims taken in conjunction with the drawings, in which:
FIGURE 1 shows the float submerged below the drilling barge and the equipment arranged for drilling the initial hole for placement of the conductor pipe and base plate.
FIGURE 2 shows the surface casing and conductor pipe cemented in the hole and a surface casing extension or casing riser extending up through the float.
Biflflfifl Patented July 27, 1965 FIGURE 3 shows the blowout prevention equipment mounted on the float and a flexible casing riser which extends from the float to the drilling barge.
FIGURE 4 shows the Well completion equipment in the well and at the well head after the drilling equipment has been removed and the barge disconnected from the float device.
FZGURE 5 shows the completed well with flow lines extended to separating and gauging facilities.
Briefly described, my invention utilizes an unanchored float submerged to a relatively shallow depth as a base for locating well control equipment for drilling from a floating barge and provides for a suflicient buoyant restoring moment in the float to resist any forces that tend to displace the float from a location directly above the well bore on the ocean floor sufficiently to interfere with insertion, retraction, or rotation of the drill string. The float is provided with an opening through which the drilling operation is conducted. When the drilling operation is finished and the well completed, the float serves as a base for the well head control equipment.
Referring now, to the drawings, a float 1 shown in FTGURE 1 is towed to the drilling location with a drilling barge 3 and a negative buoyancy imparted thereto to position the float as shown, beneath the well 5 of the drilling barge. Before submerging the float, wire lines 7 are connected to the float and mounted on pulleys 9 which, in turn, are mounted on the barge deck. The buoyancy control hoses 11 extend from the float to the ship. The float may be a chambered structure to facilitate controlling its buoyancy as by evacuation through hoses 11.
A well head base plate 13 is suspended from the barge below the float on cables 15 which are slidably connected to the float by means of books 17. The upper end of a conductor pipe 18 is afflxed to the base plate 13 with a sleeve 19. A two-stage expanding bit 23 is lowered to the formation on a drill string 21 through a central opening 25 in the float and through the conductor pipe and base plate 13. The expanding bit is set at its large opening and a hole 27 drilled for the landing of the conductor pipe.
The conductor pipe and base plate are then lowered over the drill pipe 21 to the formation so that the conductor pipe extends into the initial hole 27, as shown in FIGURE 2. Using a smaller opening on the expanding bit 23 the hole 27 is deepened to exceed the desired surface casing length. Surface casing 29, of smaller diameter than the conductor pipe 18, is then lowered through the float and the conductor pipe over the drill string and landed when a ring 31 externally provided on the surface casing, engages the base plate 13. The casing extends from the ocean floor through the float 1 and is equipped with a massive collar 33 at its upper extremity to support the casing extension 39 and to restrain the float. An anchor mandrel 37 for the blowout prevention and well head equipment is affixed to the upper end of the surface casing 39. The casing extension or riser 39 is provided with swivel spherical couplings 41 to permit the casing to flex laterally to a limited extent. The massive collar 33 enables the float 1 with its reserve buoyancy to hold the surface casing riser 39 in tension and thus prevent substantial lateral movement of the float about the vertical.
The surface casing and conductor pipe are cemented in the hole 27 by pumping cement through the drill pipe 21 in the conventional manner. Up to this point, the float 1 has a negative buoyancy and is supported by cables 7. After the cement has hardened, the float is evacuated to impart a positive or reserve buoyancy to the float which tends to cause the float to move upward. This upward force is resisted by the casing riser 39 through collar 33 which results in a tensioning of the casing 39.
With the drill string extending through the float, blowout prevention equipment 42 is lowered to the float on suitable cable lines (not shown). The lower end of the blowout prevention assembly 42 is landed on the surface casing mandrel 37 and the rams of the blowout preventer 38 closed to latch the blowout prevention equipment onto the surface casing and float assembly. The drill pipe over which the blowout prevention equipment is lowered, provides positive guidance onto the surfacecasing landing mandrel 37.
A flexible casing riser 47 having spherical swivel joints 41 and a slip joint 49 and equipped at its lower end with a casing riser hold down mandrel 51 is lowered over the drill pipe 21 down to the blowout prevention assembly with the hold down mandrel extending into the upper end of the blowout prevention assembly. Latching pins 43 are then actuated to engage groove 53 of the hold down mandrel to secure the casing riser to the top of the blowout prevention equipment. At the upper end of the casing riser a pitcher nipple 57 is provided and return hose 59 permits drilling fluid to return to the storage tank (not shown) for recirculation into the well through the drill string.
Whenthe well is converted from a drilling to a producing well, a production'liner 61 is hung inside the surface casing 29 and cemented from the top of the producing formation 62 to the bottom of the surface casing. The liner 61, which may be a combination blank and perforated liner, is hung from the liner hanger 63 which mechanically grips the lower end of surface casing 29 in the conventional manner. A conventional hydraulic tubing hanger and packer 65 may be used to land and hang tubing 67 inside the liner 61. An additional packer 69 may be positioned just above the perforated interval of -liner61, to center tubing 67 and seal between the tubing and liner. Tubing 67 may contain conventional fittings such as gas lift valves 71, closable circulating port 73, and a safetyvalve 77. A safety valve 77 may be held open with hydraulic pressure through a surface control unit 79 or equivalent mechanical means in such a manner that sharp pressure fluctuations or a sudden pressure reduction in the fluid flowing beyond this safety valve causes it to shut off all flow into the flow pipe 81. Thus the safety valve protects against the loss of oil in case of damage to the casing or tubing above the ocean floor, the float and well head equipment, or tothe flow line. i i
