US3180058A - Joint structure for plasterboard - Google Patents
Joint structure for plasterboard Download PDFInfo
- Publication number
- US3180058A US3180058A US82736759A US3180058A US 3180058 A US3180058 A US 3180058A US 82736759 A US82736759 A US 82736759A US 3180058 A US3180058 A US 3180058A
- Authority
- US
- United States
- Prior art keywords
- board
- joint
- core
- edge
- paper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010440 gypsum Substances 0.000 claims description 19
- 229910052602 gypsum Inorganic materials 0.000 claims description 19
- 239000011499 joint compound Substances 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 5
- 230000014759 maintenance of location Effects 0.000 claims description 2
- 238000007373 indentation Methods 0.000 description 29
- 239000004568 cement Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000010451 perlite Substances 0.000 description 2
- 235000019362 perlite Nutrition 0.000 description 2
- -1 sawdust Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 229940000425 combination drug Drugs 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- JXSJBGJIGXNWCI-UHFFFAOYSA-N diethyl 2-[(dimethoxyphosphorothioyl)thio]succinate Chemical compound CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC JXSJBGJIGXNWCI-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 210000000497 foam cell Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229940061319 ovide Drugs 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/043—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of plaster
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/08—Apparatus or processes for treating or working the shaped or preshaped articles for reshaping the surface, e.g. smoothing, roughening, corrugating, making screw-threads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/0044—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for shaping edges or extremities
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
- B29C59/04—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
- Y10T428/249968—Of hydraulic-setting material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
Definitions
- Plasterboard as used in building or construction operations is, as is well known, composed of a core consisting essentially of set gypsum crystals with minor amounts of modifying additives, and fibrous or paper covers or liners within which such core is deposited and set.
- the boards are placed'so that the edges of two boards abut and the board surfaces are in coplanar relationship.
- an adhesive compound or joint cement is filled in at the joints and a fibrous or paper tape is laid over and adheres to suchadhesive or cement and overlies a portion of the board adjacent the abutting edge.
- finishing compound or plaster is applied over the boards and joint to provide a finished surface.
- the joint cement. or adhesive prevents the appearance or occurrence of unsightly cracks and fissures at the joints after the work is finished and. hardened, and assist in maintaining a pleasing surface appearance.
- the operator applies cementitious or adhesive material at the joints, applies tape over the cement, wipes oif the excess. cement and spreads the material evenly over the joint area by means of a broad knife, and in doing so, often removes too much of the adhesive material, or completely removes it from some portions of the joint zone, so that the tape fails to adhere, air bubbles or blisters form under the tape and the resulting joint is defective and unsightly.
- FIGURE 1 is a perspective view of a portion of plasterboard according to the invention, showing location of indentations;
- FiGURE 2 is a sectional view through two abutting tapered boards according to the invention.
- FIGURE 3 is a sectional View through a taped joint according to this invention.
- FIGURE 4 is a perspective view of one side of a boardmaking apparatus showing the indenting step of the operation in particular;
- FIGURE 5 is a top view of an-element of the indenting device according to the present invention.
- FIGURE 6 is a top view of another embodiment of the indenting device.
- FIGURE 7 is a side view of the device of FIGURE 5.
- a plasterboard having a plurality of shallow, discontinuous indentations in multiple rows inat least one surafce adjacent the edge thereof, and adapted to retain joint cement applied to such surface to insure a joint which is satisfactory and of pleasing appearance.
- the indentations or depressions are shallow and do not deleteriously affect the strength of the board edge, and suitably are from 0.003
- the depressions are of any desired configuration, e.g. of square, round or diamond-shaped cross section and the bottom orbase of such depression can also be of any desired configuration, for example flat, rounded or other. It is suitable that the depressed areas amount to from 15% to of the total area ofthe zone to be cemented; and that preferably from 20% to 40% of such area be depressed.
- the indentations may vary in depth from one to another, i.e. as among themselves. That is to say, every depression need not be of the same depth as every other depression.
- the indentations are disposed in a zone of the plasterboard surface at the edge thereof and preferably extendingfrom the edge of the board inwardly to cover at; least and preferably'slightly more than the area which will eventuall-y underlie the tape to be applied when the board is; installed.
- the indentations be disposed in a longitudinal zone extending inwardly about 1.5 inches from theedge of the board, so that inapplying a tape of about 2 to 2% inches width, presence of joint cement at and beyond the edge of the tape insures adhesion over the whole width of such tape, anda tight joint of pleasing appearance, after application of the finishingcompound.
- the indentations are disposed at one or more edges of the board, as desired.
- the indentations are'applied to any desired gypsum core board, suitably board having paper covers or liners, such aswallboard, lath, light weight Wallboard, fire-resistant wallboard of heavier unit weights, or other.
- such boards are provided with tapered edges to form the joints because such tapers have been deemed to receive and retain joint cement and tape and provide a uniform surface.
- wiping with a broadknife-still removes excessive amounts of joint cement from the small valleysprovided by such taper.
- a plasterboardcalcined gypsum such slurry being understood to contain any desired additive or modifying ingredient such as starch, expanded perlite, vermiculite, asbestos, sawdust, glass or paper fibers, an accelerator such as K 50 or a retarder such as partially hydrolyzed protein, and any other desired ingredient.
- the calcined'gypsum plastic slurry is deposited on a paper liner on a board-forming line, preferably the edges of the liner are folded over'on the slurry to form a covered-edge board, and a top liner is placed over the slurry.
- the board is formed under a suitable smooth-surfaced roll to the desired thickness, eg. of inch, /2 inch, /3 inch or other, and is forwarded on a supporting belt toward the drier.
- indentations are formed in the board surface under suitable pressure. Preferably, this formation is effected prior to final set; but it can be done after final set, at which time considerably increased pressures will be employed. It has been found that the application of pressure between initial and final setting times results in a satisfactory permanent deformation of the paper liner and the surface of the gypsum core with lower pressures. In making the depressions by the method of the invention, it has been an unexpected result that strength of the core edge is retained and no cracks or destructive fissures are found through the edge, the depressions being only at the surface and of very slight extent. The pressure applied is such pressure is is sufi'icient to effect the desired depression, and this is usually apparentupon inspection.
