US3196765A - Image development and projection - Google Patents

Image development and projection Download PDF

Info

Publication number
US3196765A
US3196765A US28990463A US3196765A US 3196765 A US3196765 A US 3196765A US 28990463 A US28990463 A US 28990463A US 3196765 A US3196765 A US 3196765A
Authority
US
United States
Prior art keywords
image
web
station
toner
xerographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to US28990463 priority Critical patent/US3196765A/en
Priority to US42087064 priority patent/US3355308A/en
Application granted granted Critical
Publication of US3196765A publication Critical patent/US3196765A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20

Definitions

  • FIG. 1 a F/6.2A
  • FIG 5 INVENTOR.
  • This invention relates to xerography, in general, and to the development and display of images, in particular.
  • Xerography has become a well-known process for producing copies of printed matter, pictures, Writings, and other scenes.
  • a xerographic copy comprises a powder image of pigmented resin, or toner, on a support base such as paper, plastics, and the like.
  • the support base will be transparent, translucent or opaque, and the toner image viewed by transmitted or reflected light.
  • Suitability of a Xerographic copy is generally related to the density of the toner image. For instance, a black toner image on white paper must absorb sufficient light to be readable. Similarly, a xerographically produced transparency must be sufiiciently dense to block light projected through it so that the image may be viewed on a projection screen or other imaging surface.
  • toner is selectively attracted to the support base by electrostatic forces, it is sometimes ditficult to achieve sufficient image density especially when the image is made up of very fine lines. If too little toner is attracted, the copy, or a projection of it, will be lacking in contrast, or even totally unreadable. Hence, imaging independent of toner density is a highly useful contribution to the art.
  • a novel xerographic transparency and method for making it are also objects of this invention.
  • the present invention requires the use of Xerographic toner and image support a bases having specially selected properties.
  • a support base comprises normally transparent material having a light scattering surface.
  • a toner image is formed on a Xerographic plate and transferred, after a tackifying step, to the light scattering surface of a support base. The transferred toner image is then processed to render the light scattering surface selectively transparent.
  • the present invention may be used for making copies directly viewable by reflected light, its probably greater value resides in slides or transparencies viewable by projection.
  • FIG. 1 illustrates a light scattering member
  • FIG. 2A and FIG. 2B illustrate the process of making the light scattering member selectively transparent
  • FIG. 3 illustrates image projection
  • FIG. 4 illustrates electrostatic transfer of a Xerographic toner image
  • FIG. 5 illustrates apparatus and method for continuous reproduction of images
  • FIG. 6 illustrates an image web for use in the present invention.
  • FIG. 1 illustrates support base 113 made of glass, clear plastic or other normally transparent material.
  • One surice face of support base 10 must be sufficiently frost-like or reticulated to be substantially light scattering, and such surface is shown in FIG. 1 as image surface 11.
  • a suitable support base therefore, may comprise ground glass, ground plastic, frosted polyethylene films, and the like.
  • Image surface 11 is preferably sufficiently light diffusing such that if used in a stereopticon or slide projector support base 10 would allow only a small portion of the collimated light directed toward it to reach the viewing screen. Thus, the image areas of surface 11 focused on a viewing screen by the objective lens would appear nearly black.
  • PKG. 2A illustrates the first step in rendering support base 16 selectively transparent according to the present invention.
  • Image surface 11 is shown in contact with xerographic plate 15 on which has been formed toner image 12.
  • Toner image 12 conforms to a document or other original scene, and is formed by any one of a number of methods well-known to the art of xerography. F or instance, according to one well-known method, Xerographic plate 15 comprising a photoconductive layer 16 overlying conductive backing 17 is uniformly charged in darkness by means of a corona discharge device. Exposure to a pattern of light and shadow selectively discharges the plate and forms a latent electrostatic image. The latent electrostatic image is made visible as toner image 1?.