Flowpipe or tubing extension 31 extends from the tubing hanger 63 to the tubing head 85 where it is threadably connected at its upper end 83. The tubing head 85 is lowered andlanded on the massive collar 33 and is latched and sealed onto mandrel 37 with sealing rams 3'7 providcdin the tubing head. These rams may be operated mechanically (as shown) by a diver or remotely by hydraulic means. The particular flow control arrangement in the wellhead is dependent upon-the formation and the type of well being produced. The illustration shown in FIGURE 4 shows a master flow valve 89 with double exit flow line' equipped with exit valves 91 which control the flow of well fluid into the flow line 93. An access head 95 is provided for re-entry into the tubing-casing annulus through a re-entry valve 97 and is equipped with a quick release re-entry cap 99.
Each of the aforementioned valves can be remotely controlled at the gauging and separating facilities by laying control lines with the flow lines. The well head control equipment is thus permanently located on' the float and since it is beyond thelarea of extreme oxidation can be expected to last the life of the well. 7
FIGURE shows the flow lines in place after the barge has left the immediate vicinity and the float device 1 is marked with marker buoys 101.
The float suspension lines 11 (FIGURE 1) are buoyed off when the drilling barge leaves the well site and thus can be relocated whenever necessary. Flow lines 192 may be equipped with swivel couplings N93 to provide flexibility. Two flow lines may be used as shown in FIGURE 5, to permit the recirculation of hot oil to eliminate paraflin deposition and plugging in the flow line. The flow lines 102 descend gradually to the ocean floor in the. direction of the land based separating and gauging facilities (not shown) and extend thereto on the ocean floor. The graduation may be facilitated by providing one or more auxiliary buoys 105.
Thus the present invention provides an unanchored submerged float which serves as a base for drilling and producing well control equipment which float is readily accessible to a diver for inspection or repairing. By providing flexible couplings in the casing riser between the ocean floor and the float and between the float and the drilling barge and in the flow lines, the float can move laterally to a certain degree without creating severe fiexure stresses. By designing suflicient reserve buoyancy into the float and securing the casing riser 39 thereto it will inherently resist any force that tends to dis place it from a point directly above the well location on the ocean floor. This designed buoyant restoring moment of the float can be made great enough so that the floats lateral movement will at no time cause sufiicient curvature in the casing below or above the submerged float to interfere with the operation of the drill string or injure equipment used in the operation.
Although the invention has been described in its preferred form with a certain degree of particularity, it is understood that the present disclosure of the preferred form has been made only by way of example and that numerous changes in the details of the method and the combination and arrangements of parts may be resorted to without departing from the spirit and the scope of the invention as hereinafter claimed.
We claim as our invention:
1. Apparatus for use with a floating vessel for drilling a well in the formation underlying a body of water, comprising in combination: a bottom structure fixed on the formation, and underwater float of controllable buoyancy, a tubular member fixed to said structure and extending upward to said float, said tubular member having longitudinally spaced laterally flexible joints therein, tubular apparatus secured relative to the float and resting thereon and including a blowout prevention device, said tubular apparatus extending upward above said float and being fixed at its upper end to said floating vessel and having a telescopic joint therein, the buoyancy of the float serving to maintain said tubular member in suflicient tension to retain said float in substantial alignment with said vessel and said bottom structure and serving to support the weight of said tubular apparatus and means for operating drilling tools from the floating vessel through the interior of the tubular apparatus, underwater float and tubular member and said bottom structure.
2. The apparatus of claim 1 wherein said tubular apparatus includes a laterally flexible joint above and below said telescopic joint.
3. The apparatus of claim 1 including means for varying the buoyancy of said float.
4. A method for drilling a well bore from a floating vessel into a formation underlying a body of water, the steps comprising; imparting a negative buoyancy to an apertured float of controllable buoyancy to submerge said float to an accessible diving depth, operating a drill string extending through the interior of said float from said vessel to drill a hole in said formation, lowering a tubular member through the interior of said float and into said drilled hole, securing the lower extremity of said tubular member to said formation and the upper end of said tubular member to said float thereafter imparting a positive buoyancy to said float suificient to tension said tubular member and maintain said float in 5 substantial alignment with said vessal and said formation and operating drilling tools from said vessel through said tubular member.
References Cited by the Examiner UNITED STATES PATENTS McNeil 175-7 Pryor et a1. 175-8 Willis et a1. 175-8 Brown 166-72 X Knapp et a1 166-46 X Bauer et a1 175-7 Stratton 175-7 X Rhodes et a1. 175-7 CHARLES E. OCONNELL, Primary Examiner.
BENJAMIN HERSH, Examiner.