- the forming pressure is applied for a short time only, and advantageously by means of a toothed or embossed roller, as will be further described below.
- a plurality of indentations are pressed into the board surface adjacent one or more edges thereof, being disposed in multiple rows in a zone extending a short distance inwardly from the edge and generally parallel thereto.
- a device for effecting the indentations comprises an embossed means for indenting, a pressure means to enable impressing the embossed means on the board surface, and preferably means for rotating the embossed means at an angle to the horizontal, along its axis, to conform to the taper where a tapered edge board is to be indented.
- FIGURE 4 shows a horizontal board line having a series of rollers to support board llwhich is composed of core 12 consisting essentially of-a mass of set gypsum crystals with any desired additives, facing paper liner 13 and backing paper liner 14.
- the board has come from the board-forming station which is well known in this art and will not be fur-' ther described herein, and the board core has acquired its initial set.
- the board now passes beneath superposed hold-down means, e.g. roller 15 which is asteel cylinder of any desired diameter, extending across board 11 and of sufficient weight to hold the board against the indenting pressure to be applied.
- Roller 15 is supported at each end on a suitable standard 16 provided with a notch 17 at the top to support roller '15, the roller being vertically adjustable, to accomrnodate different board thicknesses, by means of lock nut 18.
- embossed roller 19 Disposed beneath the board line and adjacent the outer edge of the lower surface of board 11 is embossed roller 19 which is a steel cylinder having bosses 21 disposed over its periphery.
- bosses 21 are square in shape, arranged in a plurality of rectilinear vertical and horizontal rows, and occupying about of the total surface area of cylinder 26.
- the bosses are about inch in depth, but this is variable except that the bosses are at least slightly more than thedepth of indentation desired.
- the height, or depth, of the embossing protuberance or lug is easily determined for any given indenting operation.
- Roller 19 is supported at both ends, as shown at 22 in FIGURE 4, by a forked or bifurcate support means .23.
- lever arm 25 is rotatably connected by means of a ball-and-socket joint, indicated at 2 Yoke 23 thus rotates freely on arm 25, and therefore roller 19 is brought into uniform contact over its width with varying tapers of wallboard edge surface 26.
- pivot support means 29 Disposed between the two ends and of lever arm 25 .is pivot support means 29 which acts as a fulcrum in the operation of the indenting device and method, as will be later explained.
- Lever arm 25 is fixed against forward travel by pin 35 in fulcrum 29, in this embodiment.
- End 28 of lever arm 25, beyond eight 39 passes through slot 37 of guide means 36, which acts to prevent roller 19 from swinging out of line during forward motion of the board.
- latch 38 catches and holds end 23 of arm 25, lowering roller 19 out of operative position.
- a weight 30 is applied at end 23 of arm 25, and this acfing through fulcrum 29 forces roller 19 upwardly against the lower edge surface 26 of board-11.
- embossed roller 19 rotates freely at 22, and pressing against the lower surface of the board forms therein a multiplicity of indentations, as shown in the board of FIGURE 1, for example, at 31, disposed in a plurality of longitudinal and transverse rows with respect to the board edge. It has been found that a pressure of from to 300 lbs. per square inch applied at close to the initial setting time of the core provides suitable indentations. Increasing pressures, up to about 450 lbs.
- the embossed roller 19 forms in the board surface indentationsas shown at 31 in FIGURE 1. If the edge is tapered or bevelled, the roller 19 isrotatably inclined, as
- FIGURES 2 and 3 wherein the size of each indentation is exaggerated.
- indentations are exhibited both by the paper liners 13, 14 and the gypsum core 12.
- FIGURE 2 there are shown two boards 11, 11 placed in abutting relation as such boards will be installed.
- a joint is formed therebetween by applying joint cement 33 which fills up the recess formed by the tapered portions of edges 26, 26 and also fills indentations 31 which are so disposed in the taper that some of them will underlie the edge of the tape to be applied.
- joint cement After the joint cement has been filled into the area where'the joint is to be formed, wallboard tape 34 is applied and adhesively attached by means of the cement, and excess cement iswiped off with a broadknife, some being retained in indentations 31.
- the joint cement employed can be of any desired composition, several such cements being well known in this art.
- a suitable type of oint cement is'shown, for example, in Riddell and Kirk, U.S. Patent 2,662,024, issued December 8,1952.
- a lightweight wallboard is formed by depositing between paper liners a plasticslurry in Water of an admixture of calcined gypsum, expanded vesiculated perlite, sawdust, starch'and a retarder, as described in Riddell and Kirk, US; Patent 2,803,575, issued August 20, 1957.
- the core and liners are passed between forming rolls and then forwarded along the board-line on a supporting belt until the core has taken its initial set, as will be shown for example by testing -With the Vicat apparatus to see whether it still exhibits plastic-flow, after which the board moves forward on rollers. 10.
- the indenting roller 19 is placed in the line just beyond the stage where the board has taken its initial set, and-a weight 30 is placed at end 28 of lever arm 25 to apply a pressure of about 200 lbs. per sq. in. at the contact between roller 19 and board face edge 26.
- the indenting roller has square protuberances, each about As-inch on a side and about Aa-inch deep, the protuberances or teeth occupying about 25% of the area of the roller surface.
- the roller indents the board face from the edge inwardly about 1.5 inches, applying six rows of indentations, each indentation being about 0.005 to 0.008 inch in depth.
- the board moves forward along the line until the core takes its final set, and thence to the drying Zone Where it is dried at a temperature of from about 210 degrees F. to about 400 degrees F., the temperature preferably not exceeding about 350 degrees F.
- the board is removed from the drying Zone and cut into the desired lengths, A
- the board edges exhibit the desired permanent indentations which have not been effected by the completion of hardening and the drying steps.