  • toner image 12 by dusting photoconductive layer 16 with finely divided electrically charged resin powder particles.
  • the powder particles are charged to a polarity opposite to that of the latent electrostatic image so that the particles are attracted by, and adhere to, charged areas of plate 15.
  • like rather than opposite polarities may be selected so that the powder particles will be attracted to the discharged areas of plate 15 instead.
  • Other Xerographic techniques may be used in place of the one described as the particular method of forming toner image 12 does not constitute a part of this invention.
  • powder image 12 is made more tacky or adhesive. This may be done by heating powder image 12, or more desirably, by exposing powder image 12 to the vapors of a volatile liquid which act as a solvent for the resinous material.
  • Tackifying toner image 12 with solvent vapor is illustrated by FIG. 23.
  • Support base 10 bearing toner image 12 may be immersed in solvent vapor 18 contained in vapor chamber 19.
  • suitable solvents include, but are in no way limited to, chloroform, carbon tetrachloride, trichloroethylene and other chlorinated solvents.
  • Aromatic and aliphatic hydrocarbons such as benzene, toluene, gasoline and gasoline fractions, and other alcohols and oxygenated solvents may be used.
  • Image surface 11 of support base 10 is simply placed in contact with the tackified image under mild pressure, for example, by pressing with the hands. Plate 15 and support base 1b are then separated and sufficient toner will adhere to image surface 11 for purposes of the present invention.
  • support base 10 with toner image 12 on its image surface 11 comprises an image member which may be used as a slide or transparency in a stereopticon, slide projector or other similar viewing device.
  • FIG. 3 illustrates one use of an image member made in accordance with the preesnt invention.
  • Objective lens 23 is positioned to focus image surface 11 in an image plane, such as viewing screen 24-.
  • image surface 11 is transparent in areas of toner image 12, light is transmitted in image configuration and appears on projection screen 24.
  • the non-image areas of image surface 11 remain light scattering and light directed thereon is essentially lost from the optical system.
  • toner image 12 comprises a transparent resin or other material which may be softened by heat, vapor solvent, or other controllable element. If desired, the toner material may be dyed. Image contrast is enhanced by using a toner image 12 of nearly the same index of refraction as that of support base 10 although readable images may also be made with other images.
  • Commercially available non-pigmented xerographic toners have been successfully used in the present invention.
  • FIG. 4 illustrates an alternative method for transferring toner image 12 to image surface 11. This embodiment dispenses with the transfer softening step described in connection with FIG. 2.
  • Image surface 11 is again shown in contact with xerographic plate 15 bearing toner image 12.
  • An electrostatic charge opposite in polarity to that of toner image 12 is applied to the non-diffusing surface 13 of support base 10 by means of charging device 26.
  • Any suitable charging device known to the art of xerography may be used, and the one schematically represented in FIG. 4 comprises conductive strand 2.7 partly surrounded by grounded shield 28.
  • Conductive strand 27 is raised to a high potential by means of power supply 29 resulting in the uniform charging of surface 13 through slit 3t) as charging device 26 is moved in the direction shown by able for projection purposes, it has been found that an additional fusing step results in a superior slide or transparency.
  • Fusing of the transferred toner image 12 may be accomplished in the manner of transfer softening described in connection with FIG. 2B. It is believed that the fusing step causes the powder comprising toner image 12 to fill in the tiny pockets of image surface 11 thereby removing the diffusing property of those areas and rendering them highly transparent. Image members having fused toner images have been found to produce projection images that are of higher contrast and much brighter than images produced by image members having nonfused toner images.