Claims (1)

1. APPARATUS FOR USE WITH A FLOATING VESSEL FOR DRILLING A WELL IN THE FORMATION UNDERLYING A BODY OF WATER, COMPRISING IN COMBINATION: A BOTTOM STRUCTURE FIXED ON THE FORMATION, AND UNDERWATER FLOAT OF CONTROLLABLE BUOYANCY, A TUBULAR MEMBER FIXED TO SAID STRUCTURE AND EXTENDING UPWARD TO SAID FLOAT, SAID TUBULAR MEMBER HAVING LONGITUDINALLY SPACED LATERALLY FLEXIBLE JOINT THEREIN, TUBULAR APPARATUS SECURED RELATIVE TO THE FLOAT AND RESTING THEREON AND INCLUDING A BLOWOUT PREVENTION DEVICE, SAID TUBULAR APPARATUS EXTENDING UPWARD ABOVE SAID FLOAT AND BEING FIXED AT ITS UPPER END TO SAID FLOATING VESSEL AND HAVING A TELESCOPIC JOINT THEREIN, THE BUOYANCY OF THE FLOAT SERVING TO MAINTAIN SAID TUBULAR MEMBER IN SUFFICIENT TENSION TO RETAIN SAID FLOAT IN SUBSTANTIAL ALIGNMENT WITH SAID VESSEL AND SAID BOTTOM STRUCTURE AND SERVING TO SUPPORT THE WEIGHT OF SAID TUBULAR APPARATUS AND MEANS FOR OPERATING DRILLING TOOLS FROM THE FLOATING VESSEL THROUGH THE INTERIOR OF THE TUBULAR APPARATUS, UNDERWATER FLOAT AND TUBULAR MEMBER AND SAID BOTTOM STRUCTURE.
US19720A 1960-04-04 1960-04-04 Offshore drilling method and apparatus Expired - Lifetime US3196958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US19720A US3196958A (en) 1960-04-04 1960-04-04 Offshore drilling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19720A US3196958A (en) 1960-04-04 1960-04-04 Offshore drilling method and apparatus