- the boards are installed to form the interior walls of a building, using a commercial joint cement and wallboard tape, with formation of excellent joints, firm adhesion of the tape to the joint areas and freedom from tears or non-adhered portions.
- the depressions are not subject to damage in handling and shipping because the plane surface is of such extent as to protect the depressions whereas projections raised above the plane surface of the board edge would be liable to shear off or be distorted during manipulation of the board. It is a further advantage of the invention that the device provided for forming the depressions is of simple, inexpensive construction and can be readily installed in the usual commercial board-forming arrangement without disruption of the usual operation thereof.
- pressure has been shown to be applied to the embossed roller by means of a weight on a lever arm but, alternatively, such pressure can be applied by a spring means or, in other words, the lever arm can be spring-biased.
- other means of applying such pressure can be employed, if desired.
- the embossed roller is of steel, but other hard-surfaced roller means can be employed.
- the discontinuous depressions can be impressed by impact means, but a roller is an efiicient continuous device for the purpose.
- the example has shown applying the depressions at the edge of a lightweight gypsum core board, but they can also be applied to boards having other gypsum core compositions, e.g. as containing foam cells, or being of heavier construction, higher pressures generally being desirable with heavier core compositions.
- a pair of such boards are placed on a support (e.g. stud 39) in abutting relation, joint cement or adhesive applied, then fibrous tape is applied and excess cement removed, as described above, and then finishing cement is applied over the joint.
- the discontinuous, shallow depressions are preferably impressed in the gypsum core board edge surface at a time between the initial setting time and the final setting time to provide suitable indentations without damage to the core edge.
- the indentations can alterna- 6 tively be impressed afterthe final setting time with-application of greater pressures than are required when working the preferred interval.
- the paper liners are not broken but merely exhibit depressions therein.
- edge surface or edge of surface it is to be understood to mean the zone along the edge at a'face of the board in question rather than the narrow transverse or-sectional edge across the depth or thickness of the board, the latter being the inch, A2 inch or like dimension.
- the surface in question in'other words, is that parallel to the tape which is later applied. It is preferred that the surface area of the joint zone of the board exhibitno extensive plane surface without indentations closely adjacent the edge.
- the initial set of the core often takes place Within two minutes after formation of the board, but this can be changed by the addition of an accelerator orretarder, as desired.
- the final set may take place from eight to fifteen minutes after the initial set, but this also varies depending upon the addition of accelerator or retarder, and it can be Idetenmined in any event by observing the temperatures exhibited by the core. That is, setting is an exothermic reaction and results in a rise in temperature in the core, and when the temperature levels oif and no longer rises, final set will have occurred.
- the initial set can be determined by taking samples of the slurry feed at intervals, allowing to set and testing with a Vicat needle in the known way. In a board line,
- the board from the forming s-tationis supported on a belt until initial set has occurred and then is forwarded on rollers, so that in practice it is useful to indent just after the board leaves the belt.
- the indentations can be formed in a tapered edge'or a straight or nontapered board surface, preferably to from 1 to 2 inches in from the edge.
- the tape employed is of any desired type and can be plain, spark-punched or other. It is to be understood that the above specific description and example are given for purposes of illustration only and that variations and modifications can be made therein without departing from the spirit and scope of the appended claims.
- Plasterboard of improved joint-forming property consisting essentially of a core of interlaced set gypsum crystals and paper liners covering the faces of said board, said board having shallow, discontinuous depressions disposed in a plurality of transverse and longitudinal rows in a zone of a surface of said board adjacent an edge only of said surface and adapted to underlie the edge of later-applied wallboard tape.
- each of said boards consisting essentially of a core of set gypsum crystals and paper liners covering said core, said boards being disposed in abutting relationship to form a joint, the abutting edge of'each of said boards tapering to form a cement-receiving depression in com bination with the edge of the other of said pair of boards, shallow, discontinuous joint cement-receiving depressions disposed in a plurality of longitudinal and transverse rows in said paper liner and said core in each of said tapered edges, joint cement in said joint and retained in said depressions and fibrous tape disposed over said joint and depressions and in contact with said joint cement at least some of said depressions underlying the edges of said tape.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Architecture (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Finishing Walls (AREA)
Description
April27,1965 P. w. TILLISCH ETAk I 3,180,058
JOINT STRUCTURE FOR PLASTERBOARD Filed July 15, 1959 s Sheets-Sheet. 1
mvENToRs: PAUL W.- TILLISCH ALBERT F. PAFFAELLI April 7, 1965 P.w.1'|L| |sc|-| ETAL 3,180,058
JOINT smucwunm FOR rmsmnaom 3 Sheets-Sheet 2 Filed July 15, 1959 INVENTOR. 0.401. W TILL lscl-l BY A LBER TEPAFIAEL I April 27, 1965 p. w. TILLISCH ETAL 3,180,058
JOINT STRUCTURE FOR PLASTERBOARD 5 Sheets-Sheet 3 Filed July 15, 1959 R. m u N E 4 V v N 5 L I w cm Wm m L6 .T Z 2 PA W Y B United States Patent 3 180,058 sonar srnucrunn non rLAsrnnnoARn Paul W. Tilliseh, Antioch, and Albert F. Raifaelh', Concord, Calif assignors to Kaiser Gypsum Company, lne, Gahland, Califi, a corporation of Washington Filed July 15, 1959, Ser. No. 827,367 8 Ciaims. (Cl. 50-194) This invention relates to a plasterboard of improved joint-forming properties and an improved joint; and it relates more particularly to a method and device for producing such improved plasterboard and joint, in dry wall construction. I
Plasterboard as used in building or construction operations is, as is well known, composed of a core consisting essentially of set gypsum crystals with minor amounts of modifying additives, and fibrous or paper covers or liners within which such core is deposited and set. In the installation of such boards, which will be understood'to inelude also lath, the boards are placed'so that the edges of two boards abut and the board surfaces are in coplanar relationship. In order to form a smooth abutting joint, an adhesive compound or joint cement is filled in at the joints and a fibrous or paper tape is laid over and adheres to suchadhesive or cement and overlies a portion of the board adjacent the abutting edge. After this joint structure is set and hardened, finishing compound or plaster is applied over the boards and joint to provide a finished surface. The joint cement. or adhesive prevents the appearance or occurrence of unsightly cracks and fissures at the joints after the work is finished and. hardened, and assist in maintaining a pleasing surface appearance.