  • FIG. illustrates an embodiment for the continuous production of transparencies according to the present invention.
  • this embodiment incorporates an electrostatic frosting process to form the light diffusing surface of the transparency, it should be noted that the frosting process may be dispensed with when a prefrosted image web 32 is used.
  • FIG. 6 more clearly illustrates the composition of image web 32.
  • web 32 comprises a photoconductive deformable layer 33 overlying support layer 34. Both layers are necessarily flexible and transparent.
  • a thin transparent conductive layer 35 need be incorporated into the structure only if support layer 34 is electrically non-conductive.
  • a highly suitable web 32 may comprise a support layer 34 of Mylar polyester film (E. l. du Pont de Nemours & Co.), copper iodide layer 35, and a photod conductive deformable layer 33 of a photoconductor corresponding to Formula 2 of Canadian Patent No. 568,707 mixed with Staybelite 10 (Hercules Powder Company).
  • image web 32 is fed from supply roll 37 through various process stations.
  • a light diffusing surface is first imported to web 32 in the manner fully described in co-pending patent application Serial No. 193,277. Successive portions of web 32 are electrostatically charged in the absence of light by means of corona charging device 33 which is connected to high voltage power supply 39. Deformable layer 33 is next softened so that it becomes physically altered by the mechanical force associated with the electrical field existing across layer 33 as a result of the aforementioned charging. Softening is most commonly done by exposing web 32 to an atmosphere of solvent vapors for the materials of layer 33, or by heating as illustrated in FIG. 5. Heating element 53 is shown positioned below web 32.
  • layer 33 As the material of layer 33 is softened it is enabled to flow in response to the electrostatic forces acting upon it, and the softened layer 33 develops a microscopically uneven surface having a frosted appearance.
  • This surface is sufficiently light diffusing for use in the present invention. It is referred to as image surface 411 in connection with the remaining steps shown in FIG. 5.
  • Successive portions of web 32 are again electrostaticaliy charged in the absence of light, as schematically represented by charging device 41 connected to high voltage power supply 42.
  • Web 32 is then exposed to a light and shadow pattern of a document 43, or other original, for example, by projection of reflected light 44 from lamp 45 through lens 46. Since layer 33 is photoconductive, exposure causes selective dissipation of the electrostatic charge leaving a latent electrostatic image which may be developed or made visible at xerographic developing station 50.
  • toner image 51 is appropriately softened to create an intimate bond between individual particles and with image surface 40.
  • image web 32 passes through fusing chamber 55 in which it is exposed to an atmosphere to solvent vapors for toner image 51.
  • image web 32 is suitable for use as a transparency for the projection display of the image thereon.
  • image web 32 may be stored for later use as on roller 67, or it may pass through viewing station 61? for quick projection display as illustrated in FIG. 5.
  • image surface 41 is illuminated by convergent beam 61 produced from light source 63 by condensing system 62. Light is freely transmitted by the transparent or image areas of image surface 46 but is nearly completely blocked by diffusion at the non-transparent or non-image areas. There results a high contrast projected image on screen 6 1.
  • Apparatus for producing an image comprising:
  • (c) means to image light transmitted by said transparency.
  • Apparatus for reproducing an optical image comprising:
  • a first xerographic charging station adapted to apply a uniform electrostatic charge to an image web comprising a photoconductive deformable layer overlying a conductive support layer;
  • a deformation station including means to soften said deformable layer
  • a Xerographic exposure station including means to expose said web to said optical image, thereby forming a latent electrostatic image conforming to said optical image;
  • a xerographic developing station comprising means to apply resinous toner to said web whereby said electrostatic image is made visible as a toner image;
  • a viewing station comprising:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combination Of More Than One Step In Electrophotography (AREA)