Publications (1)

Publication Number Publication Date
US3196958A true US3196958A (en) 1965-07-27

Family

ID=21794667

Family Applications (1)

Application Number Title Priority Date Filing Date
US19720A Expired - Lifetime US3196958A (en) 1960-04-04 1960-04-04 Offshore drilling method and apparatus

Country Status (1)

Country Link
US (1) US3196958A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3327780A (en) * 1965-03-15 1967-06-27 Exxon Production Research Co Connection of underwater wells
US3352357A (en) * 1964-11-20 1967-11-14 Shell Oil Co Flexible marine conductor with cellar pipe
US3369599A (en) * 1965-11-15 1968-02-20 Mobil Oil Corp Subsea deep drilling apparatus and method
US3378086A (en) * 1966-05-13 1968-04-16 Geocon Ltd Stationary overwater platform
US3380520A (en) * 1966-02-08 1968-04-30 Offshore Co Drilling and production platform
US3430695A (en) * 1967-11-08 1969-03-04 Mobil Oil Corp Method and apparatus for installing underwater wellhead support
US3451475A (en) * 1966-12-28 1969-06-24 Texaco Inc Well flow test apparatus
US3472032A (en) * 1967-12-01 1969-10-14 Pan American Petroleum Corp Production and storage system for offshore oil wells
US3489213A (en) * 1968-04-18 1970-01-13 Fmc Corp Underwater well completion system
US3556231A (en) * 1968-08-30 1971-01-19 Homer I Henderson Bit weight maintainer for marine earth boring
US3556210A (en) * 1969-05-08 1971-01-19 Vincent C Johnson Deep sea well drilling structure
US3578076A (en) * 1969-05-19 1971-05-11 Jose Bovantes Remote underwater flowline connection
US3601187A (en) * 1969-05-02 1971-08-24 Exxon Production Research Co Drilling riser
US3625281A (en) * 1969-04-23 1971-12-07 Rockwell Mfg Co Well completion method and apparatus
US3705623A (en) * 1970-06-17 1972-12-12 Shell Oil Co Offshore well equipment with pedestal conductor
US3732923A (en) * 1967-11-01 1973-05-15 Rockwell Mfg Co Remote underwater flowline connection
US3754607A (en) * 1970-06-18 1973-08-28 Shell Oil Co Equipment for use in offshore wells
US3782458A (en) * 1971-08-04 1974-01-01 Gray Tool Co Upright, swivelable buoyed conduit for offshore system
US3782460A (en) * 1971-08-24 1974-01-01 Shell Oil Co Method of installing a combination pedestal conductor and conductor string at an offshore location
US3827486A (en) * 1972-03-17 1974-08-06 Brown Oil Tools Well reentry system
US3991824A (en) * 1975-11-20 1976-11-16 Atlantic Richfield Company Offshore well drilling, completion and production
US3999617A (en) * 1975-09-29 1976-12-28 Exxon Production Research Company Self-supported drilling riser
FR2325796A1 (en) * 1975-09-27 1977-04-22 Uop Inc DRILLING INSTALLATION
US4099582A (en) * 1976-09-03 1978-07-11 Martin-Decker Company, A Division Of Gardner-Denver Drilling fluid compensation device
US4100752A (en) * 1976-09-15 1978-07-18 Fmc Corporation Subsea riser system
US4126183A (en) * 1976-12-09 1978-11-21 Deep Oil Technology, Inc. Offshore well apparatus with a protected production system
US4147221A (en) * 1976-10-15 1979-04-03 Exxon Production Research Company Riser set-aside system
US4170266A (en) * 1976-08-11 1979-10-09 Fayren Jose M Apparatus and method for offshore drilling at great depths
US4234047A (en) * 1977-10-14 1980-11-18 Texaco Inc. Disconnectable riser for deep water operation
US4297965A (en) * 1979-09-06 1981-11-03 Deep Oil Technology, Inc. Tension leg structure for tension leg platform
US4468157A (en) * 1980-05-02 1984-08-28 Global Marine, Inc. Tension-leg off shore platform
US4698038A (en) * 1984-10-17 1987-10-06 Key Ocean Services, Inc. Vessel mooring system and method for its installation
US4701143A (en) * 1984-10-17 1987-10-20 Key Ocean Services, Inc. Vessel mooring system and method for its installation
US4712620A (en) * 1985-01-31 1987-12-15 Vetco Gray Inc. Upper marine riser package
US4762180A (en) * 1987-02-05 1988-08-09 Conoco Inc. Modular near-surface completion system
FR2633662A1 (en) * 1988-06-30 1990-01-05 Inst Francais Du Petrole System and method for producing effluent from a well drilled in the sea bed
US5046896A (en) * 1990-05-30 1991-09-10 Conoco Inc. Inflatable buoyant near surface riser disconnect system
US5533574A (en) * 1993-12-20 1996-07-09 Shell Oil Company Dual concentric string high pressure riser
WO1999041142A1 (en) * 1998-02-12 1999-08-19 Imodco, Inc. Spar system
US6702025B2 (en) 2002-02-11 2004-03-09 Halliburton Energy Services, Inc. Hydraulic control assembly for actuating a hydraulically controllable downhole device and method for use of same
US20080271896A1 (en) * 2004-05-21 2008-11-06 Fmc Kongsberg Subsea As Device in Connection with Heave Compensation
US20110017465A1 (en) * 2008-04-09 2011-01-27 AMOG Pty Ltd. Riser support
US20110274501A1 (en) * 2008-11-05 2011-11-10 Jeroen Remery Method for assembling an operating rig for a fluid in a body of water and associated operating rig
US20160230474A1 (en) * 2014-09-03 2016-08-11 Hallburton Energy Services, Inc. Riser isolation tool for deepwater wells