In one method of installation of such boards and the formation of such joints, the operator applies cementitious or adhesive material at the joints, applies tape over the cement, wipes oif the excess. cement and spreads the material evenly over the joint area by means of a broad knife, and in doing so, often removes too much of the adhesive material, or completely removes it from some portions of the joint zone, so that the tape fails to adhere, air bubbles or blisters form under the tape and the resulting joint is defective and unsightly. In methods where the joint cement is..applied by means of a gun, or-is pumped onto the joint as a stream of slurry, a rather thin slurry must be fed and the mud thereby deposited at the joint may provide insufiicient adhesive material, or in other words, may be too lean, and again, joint failures frequently occur from this cause.
t is an object of this invention to'pr'ovide a plasterboard having improved joint-forming properties. It is another object to provide a method for making a plasterboard having improved joint-forming properties. It is a further object to provide a method for indenting the surface edge zones of paper-lined plasterboards to improve the joint FIGURE 1 is a perspective view of a portion of plasterboard according to the invention, showing location of indentations; I
FiGURE 2 is a sectional view through two abutting tapered boards according to the invention;
FIGURE 3 is a sectional View through a taped joint according to this invention;
ice
FIGURE 4 is a perspective view of one side of a boardmaking apparatus showing the indenting step of the operation in particular;
FIGURE 5 is a top view of an-element of the indenting device according to the present invention;
FIGURE 6 is a top view of another embodiment of the indenting device;
FIGURE 7 is a side view of the device of FIGURE 5. According to the present invention there is provided a plasterboard having a plurality of shallow, discontinuous indentations in multiple rows inat least one surafce adjacent the edge thereof, and adapted to retain joint cement applied to such surface to insure a joint which is satisfactory and of pleasing appearance. The indentations or depressions are shallow and do not deleteriously affect the strength of the board edge, and suitably are from 0.003
to 0.012 inch, and preferably from 0.005 to 0.008 inch, in depth; The depressions are of any desired configuration, e.g. of square, round or diamond-shaped cross section and the bottom orbase of such depression can also be of any desired configuration, for example flat, rounded or other. It is suitable that the depressed areas amount to from 15% to of the total area ofthe zone to be cemented; and that preferably from 20% to 40% of such area be depressed. The indentations may vary in depth from one to another, i.e. as among themselves. That is to say, every depression need not be of the same depth as every other depression.
The indentations are disposed in a zone of the plasterboard surface at the edge thereof and preferably extendingfrom the edge of the board inwardly to cover at; least and preferably'slightly more than the area which will eventuall-y underlie the tape to be applied when the board is; installed. For example, in the usual installation, it is preferredthat the indentations be disposed in a longitudinal zone extending inwardly about 1.5 inches from theedge of the board, so that inapplying a tape of about 2 to 2% inches width, presence of joint cement at and beyond the edge of the tape insures adhesion over the whole width of such tape, anda tight joint of pleasing appearance, after application of the finishingcompound. The indentations are disposed at one or more edges of the board, as desired.
The indentations are'applied to any desired gypsum core board, suitably board having paper covers or liners, such aswallboard, lath, light weight Wallboard, fire-resistant wallboard of heavier unit weights, or other. In many instances, such boards are provided with tapered edges to form the joints because such tapers have been deemed to receive and retain joint cement and tape and provide a uniform surface. However, it has been foundin practice that wiping with a broadknife-still removes excessive amounts of joint cement from the small valleysprovided by such taper. Such removal is especially excessive at the outer edge of the taper whe're it meets the plane surface of the board and results in blister-s or in failure to bond the edge ofthe later-applied-tape, so that'the tape is liable to tear when finishing compound is-applied and an unsatisfactory joint results. i It will be understood, of course, that thetaper is necessarily slight in order to maintain strength of the board edges. According to this in.- vention, a plurality of shallow, discontinuous depressions or indentations are provided in or at the tapered surfaces and insure retention in such surface of the required joint cement. The. indentationsare providedlikewi'se in multiple rows to provide for a sufficient number. of depressions to efiect a satisfactory cementing action, as disclosed above.
In the production of the indentations a plasterboardcalcined gypsum, such slurry being understood to contain any desired additive or modifying ingredient such as starch, expanded perlite, vermiculite, asbestos, sawdust, glass or paper fibers, an accelerator such as K 50 or a retarder such as partially hydrolyzed protein, and any other desired ingredient. The calcined'gypsum plastic slurry is deposited on a paper liner on a board-forming line, preferably the edges of the liner are folded over'on the slurry to form a covered-edge board, and a top liner is placed over the slurry. The board is formed under a suitable smooth-surfaced roll to the desired thickness, eg. of inch, /2 inch, /3 inch or other, and is forwarded on a supporting belt toward the drier.
After the gypsum core has acquired its initial set, the
indentations are formed in the board surface under suitable pressure. Preferably, this formation is effected prior to final set; but it can be done after final set, at which time considerably increased pressures will be employed. It has been found that the application of pressure between initial and final setting times results in a satisfactory permanent deformation of the paper liner and the surface of the gypsum core with lower pressures. In making the depressions by the method of the invention, it has been an unexpected result that strength of the core edge is retained and no cracks or destructive fissures are found through the edge, the depressions being only at the surface and of very slight extent. The pressure applied is such pressure is is sufi'icient to effect the desired depression, and this is usually apparentupon inspection. After the gypsum core has acquired its initial set, it will no longer be subject to plastic flow, although not completely hardened, and the depressions formed retain their form and shape. Thus, preferably, the forming pressure is applied for a short time only, and advantageously by means of a toothed or embossed roller, as will be further described below. A plurality of indentations are pressed into the board surface adjacent one or more edges thereof, being disposed in multiple rows in a zone extending a short distance inwardly from the edge and generally parallel thereto.