Description

| E. WALKUP 3,196,765
IMAGE DEVELOPMENT AND PROJECTION July 27, 1965 2 Sheets-Sheet l FIG. 1 a F/6.2A
Filed June .24, 1963 L fi A INVENTOR.
/2 V7 LEWIS E.WALKUP F764 BY A T TORNE Y y 27, 1965 E. WALKUP 3,
IMAGE DEVELOPMENT AND PROJECTION Filed June 24, 1963 2 Sheets-Sheet 2 H z We:
FIG 5 INVENTOR.
LEWIS E. WALKUP AT TORNE'V United States Patent O 33,96,765 IMAGE DEVELOPMENT AND PROJECTEGN Lewis E. Walhup, Columbus, Ohio, assignor, by niesne assignments, to Xerox (Jorporation, Rochester, N.Y., a corporation of New York Filed June 24, 1963, Scr. No. 289,934 8 Claims. (Cl. 95-1.7)
This invention relates to xerography, in general, and to the development and display of images, in particular.
Xerography has become a well-known process for producing copies of printed matter, pictures, Writings, and other scenes. Typically, a xerographic copy comprises a powder image of pigmented resin, or toner, on a support base such as paper, plastics, and the like. Depending upon the particular application, the support base will be transparent, translucent or opaque, and the toner image viewed by transmitted or reflected light.
Suitability of a Xerographic copy is generally related to the density of the toner image. For instance, a black toner image on white paper must absorb sufficient light to be readable. Similarly, a xerographically produced transparency must be sufiiciently dense to block light projected through it so that the image may be viewed on a projection screen or other imaging surface.
Because the toner is selectively attracted to the support base by electrostatic forces, it is sometimes ditficult to achieve sufficient image density especially when the image is made up of very fine lines. If too little toner is attracted, the copy, or a projection of it, will be lacking in contrast, or even totally unreadable. Hence, imaging independent of toner density is a highly useful contribution to the art.
Accordingly, a new and improved method of Xerographic imaging independent of toner density is an object of this invention.
A novel xerographic transparency and method for making it are also objects of this invention.
Other objects of this invention include: high resolution image projection; high contrast image projection; the application of xerography to reduced size image projection; quick display of optical images, and novel apparatus therefore.
As explained in detail below, the present invention requires the use of Xerographic toner and image support a bases having specially selected properties. -An especially suitable support base comprises normally transparent material having a light scattering surface. According to one embodiment of the present invention, a toner image is formed on a Xerographic plate and transferred, after a tackifying step, to the light scattering surface of a support base. The transferred toner image is then processed to render the light scattering surface selectively transparent. Although the present invention may be used for making copies directly viewable by reflected light, its probably greater value resides in slides or transparencies viewable by projection. These and other embodiments of the present invention are described in detail in connection with the drawing in which:
FIG. 1 illustrates a light scattering member;
FIG. 2A and FIG. 2B illustrate the process of making the light scattering member selectively transparent;
FIG. 3 illustrates image projection;
FIG. 4 illustrates electrostatic transfer of a Xerographic toner image;
FIG. 5 illustrates apparatus and method for continuous reproduction of images; and,
FIG. 6 illustrates an image web for use in the present invention.
FIG. 1 illustrates support base 113 made of glass, clear plastic or other normally transparent material. One surice face of support base 10 must be sufficiently frost-like or reticulated to be substantially light scattering, and such surface is shown in FIG. 1 as image surface 11. A suitable support base, therefore, may comprise ground glass, ground plastic, frosted polyethylene films, and the like. Image surface 11 is preferably sufficiently light diffusing such that if used in a stereopticon or slide projector support base 10 would allow only a small portion of the collimated light directed toward it to reach the viewing screen. Thus, the image areas of surface 11 focused on a viewing screen by the objective lens would appear nearly black.
PKG. 2A illustrates the first step in rendering support base 16 selectively transparent according to the present invention. Image surface 11 is shown in contact with xerographic plate 15 on which has been formed toner image 12. Toner image 12 conforms to a document or other original scene, and is formed by any one of a number of methods well-known to the art of xerography. F or instance, according to one well-known method, Xerographic plate 15 comprising a photoconductive layer 16 overlying conductive backing 17 is uniformly charged in darkness by means of a corona discharge device. Exposure to a pattern of light and shadow selectively discharges the plate and forms a latent electrostatic image. The latent electrostatic image is made visible as toner image 1?. by dusting photoconductive layer 16 with finely divided electrically charged resin powder particles. Usually, the powder particles are charged to a polarity opposite to that of the latent electrostatic image so that the particles are attracted by, and adhere to, charged areas of plate 15. However, if desired for a particular application, like rather than opposite polarities may be selected so that the powder particles will be attracted to the discharged areas of plate 15 instead. Other Xerographic techniques may be used in place of the one described as the particular method of forming toner image 12 does not constitute a part of this invention.
To facilitate transfer of toner image 12 to image surface 11 of support base 1%, powder image 12 is made more tacky or adhesive. This may be done by heating powder image 12, or more desirably, by exposing powder image 12 to the vapors of a volatile liquid which act as a solvent for the resinous material.