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2148327A (en) * 1937-12-14 1939-02-21 Gray Tool Co Oil well completion apparatus
US2187871A (en) * 1937-08-09 1940-01-23 Standard Oil Co Underwater drilling
US2358677A (en) * 1942-09-08 1944-09-19 Gray Tool Co Wellhead equipment including back pressure valve and removal tool
US2476309A (en) * 1944-05-25 1949-07-19 Walter B Lang Apparatus for subaqueous geologic prospecting
US2512783A (en) * 1946-05-04 1950-06-27 Augustine J Tucker Marine drilling
US2606003A (en) * 1948-08-28 1952-08-05 Union Oil Co Off-shore drilling
US2684575A (en) * 1950-12-22 1954-07-27 Phillips Petroleum Co Submergible type offshore drilling structure
US2777669A (en) * 1948-12-27 1957-01-15 Cornelius G Willis Marine well drilling apparatus
US2788073A (en) * 1952-09-12 1957-04-09 Cicero C Brown Well head apparatus
US2906500A (en) * 1956-12-21 1959-09-29 Jersey Prod Res Co Completion of wells under water
US2923531A (en) * 1956-04-26 1960-02-02 Shell Oil Co Drilling
US3015360A (en) * 1957-08-19 1962-01-02 Shell Oil Co Method and apparatus for underwater drilling
US3017934A (en) * 1955-09-30 1962-01-23 Shell Oil Co Casing support