A device for effecting the indentations according to the present invention comprises an embossed means for indenting, a pressure means to enable impressing the embossed means on the board surface, and preferably means for rotating the embossed means at an angle to the horizontal, along its axis, to conform to the taper where a tapered edge board is to be indented.
One suitable device for carrying out this invention is shown in FIGURES 4 and 5. FIGURE 4 shows a horizontal board line having a series of rollers to support board llwhich is composed of core 12 consisting essentially of-a mass of set gypsum crystals with any desired additives, facing paper liner 13 and backing paper liner 14. The board has come from the board-forming station which is well known in this art and will not be fur-' ther described herein, and the board core has acquired its initial set. The board now passes beneath superposed hold-down means, e.g. roller 15 which is asteel cylinder of any desired diameter, extending across board 11 and of sufficient weight to hold the board against the indenting pressure to be applied. Roller 15 is supported at each end on a suitable standard 16 provided with a notch 17 at the top to support roller '15, the roller being vertically adjustable, to accomrnodate different board thicknesses, by means of lock nut 18. a
Disposed beneath the board line and adjacent the outer edge of the lower surface of board 11 is embossed roller 19 which is a steel cylinder having bosses 21 disposed over its periphery. In the embodiment shown in FIG- URESSand 7, bosses 21 are square in shape, arranged in a plurality of rectilinear vertical and horizontal rows, and occupying about of the total surface area of cylinder 26. In the embodiment shown the bosses are about inch in depth, but this is variable except that the bosses are at least slightly more than thedepth of indentation desired. Thus, the height, or depth, of the embossing protuberance or lug is easily determined for any given indenting operation.
In the mode of operating the device and the embodiment thereof shown in FIGURE 4, a weight 30 is applied at end 23 of arm 25, and this acfing through fulcrum 29 forces roller 19 upwardly against the lower edge surface 26 of board-11. As board 11 moves forward (shown by the arrow) on support rollers 10, embossed roller 19 rotates freely at 22, and pressing against the lower surface of the board forms therein a multiplicity of indentations, as shown in the board of FIGURE 1, for example, at 31, disposed in a plurality of longitudinal and transverse rows with respect to the board edge. It has been found that a pressure of from to 300 lbs. per square inch applied at close to the initial setting time of the core provides suitable indentations. Increasing pressures, up to about 450 lbs. per square inch, for example, are applied when indentations are formed in the board at times approaching the final setting time; and pressures of 600 to 800 p.s.i. are useful if indenting after final set. For instance, if the roller '19 in FIGURE 4 is so disposed in the board line that when pressed against the board it indents just after the core has taken its initial set, it has been found that a satisfactory result is achieved with a pressure of about 200 lbs. per square inch. On the other hand, if the roller 19 is disposed farther from the forming station along the board line and at a point-where the core is about to take its final set, it has been found that a pressure of about 400 lbs. per square inch gives a satisfactory result.
The embossed roller 19 forms in the board surface indentationsas shown at 31 in FIGURE 1. If the edge is tapered or bevelled, the roller 19 isrotatably inclined, as
These can be more clearly in FIGURES 2 and 3, wherein the size of each indentation is exaggerated. However, it is found in practice that indentations are exhibited both by the paper liners 13, 14 and the gypsum core 12. In FIGURE 2 there are shown two boards 11, 11 placed in abutting relation as such boards will be installed. A joint is formed therebetween by applying joint cement 33 which fills up the recess formed by the tapered portions of edges 26, 26 and also fills indentations 31 which are so disposed in the taper that some of them will underlie the edge of the tape to be applied.
After the joint cement has been filled into the area where'the joint is to be formed, wallboard tape 34 is applied and adhesively attached by means of the cement, and excess cement iswiped off with a broadknife, some being retained in indentations 31. The joint cement employed can be of any desired composition, several such cements being well known in this art. A suitable type of oint cement is'shown, for example, in Riddell and Kirk, U.S. Patent 2,662,024, issued December 8,1952.
As an example of the method of carrying out this invention, a lightweight wallboard is formed by depositing between paper liners a plasticslurry in Water of an admixture of calcined gypsum, expanded vesiculated perlite, sawdust, starch'and a retarder, as described in Riddell and Kirk, US; Patent 2,803,575, issued August 20, 1957. The core and liners are passed between forming rolls and then forwarded along the board-line on a supporting belt until the core has taken its initial set, as will be shown for example by testing -With the Vicat apparatus to see whether it still exhibits plastic-flow, after which the board moves forward on rollers. 10. The indenting roller 19 is placed in the line just beyond the stage where the board has taken its initial set, and-a weight 30 is placed at end 28 of lever arm 25 to apply a pressure of about 200 lbs. per sq. in. at the contact between roller 19 and board face edge 26. In this example, the indenting roller has square protuberances, each about As-inch on a side and about Aa-inch deep, the protuberances or teeth occupying about 25% of the area of the roller surface. The roller indents the board face from the edge inwardly about 1.5 inches, applying six rows of indentations, each indentation being about 0.005 to 0.008 inch in depth. The board moves forward along the line until the core takes its final set, and thence to the drying Zone Where it is dried at a temperature of from about 210 degrees F. to about 400 degrees F., the temperature preferably not exceeding about 350 degrees F. At the end of the drying cycle the board is removed from the drying Zone and cut into the desired lengths, A
weighing about 1900 lbs./ 1000 sq. ft. The board edges exhibit the desired permanent indentations which have not been effected by the completion of hardening and the drying steps. The boards are installed to form the interior walls of a building, using a commercial joint cement and wallboard tape, with formation of excellent joints, firm adhesion of the tape to the joint areas and freedom from tears or non-adhered portions.