Tackifying toner image 12 with solvent vapor is illustrated by FIG. 23. Support base 10 bearing toner image 12 may be immersed in solvent vapor 18 contained in vapor chamber 19. Although the particular volatile liquid used will depend upon the constituency of toner 12, it can generally be stated that suitable solvents include, but are in no way limited to, chloroform, carbon tetrachloride, trichloroethylene and other chlorinated solvents. Aromatic and aliphatic hydrocarbons such as benzene, toluene, gasoline and gasoline fractions, and other alcohols and oxygenated solvents may be used.
Image surface 11 of support base 10 is simply placed in contact with the tackified image under mild pressure, for example, by pressing with the hands. Plate 15 and support base 1b are then separated and sufficient toner will adhere to image surface 11 for purposes of the present invention.
It has been found that support base 10 with toner image 12 on its image surface 11 comprises an image member which may be used as a slide or transparency in a stereopticon, slide projector or other similar viewing device.
FIG. 3 illustrates one use of an image member made in accordance with the preesnt invention. Converging beam 21, produced from light source 22 by condensing system 25, illuminates image surfface 11 of support base ill. Objective lens 23 is positioned to focus image surface 11 in an image plane, such as viewing screen 24-.
Since image surface 11 is transparent in areas of toner image 12, light is transmitted in image configuration and appears on projection screen 24. The non-image areas of image surface 11 remain light scattering and light directed thereon is essentially lost from the optical system. Thus, there is caused to appear on screen 24 a bright display, corresponding to toner image 12, on a dark background.
As used in the present invention, toner image 12 comprises a transparent resin or other material which may be softened by heat, vapor solvent, or other controllable element. If desired, the toner material may be dyed. Image contrast is enhanced by using a toner image 12 of nearly the same index of refraction as that of support base 10 although readable images may also be made with other images. Commercially available non-pigmented xerographic toners have been successfully used in the present invention.
FIG. 4 illustrates an alternative method for transferring toner image 12 to image surface 11. This embodiment dispenses with the transfer softening step described in connection with FIG. 2.
Image surface 11 is again shown in contact with xerographic plate 15 bearing toner image 12. An electrostatic charge opposite in polarity to that of toner image 12 is applied to the non-diffusing surface 13 of support base 10 by means of charging device 26. Any suitable charging device known to the art of xerography may be used, and the one schematically represented in FIG. 4 comprises conductive strand 2.7 partly surrounded by grounded shield 28. Conductive strand 27 is raised to a high potential by means of power supply 29 resulting in the uniform charging of surface 13 through slit 3t) as charging device 26 is moved in the direction shown by able for projection purposes, it has been found that an additional fusing step results in a superior slide or transparency. Fusing of the transferred toner image 12 may be accomplished in the manner of transfer softening described in connection with FIG. 2B. It is believed that the fusing step causes the powder comprising toner image 12 to fill in the tiny pockets of image surface 11 thereby removing the diffusing property of those areas and rendering them highly transparent. Image members having fused toner images have been found to produce projection images that are of higher contrast and much brighter than images produced by image members having nonfused toner images.
FIG. illustrates an embodiment for the continuous production of transparencies according to the present invention. Although this embodiment incorporates an electrostatic frosting process to form the light diffusing surface of the transparency, it should be noted that the frosting process may be dispensed with when a prefrosted image web 32 is used.
To fully describe the present invention, reference is first made to FIG. 6 which more clearly illustrates the composition of image web 32. As shown, web 32 comprises a photoconductive deformable layer 33 overlying support layer 34. Both layers are necessarily flexible and transparent. A thin transparent conductive layer 35 need be incorporated into the structure only if support layer 34 is electrically non-conductive.
Specifically, a highly suitable web 32 may comprise a support layer 34 of Mylar polyester film (E. l. du Pont de Nemours & Co.), copper iodide layer 35, and a photod conductive deformable layer 33 of a photoconductor corresponding to Formula 2 of Canadian Patent No. 568,707 mixed with Staybelite 10 (Hercules Powder Company).
Referring to FIG. 5, image web 32 is fed from supply roll 37 through various process stations.
A light diffusing surface is first imported to web 32 in the manner fully described in co-pending patent application Serial No. 193,277. Successive portions of web 32 are electrostatically charged in the absence of light by means of corona charging device 33 which is connected to high voltage power supply 39. Deformable layer 33 is next softened so that it becomes physically altered by the mechanical force associated with the electrical field existing across layer 33 as a result of the aforementioned charging. Softening is most commonly done by exposing web 32 to an atmosphere of solvent vapors for the materials of layer 33, or by heating as illustrated in FIG. 5. Heating element 53 is shown positioned below web 32. As the material of layer 33 is softened it is enabled to flow in response to the electrostatic forces acting upon it, and the softened layer 33 develops a microscopically uneven surface having a frosted appearance. This surface is sufficiently light diffusing for use in the present invention. It is referred to as image surface 411 in connection with the remaining steps shown in FIG. 5.