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2187871A (en) * 1937-08-09 1940-01-23 Standard Oil Co Underwater drilling
US2148327A (en) * 1937-12-14 1939-02-21 Gray Tool Co Oil well completion apparatus
US2358677A (en) * 1942-09-08 1944-09-19 Gray Tool Co Wellhead equipment including back pressure valve and removal tool
US2476309A (en) * 1944-05-25 1949-07-19 Walter B Lang Apparatus for subaqueous geologic prospecting
US2512783A (en) * 1946-05-04 1950-06-27 Augustine J Tucker Marine drilling
US2606003A (en) * 1948-08-28 1952-08-05 Union Oil Co Off-shore drilling
US2777669A (en) * 1948-12-27 1957-01-15 Cornelius G Willis Marine well drilling apparatus
US2684575A (en) * 1950-12-22 1954-07-27 Phillips Petroleum Co Submergible type offshore drilling structure
US2788073A (en) * 1952-09-12 1957-04-09 Cicero C Brown Well head apparatus
US3017934A (en) * 1955-09-30 1962-01-23 Shell Oil Co Casing support
US2923531A (en) * 1956-04-26 1960-02-02 Shell Oil Co Drilling
US2906500A (en) * 1956-12-21 1959-09-29 Jersey Prod Res Co Completion of wells under water
US3015360A (en) * 1957-08-19 1962-01-02 Shell Oil Co Method and apparatus for underwater drilling

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352357A (en) * 1964-11-20 1967-11-14 Shell Oil Co Flexible marine conductor with cellar pipe
US3327780A (en) * 1965-03-15 1967-06-27 Exxon Production Research Co Connection of underwater wells
US3369599A (en) * 1965-11-15 1968-02-20 Mobil Oil Corp Subsea deep drilling apparatus and method
US3380520A (en) * 1966-02-08 1968-04-30 Offshore Co Drilling and production platform
US3378086A (en) * 1966-05-13 1968-04-16 Geocon Ltd Stationary overwater platform
US3451475A (en) * 1966-12-28 1969-06-24 Texaco Inc Well flow test apparatus
US3732923A (en) * 1967-11-01 1973-05-15 Rockwell Mfg Co Remote underwater flowline connection
US3430695A (en) * 1967-11-08 1969-03-04 Mobil Oil Corp Method and apparatus for installing underwater wellhead support
US3472032A (en) * 1967-12-01 1969-10-14 Pan American Petroleum Corp Production and storage system for offshore oil wells
US3489213A (en) * 1968-04-18 1970-01-13 Fmc Corp Underwater well completion system
US3556231A (en) * 1968-08-30 1971-01-19 Homer I Henderson Bit weight maintainer for marine earth boring
US3625281A (en) * 1969-04-23 1971-12-07 Rockwell Mfg Co Well completion method and apparatus
US3601187A (en) * 1969-05-02 1971-08-24 Exxon Production Research Co Drilling riser
US3556210A (en) * 1969-05-08 1971-01-19 Vincent C Johnson Deep sea well drilling structure
US3578076A (en) * 1969-05-19 1971-05-11 Jose Bovantes Remote underwater flowline connection
US3705623A (en) * 1970-06-17 1972-12-12 Shell Oil Co Offshore well equipment with pedestal conductor
US3754607A (en) * 1970-06-18 1973-08-28 Shell Oil Co Equipment for use in offshore wells
US3782458A (en) * 1971-08-04 1974-01-01 Gray Tool Co Upright, swivelable buoyed conduit for offshore system
US3782460A (en) * 1971-08-24 1974-01-01 Shell Oil Co Method of installing a combination pedestal conductor and conductor string at an offshore location
US3827486A (en) * 1972-03-17 1974-08-06 Brown Oil Tools Well reentry system
FR2325796A1 (en) * 1975-09-27 1977-04-22 Uop Inc DRILLING INSTALLATION
US4047579A (en) * 1975-09-27 1977-09-13 Rheinstahl Ag Sea drilling jig
US3999617A (en) * 1975-09-29 1976-12-28 Exxon Production Research Company Self-supported drilling riser
US3991824A (en) * 1975-11-20 1976-11-16 Atlantic Richfield Company Offshore well drilling, completion and production
US4170266A (en) * 1976-08-11 1979-10-09 Fayren Jose M Apparatus and method for offshore drilling at great depths
US4099582A (en) * 1976-09-03 1978-07-11 Martin-Decker Company, A Division Of Gardner-Denver Drilling fluid compensation device
US4100752A (en) * 1976-09-15 1978-07-18 Fmc Corporation Subsea riser system
US4147221A (en) * 1976-10-15 1979-04-03 Exxon Production Research Company Riser set-aside system
US4126183A (en) * 1976-12-09 1978-11-21 Deep Oil Technology, Inc. Offshore well apparatus with a protected production system
US4234047A (en) * 1977-10-14 1980-11-18 Texaco Inc. Disconnectable riser for deep water operation
US4297965A (en) * 1979-09-06 1981-11-03 Deep Oil Technology, Inc. Tension leg structure for tension leg platform
US4468157A (en) * 1980-05-02 1984-08-28 Global Marine, Inc. Tension-leg off shore platform
US4698038A (en) * 1984-10-17 1987-10-06 Key Ocean Services, Inc. Vessel mooring system and method for its installation
US4701143A (en) * 1984-10-17 1987-10-20 Key Ocean Services, Inc. Vessel mooring system and method for its installation
US4712620A (en) * 1985-01-31 1987-12-15 Vetco Gray Inc. Upper marine riser package
US4762180A (en) * 1987-02-05 1988-08-09 Conoco Inc. Modular near-surface completion system
FR2633662A1 (en) * 1988-06-30 1990-01-05 Inst Francais Du Petrole System and method for producing effluent from a well drilled in the sea bed
US5046896A (en) * 1990-05-30 1991-09-10 Conoco Inc. Inflatable buoyant near surface riser disconnect system
US5533574A (en) * 1993-12-20 1996-07-09 Shell Oil Company Dual concentric string high pressure riser
WO1999041142A1 (en) * 1998-02-12 1999-08-19 Imodco, Inc. Spar system
US6210075B1 (en) 1998-02-12 2001-04-03 Imodco, Inc. Spar system
US6702025B2 (en) 2002-02-11 2004-03-09 Halliburton Energy Services, Inc. Hydraulic control assembly for actuating a hydraulically controllable downhole device and method for use of same
US20080271896A1 (en) * 2004-05-21 2008-11-06 Fmc Kongsberg Subsea As Device in Connection with Heave Compensation
US20110017465A1 (en) * 2008-04-09 2011-01-27 AMOG Pty Ltd. Riser support
US20110274501A1 (en) * 2008-11-05 2011-11-10 Jeroen Remery Method for assembling an operating rig for a fluid in a body of water and associated operating rig
US8734055B2 (en) * 2008-11-05 2014-05-27 Technip France Method for assembling an operating rig for a fluid in a body of water and associated operating rig
US20160230474A1 (en) * 2014-09-03 2016-08-11 Hallburton Energy Services, Inc. Riser isolation tool for deepwater wells
US9605490B2 (en) * 2014-09-03 2017-03-28 Halliburton Energy Services, Inc. Riser isolation tool for deepwater wells