It is an advantage of the invention that the depressions are not subject to damage in handling and shipping because the plane surface is of such extent as to protect the depressions whereas projections raised above the plane surface of the board edge would be liable to shear off or be distorted during manipulation of the board. It is a further advantage of the invention that the device provided for forming the depressions is of simple, inexpensive construction and can be readily installed in the usual commercial board-forming arrangement without disruption of the usual operation thereof.
In the above description, pressure has been shown to be applied to the embossed roller by means of a weight on a lever arm but, alternatively, such pressure can be applied by a spring means or, in other words, the lever arm can be spring-biased. An alternative design for a roller, having diamond-shaped protuberances 32, is shown in FIG. 6. Also, other means of applying such pressure can be employed, if desired. Suitably, the embossed roller is of steel, but other hard-surfaced roller means can be employed. Alternatively, the discontinuous depressions can be impressed by impact means, but a roller is an efiicient continuous device for the purpose. The example has shown applying the depressions at the edge of a lightweight gypsum core board, but they can also be applied to boards having other gypsum core compositions, e.g. as containing foam cells, or being of heavier construction, higher pressures generally being desirable with heavier core compositions. In dry wall construction a pair of such boards are placed on a support (e.g. stud 39) in abutting relation, joint cement or adhesive applied, then fibrous tape is applied and excess cement removed, as described above, and then finishing cement is applied over the joint.
The discontinuous, shallow depressions are preferably impressed in the gypsum core board edge surface at a time between the initial setting time and the final setting time to provide suitable indentations without damage to the core edge. However, the indentations can alterna- 6 tively be impressed afterthe final setting time with-application of greater pressures than are required when working the preferred interval. In forming the indentations, the paper liners are not broken but merely exhibit depressions therein. Where the term edge surface or edge of surface is employed herein, it is to be understood to mean the zone along the edge at a'face of the board in question rather than the narrow transverse or-sectional edge across the depth or thickness of the board, the latter being the inch, A2 inch or like dimension. The surface in question, in'other words, is that parallel to the tape which is later applied. It is preferred that the surface area of the joint zone of the board exhibitno extensive plane surface without indentations closely adjacent the edge.
The initial set of the core often takes place Within two minutes after formation of the board, but this can be changed by the addition of an accelerator orretarder, as desired. The final set may take place from eight to fifteen minutes after the initial set, but this also varies depending upon the addition of accelerator or retarder, and it can be Idetenmined in any event by observing the temperatures exhibited by the core. That is, setting is an exothermic reaction and results in a rise in temperature in the core, and when the temperature levels oif and no longer rises, final set will have occurred. The initial set can be determined by taking samples of the slurry feed at intervals, allowing to set and testing with a Vicat needle in the known way. In a board line,
the board from the forming s-tationis supported on a belt until initial set has occurred and then is forwarded on rollers, so that in practice it is useful to indent just after the board leaves the belt. It is to be understood that the indentations can be formed in a tapered edge'or a straight or nontapered board surface, preferably to from 1 to 2 inches in from the edge.
The tape employed is of any desired type and can be plain, spark-punched or other. It is to be understood that the above specific description and example are given for purposes of illustration only and that variations and modifications can be made therein without departing from the spirit and scope of the appended claims.
Having now described the invention, what is claimed 1. Plasterboard of improved joint-forming property consisting essentially of a core of interlaced set gypsum crystals and paper liners covering the faces of said board, said board having shallow, discontinuous depressions disposed in a plurality of transverse and longitudinal rows in a zone of a surface of said board adjacent an edge only of said surface and adapted to underlie the edge of later-applied wallboard tape.
2. Plasterboard as in claim 1 wherein said depressions are from 0.003 to 0.012 inch in depth.
3. Plasterboard as in claim 1 wherein said depressions occupy from 15% to of the area of said zone.
4. In dry wall construction a pair of gypsum core' discontinuous joint cement-retaining depressions in said paper and core at said tapered edge, said depressions being disposed within said tapered edge surface in a plurality of transverse and longitudinal rows and maintaining said paper in unbroken state, and adapted to underlie the edges of tape when assembled.
6. Plasterboard as in claim wherein said depressions depressions are from 0.003 to 0.012 inch in depth.
7. Plasterboard as in claim 6 wherein said de-pres sions are from 15% to 80% of the total areaof the surface of said tapered edge.
8. In dry Wall construction a pair of gypsum core boards, each of said boards consisting essentially of a core of set gypsum crystals and paper liners covering said core, said boards being disposed in abutting relationship to form a joint, the abutting edge of'each of said boards tapering to form a cement-receiving depression in com bination with the edge of the other of said pair of boards, shallow, discontinuous joint cement-receiving depressions disposed in a plurality of longitudinal and transverse rows in said paper liner and said core in each of said tapered edges, joint cement in said joint and retained in said depressions and fibrous tape disposed over said joint and depressions and in contact with said joint cement at least some of said depressions underlying the edges of said tape.
References Cited by th s Examiner UNITED STATES PATENTS Roorne 15445.9
6/26 Schumacher 154-87 8/27 Utzman 15445.9 11/29 Zaisser 50--194 6/36 Walper 154-87 5/43 Brusse 156-71 8/49 Buttress 44 5/55 Buttress 2544 FORErGN PATENTS 1/49 Australia.
EARLM. BERGERT, Prin zary Examiner.
ALEXANDER WYMAN, CARL F. KRAFFT,
Examiners.