Successive portions of web 32 are again electrostaticaliy charged in the absence of light, as schematically represented by charging device 41 connected to high voltage power supply 42.
Web 32 is then exposed to a light and shadow pattern of a document 43, or other original, for example, by projection of reflected light 44 from lamp 45 through lens 46. Since layer 33 is photoconductive, exposure causes selective dissipation of the electrostatic charge leaving a latent electrostatic image which may be developed or made visible at xerographic developing station 50.
The developing method known in the art of xerography as cascade development is highly suitable for the present invention and is fully described in U.S. Patents 2,618,551; 2,618,552; and 2,638,416. A mixture of tiny electrically charged resin toner particles and grossly larger carrier material is cascaded or poured across image surface 40 of web 32. Powder cloud development or liquid development, as known to the art, are also useful developing systems depending on the image being formed. According to the illustrated embodiment, the resin particles are attracted by and adhere to the charged areas of image web 32 forming toner image 51.
In a manner similar to that explained in connection with FIGS. 2 and 4, toner image 51 is appropriately softened to create an intimate bond between individual particles and with image surface 40. As illustrated in FIG. 5, image web 32 passes through fusing chamber 55 in which it is exposed to an atmosphere to solvent vapors for toner image 51. Thus render selectively transparent in image configuration, image web 32 is suitable for use as a transparency for the projection display of the image thereon. After it leaves fusing chamber 55, image web 32 may be stored for later use as on roller 67, or it may pass through viewing station 61? for quick projection display as illustrated in FIG. 5. At viewing station 619 image surface 41 is illuminated by convergent beam 61 produced from light source 63 by condensing system 62. Light is freely transmitted by the transparent or image areas of image surface 46 but is nearly completely blocked by diffusion at the non-transparent or non-image areas. There results a high contrast projected image on screen 6 1.
Various modifications and adaptations of the present invention are within the capability of those skilled in the art. Therefore, it is intended that the following claims be interpreted broadly to cover all embodiments of the present invention as well as the specific embodiments illustrated herein.
What is claimed is:
1. The method of producing an image, comprising:
(a) forming a transparent powder image on a light diffusing surface of a support member comprising normally transparent material;
(b) directing a collimated beam of light toward said member bearing said image; and,
(c) imaging the light transmitted by said member in an image plane.
2. The method of claim 1, wherein said powder image and said transparent material comprising said support member have substantially the same indexes of refraction.
3. The method of reproducing an optical image comprising:
(a) forming a transferable powder image conforming to said optical image on the photoconductive layer of a xerographic plate;
(b) placing a light scattering reticulated surface of a support base in contact with said powder image on said plate, said support base comprising transparent material;
(0) separating said base from said photoconductive layer whereby toner particles are transferred to said eticulated surface in image configuration and thereform a toner image;
directing a collimated beam of light toward said base; and,
(e) imaging the light transmitted through said toner image and said base in an image plane.
4. The method of claim 3 with the additional step of softening the image transferred to said support base after separating said base from said Xerographic plate.
5. The method of claim 3 with an additional step comprising fusing said toner image on said support base.
6. The method of reproducing an optical image comprising:
(a) forming a tackifiable transparent resinous toner image on the light diffusing surface of a sheet of ground glass;
(b) tackifying said image, whereby said light diffusing surface is rendered selectively transparent;
(c) projecting a light beam toward said ground glass;
and,
(d) imaging the light transmitted thereby on a viewing screen.
7. Apparatus for producing an image comprising:
(a) a transparency having a light scattering surface supporting a transparent powder image;
(b) means to direct a collimated beam of light toward said transparency; and,
(c) means to image light transmitted by said transparency.
8. Apparatus for reproducing an optical image comprising:
(a) a first xerographic charging station adapted to apply a uniform electrostatic charge to an image web comprising a photoconductive deformable layer overlying a conductive support layer;
(b) a deformation station including means to soften said deformable layer;
(c) a second xerographic charging station;
((1) a Xerographic exposure station including means to expose said web to said optical image, thereby forming a latent electrostatic image conforming to said optical image;
(e) a xerographic developing station comprising means to apply resinous toner to said web whereby said electrostatic image is made visible as a toner image;
(f) a toner image fusing station;
(g) a viewing station, comprising:
(1) means to direct a collimated beam of light toward said web; and, (2) means to image light transmitted thereby;
(h) means for moving successive portions of said web sequentially through said stations.
References Cited by the Examiner UNITED STATES PATENTS 308,296 11/ 84 Whittemore. 1,273,190 7/18 Scott 40-152 1,464,447 8/23 Shvachka et al. 40-152 2,890,633 6/59 Huebner 951.7 3,083,623 4/63 Mott 95l.7
OTHER REFERENCES Japanese Utility Model Publication No. SHO 37-4484, published March 15, 1962, copy with a partial translation in 96-1 (1 sht. pf patent and 2 pages of translation).
EVON C. BLUNK, Primary Examiner.