Similar Documents

Publication Publication Date Title
US3196958A (en) Offshore drilling method and apparatus
US2906500A (en) Completion of wells under water
US2923531A (en) Drilling
US3017934A (en) Casing support
US4059148A (en) Pressure-compensated dual marine riser
US3855656A (en) Underwater buoy for a riser pipe
US3259198A (en) Method and apparatus for drilling underwater wells
US2476309A (en) Apparatus for subaqueous geologic prospecting
US3825065A (en) Method and apparatus for drilling in deep water
US3525388A (en) Subsea drilling apparatus
US3256937A (en) Underwater well completion method
US4086971A (en) Riser pipe inserts
US3256936A (en) Drilling underwater wells
US3612177A (en) Deep water production system
US3211224A (en) Underwater well drilling apparatus
AU2006202945A1 (en) System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US3252528A (en) Method of drilling from a fully floating platform
US3527294A (en) Underwater exploration and completion system
NO810484L (en) PROCEDURE FOR PROVIDING A CONNECTION AND PROCEDURE FOR PROVIDING A CONNECTION
US3554277A (en) Underwater wells
US3486555A (en) Small diameter riser pipe system
US3221817A (en) Marine conductor pipe assembly
US20140338918A1 (en) Self-Standing Riser with Artificial Lift System
US3330339A (en) Method of removing a wellhead assembly from the ocean floor
US3682243A (en) Under water wells