Claims (1)
- 5. PLASTERBOARD OF IMPROVED JOINT CEMENT RETENTION PROPERTY CONSISTING ESSENTIALLY OF A CORE OF SET GYPSUM CRYSTALS AND PAPER LINERS COVERING SID CORE, A TAPERED EDGE AT ONE FACE OF SID PAPER-COVERED CORE, AND SHALLOW, DISCONTIUOUS JOINT CEMENT-RETAINING DEPRESSIONS IN SAID PAPER AND CORE AT SAID TAPERED EDGE, SAID DEPRESSION BEING DISPOSED WITHIN SAID TAPERED EGE SURFACE IN A PLURALITY OF TRANSVERSE AND LONGITUDINAL ROWS AND MAINTAINING SAID PAPER IN UNBROKEN STATE, AND ADAPTED TO UNDERLIE THE EDGES OF TAPE WHEN ASSEMBLED.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US82736759 US3180058A (en) | 1959-07-15 | 1959-07-15 | Joint structure for plasterboard |
US297476A US3233301A (en) | 1959-07-15 | 1963-06-27 | Apparatus for surface treatment of wallboard |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US82736759 US3180058A (en) | 1959-07-15 | 1959-07-15 | Joint structure for plasterboard |
Publications (1)
Publication Number | Publication Date |
---|---|
US3180058A true US3180058A (en) | 1965-04-27 |
Family
ID=25249038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US82736759 Expired - Lifetime US3180058A (en) | 1959-07-15 | 1959-07-15 | Joint structure for plasterboard |
Country Status (1)
Country | Link |
---|---|
US (1) | US3180058A (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3385019A (en) * | 1960-02-04 | 1968-05-28 | Nat Gypsum Co | Wallboard and wall structure |
US3435582A (en) * | 1966-03-02 | 1969-04-01 | United States Gypsum Co | Wallboard construction |
US3469361A (en) * | 1968-02-09 | 1969-09-30 | Nat Gypsum Co | Gypsum wallboard,wallboard construction method and wall structure |
US3708935A (en) * | 1966-11-07 | 1973-01-09 | Nat Gypsum Co | Simulated monolithic predecorated wall construction |
US3769118A (en) * | 1970-02-13 | 1973-10-30 | Air Liquide | Thermal insulation of receptacles for cryogenic fluids |
US4275172A (en) * | 1980-01-28 | 1981-06-23 | Union Carbide Corporation | Frothable polyurethane composition and a cellular foam produced therefrom suitable for use in joints between wallboards |
US4548846A (en) * | 1984-11-08 | 1985-10-22 | Kurtz Thomas D | Press-on type finger pull |
US5088260A (en) * | 1990-07-23 | 1992-02-18 | Barton James J | System and method for joining structural panels |
US5198052A (en) * | 1990-10-22 | 1993-03-30 | Domtar, Inc. | Method of reshaping a gypsum board core and products made by same |
US5230200A (en) * | 1988-10-31 | 1993-07-27 | Douglas Waymon J | Wallboard and method of joining wallboards |
US5333433A (en) * | 1992-09-22 | 1994-08-02 | Porambo Bernard A | Self-adhesive wallboard finishing tape and tape-and-wallboard panel system |
FR2770549A1 (en) * | 1997-10-30 | 1999-05-07 | Staff Decor | Staff plate for forming partition wall or ceiling |
US6105325A (en) * | 1995-06-30 | 2000-08-22 | Lafarge Platres | Method, assembly and additional coat for the construction of interior works |
US20030084633A1 (en) * | 1995-06-30 | 2003-05-08 | Francois Zuber | Method, assembly and additional coat for the construction of interior works |
US20040003570A1 (en) * | 2001-10-23 | 2004-01-08 | Phillips Jerry S. | Methods of making manufactured housing or modular homes |
US20040154264A1 (en) * | 2000-08-04 | 2004-08-12 | Colbert Elizabeth A. | Coated gypsum board products and method of manufacture |
US20050193668A1 (en) * | 2004-02-23 | 2005-09-08 | Hamilton Coatings, Llc | Drywall joint construction and method |
US20050227013A1 (en) * | 2004-04-13 | 2005-10-13 | Lafarge Platres | Coating spray apparatus and method of using same |
US20050234174A1 (en) * | 2004-04-14 | 2005-10-20 | Elizabeth Colbert | Coating for wall construction |
US20050229519A1 (en) * | 2004-04-14 | 2005-10-20 | Elizabeth Colbert | System using a drywall board and a jointing compound |
US20050246993A1 (en) * | 2004-04-13 | 2005-11-10 | Elizabeth Colbert | System using a drywall board and a jointing compound |
US20050252128A1 (en) * | 2004-04-13 | 2005-11-17 | Elizabeth Colbert | Coating for wall construction |
US20060048684A1 (en) * | 2002-11-08 | 2006-03-09 | Lafarge Platres | Joint coating composition for construction elements and method for producing a structure |
US20100154349A1 (en) * | 2006-01-12 | 2010-06-24 | Peter Penders | Method for Production of a Wall of Gypsum Panels |
WO2010099563A1 (en) * | 2009-03-05 | 2010-09-10 | Csr Building Products Limited | Improved plasterboard jointing system |
US20120117903A1 (en) * | 2010-11-15 | 2012-05-17 | Stephan Wedi | Planar component with a mortar receiving coating or surface |
US8814555B1 (en) | 2013-05-20 | 2014-08-26 | Alex G. Hensley, Sr. | Drywall tapering device |
WO2018183412A1 (en) * | 2017-03-30 | 2018-10-04 | United States Gypsum Company | Gypsum fiber roof panel with angled edge for accommodating environmentally-induced expansion |
US20210054635A1 (en) * | 2019-08-23 | 2021-02-25 | Abel SeamPro, LLC | Drywall joint tool |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US584748A (en) * | 1897-06-15 | Plaster-board or fireproofing | ||
US1589569A (en) * | 1924-07-07 | 1926-06-22 | Schumacher John | Method of making plaster-board lath |
US1638280A (en) * | 1920-04-19 | 1927-08-09 | United States Gypsum Co | Fabricated board |
US1735447A (en) * | 1928-08-20 | 1929-11-12 | Zaisser William | Method of waterproofing hollow-tile walls |