Claims (2)

1. THE OF PRODUCING AN IMAGE, COMPRISING: (A) FORMING A TRANSPARENT POWDER IMAGE ON A LIGHT DIFFUSING SURFACE OF A SUPPORT MEMBER COMPRISING NORMALLY TRANSPARENT MATERIAL; (B) DIRECTING A COLLIMATED BEAM OF LIGHT TOWARD SAID MEMBER BEARING SAID IMAGE; AND (C) IMAGING THE LIGHT TRANSMITTED BY SAID MEMBER IN AN IMAGE PLANE.
8. APPARATUS FOR REPRODUCING AN OPTICAL IMAGE COMPRISING: (A) A FIRST XEROGRAPHIC CHARING STATION ADAPTED TO APPLYING A UNIFORM ELECTROSTATIC CHARGE TO AN IMAGE WEB COMPRISING A PHOTOCONDUCTIVE DEFORMABLE LAYER OVERLYING A CONDUCTIVE SUPPORT LAYER; (B) A DEFORMATION STATION INCLUDING MEANS TO SOFTEN SAID DEFORMABLE LAYER; (C) A SECOND XEROGRAPHIC CHARGING STATION; (D) A XEROGRAPHIC EXPOSURE STATION INCLUDING MEANS TO EXPODE SAID WEB TO SAID OPTICAL IMAGE, THEREBY FORMING A LATENT ELECTROSTATIC IMAGE CONFORMING TO SAID OPTICAL IMAGE; (E) A XEROGRAPHIC DEVELOPING STATION COMPRISING MEANS TO APPLY RESINOUS TONER TO SAID WEB WHEREBY SAID ELECTROSTIC IMAGE IS MADE VISIBLE AS A TONER IMAGE; (F) A TONER IMAGE FUSING STATION; (G) A VIEWING STATION, COMPRISING: (2) MEANS TO DIRECT A COLLIMATED BEAM OF LIGHT TOWARD SAID WEB; AND, (2) MEANS TO IMAGE LIGHT TRANSMITTED THEREBY; (H) MEANS FOR MOVING SUCCESSIVE PORTIONS OF SAID WEB SEQUENTIALLY THROUGH SAID STATIONS.
US28990463 1963-06-24 1963-06-24 Image development and projection Expired - Lifetime US3196765A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US28990463 US3196765A (en) 1963-06-24 1963-06-24 Image development and projection
US42087064 US3355308A (en) 1963-06-24 1964-12-24 Projection transparency having a transparent powder image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US28990463 US3196765A (en) 1963-06-24 1963-06-24 Image development and projection

Publications (1)

Publication Number Publication Date
US3196765A true US3196765A (en) 1965-07-27

Family

ID=23113648

Family Applications (1)

Application Number Title Priority Date Filing Date
US28990463 Expired - Lifetime US3196765A (en) 1963-06-24 1963-06-24 Image development and projection

Country Status (1)

Country Link
US (1) US3196765A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3303401A (en) * 1962-07-20 1967-02-07 Azoplate Corp Method and apparatus for imparting an electrostatic charge to a layer of insulating material
US3532814A (en) * 1968-02-08 1970-10-06 Hughes Aircraft Co Visual image projection device and process
US3597063A (en) * 1967-09-22 1971-08-03 Matsushita Electric Ind Co Ltd Electrophotographic motion picture apparatus
US3738744A (en) * 1970-09-18 1973-06-12 Xerox Corp Viewer printer apparatus
US3741641A (en) * 1969-07-01 1973-06-26 Xerox Corp Manifold imaging apparatus
US3951541A (en) * 1973-09-14 1976-04-20 Coulter Information Systems, Inc. Duplicator processor
US4018525A (en) * 1975-03-31 1977-04-19 Bell & Howell Company Instant image film camera with inspection station
US4871640A (en) * 1987-05-15 1989-10-03 Minolta Camera Kabushiki Kaisha Method for producing an original for use in an overhead projector
US20050286083A1 (en) * 2004-06-29 2005-12-29 Xerox Corporation Glossmark images with clear toner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US308296A (en) * 1884-11-18 Blackboard
US1273190A (en) * 1917-10-04 1918-07-23 John D Scott Stereopticon-slide.
US1464447A (en) * 1922-07-26 1923-08-07 John K Shvachka Call device for public rooms
US2890633A (en) * 1956-03-29 1959-06-16 Standard Register Co Apparatus for reproducing images
US3083623A (en) * 1959-09-17 1963-04-02 Xerox Corp Transferred image apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US308296A (en) * 1884-11-18 Blackboard
US1273190A (en) * 1917-10-04 1918-07-23 John D Scott Stereopticon-slide.
US1464447A (en) * 1922-07-26 1923-08-07 John K Shvachka Call device for public rooms
US2890633A (en) * 1956-03-29 1959-06-16 Standard Register Co Apparatus for reproducing images
US3083623A (en) * 1959-09-17 1963-04-02 Xerox Corp Transferred image apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3303401A (en) * 1962-07-20 1967-02-07 Azoplate Corp Method and apparatus for imparting an electrostatic charge to a layer of insulating material
US3597063A (en) * 1967-09-22 1971-08-03 Matsushita Electric Ind Co Ltd Electrophotographic motion picture apparatus
US3532814A (en) * 1968-02-08 1970-10-06 Hughes Aircraft Co Visual image projection device and process
US3741641A (en) * 1969-07-01 1973-06-26 Xerox Corp Manifold imaging apparatus
US3738744A (en) * 1970-09-18 1973-06-12 Xerox Corp Viewer printer apparatus
US3951541A (en) * 1973-09-14 1976-04-20 Coulter Information Systems, Inc. Duplicator processor
US4018525A (en) * 1975-03-31 1977-04-19 Bell & Howell Company Instant image film camera with inspection station
US4871640A (en) * 1987-05-15 1989-10-03 Minolta Camera Kabushiki Kaisha Method for producing an original for use in an overhead projector
US20050286083A1 (en) * 2004-06-29 2005-12-29 Xerox Corporation Glossmark images with clear toner
US7301675B2 (en) 2004-06-29 2007-11-27 Xerox Corporation Glossmark images with clear toner

Similar Documents

Publication Publication Date Title
Schein Electrophotography and development physics
US3196011A (en) Electrostatic frosting
US2917385A (en) Reflex xerography
US3220324A (en) Photoconductively controlled corona charging
US3439983A (en) Microfilm copier double input
US3775102A (en) Method of electrostatically copying information on both sides of an original onto both sides of a support material
US2968552A (en) Xerographic apparatus and method
US3556781A (en) Migration imaging process
US3820985A (en) Method and apparatus for inductive electrophotography
US3238041A (en) Relief imaging of photoresponsive member and product
US3816115A (en) Method for forming a plurality of electrostatic latent images on an electrophotographic plate
US3128683A (en) Xerographic apparatus
US3764311A (en) Frost imaging system
US3196765A (en) Image development and projection
US4076858A (en) Electrostatic copying process with charging of the original
US3240596A (en) Electrophotographic processes and apparatus
US3083623A (en) Transferred image apparatus
US3227549A (en) Multiple image forming xerographic reproduction process
US3313623A (en) Line sequential color xerography
US3734609A (en) Electrophotographic process and apparatus
US3458309A (en) Color transparencies produced by electrophotographic techniques
US3664834A (en) Migration imaging method employing adhesive transfer member
US3776722A (en) Electrophotographic method of imagewise particle transfer employing alternating modulated field
US3355308A (en) Projection transparency having a transparent powder image
US3318698A (en) Xeroprinting reproduction