US2044234A (en) * | 1933-12-01 | 1936-06-16 | Gordon R Walper | Method of manufacturing wallboard |
US2318053A (en) * | 1940-06-14 | 1943-05-04 | Lester W Brusse | Wall joint construction |
US2479207A (en) * | 1946-05-11 | 1949-08-16 | George A Buttress | Apparatus for forming plaster-keying depressions in plasterboard |
US2708300A (en) * | 1951-08-03 | 1955-05-17 | George A Buttress | Machine for forming plaster keying depressions in plasterboard |
-
1959
- 1959-07-15 US US82736759 patent/US3180058A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US584748A (en) * | 1897-06-15 | Plaster-board or fireproofing | ||
US1638280A (en) * | 1920-04-19 | 1927-08-09 | United States Gypsum Co | Fabricated board |
US1589569A (en) * | 1924-07-07 | 1926-06-22 | Schumacher John | Method of making plaster-board lath |
US1735447A (en) * | 1928-08-20 | 1929-11-12 | Zaisser William | Method of waterproofing hollow-tile walls |
US2044234A (en) * | 1933-12-01 | 1936-06-16 | Gordon R Walper | Method of manufacturing wallboard |
US2318053A (en) * | 1940-06-14 | 1943-05-04 | Lester W Brusse | Wall joint construction |
US2479207A (en) * | 1946-05-11 | 1949-08-16 | George A Buttress | Apparatus for forming plaster-keying depressions in plasterboard |
US2708300A (en) * | 1951-08-03 | 1955-05-17 | George A Buttress | Machine for forming plaster keying depressions in plasterboard |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3385019A (en) * | 1960-02-04 | 1968-05-28 | Nat Gypsum Co | Wallboard and wall structure |
US3435582A (en) * | 1966-03-02 | 1969-04-01 | United States Gypsum Co | Wallboard construction |
US3708935A (en) * | 1966-11-07 | 1973-01-09 | Nat Gypsum Co | Simulated monolithic predecorated wall construction |
US3469361A (en) * | 1968-02-09 | 1969-09-30 | Nat Gypsum Co | Gypsum wallboard,wallboard construction method and wall structure |
US3769118A (en) * | 1970-02-13 | 1973-10-30 | Air Liquide | Thermal insulation of receptacles for cryogenic fluids |
US4275172A (en) * | 1980-01-28 | 1981-06-23 | Union Carbide Corporation | Frothable polyurethane composition and a cellular foam produced therefrom suitable for use in joints between wallboards |
US4548846A (en) * | 1984-11-08 | 1985-10-22 | Kurtz Thomas D | Press-on type finger pull |
US5230200A (en) * | 1988-10-31 | 1993-07-27 | Douglas Waymon J | Wallboard and method of joining wallboards |
US5088260A (en) * | 1990-07-23 | 1992-02-18 | Barton James J | System and method for joining structural panels |
US5198052A (en) * | 1990-10-22 | 1993-03-30 | Domtar, Inc. | Method of reshaping a gypsum board core and products made by same |
US5333433A (en) * | 1992-09-22 | 1994-08-02 | Porambo Bernard A | Self-adhesive wallboard finishing tape and tape-and-wallboard panel system |
US6105325A (en) * | 1995-06-30 | 2000-08-22 | Lafarge Platres | Method, assembly and additional coat for the construction of interior works |
US20030084633A1 (en) * | 1995-06-30 | 2003-05-08 | Francois Zuber | Method, assembly and additional coat for the construction of interior works |
US20040216424A1 (en) * | 1995-06-30 | 2004-11-04 | Lafarge Platres | Construction assembly of plaster boards and a method of assembling a plurality of plaster boards |
US8151532B2 (en) | 1995-06-30 | 2012-04-10 | Lafarge Platres | Construction assembly of skim coated prefabricated elements and jointing material, a kit therefor, and method of assembling the same |
US7208225B2 (en) * | 1995-06-30 | 2007-04-24 | Lafarge Platres | Prefabricated plaster board |
US7337587B2 (en) | 1995-06-30 | 2008-03-04 | Lafarge Platres | Construction assembly of plaster boards and a method of assembling a plurality of plaster boards |
FR2770549A1 (en) * | 1997-10-30 | 1999-05-07 | Staff Decor | Staff plate for forming partition wall or ceiling |
US20040154264A1 (en) * | 2000-08-04 | 2004-08-12 | Colbert Elizabeth A. | Coated gypsum board products and method of manufacture |
US20040003570A1 (en) * | 2001-10-23 | 2004-01-08 | Phillips Jerry S. | Methods of making manufactured housing or modular homes |
US20090229736A1 (en) * | 2002-11-08 | 2009-09-17 | Lafarge Platres | Joint compound composition for building elements and method of producing a structure |
US20060048684A1 (en) * | 2002-11-08 | 2006-03-09 | Lafarge Platres | Joint coating composition for construction elements and method for producing a structure |
US7842218B2 (en) | 2002-11-08 | 2010-11-30 | Lafarge Platres | Method of producing a structure |
US7594963B2 (en) | 2002-11-08 | 2009-09-29 | Lafarge Platres | Joint compound composition for building elements and method of producing a structure |
US20050193668A1 (en) * | 2004-02-23 | 2005-09-08 | Hamilton Coatings, Llc | Drywall joint construction and method |
US20050227013A1 (en) * | 2004-04-13 | 2005-10-13 | Lafarge Platres | Coating spray apparatus and method of using same |
US20050252128A1 (en) * | 2004-04-13 | 2005-11-17 | Elizabeth Colbert | Coating for wall construction |
US7214411B2 (en) | 2004-04-13 | 2007-05-08 | Lafarge Platres | Coating spray apparatus and method of using same |
US20050246993A1 (en) * | 2004-04-13 | 2005-11-10 | Elizabeth Colbert | System using a drywall board and a jointing compound |
US20050234174A1 (en) * | 2004-04-14 | 2005-10-20 | Elizabeth Colbert | Coating for wall construction |
US20080275167A1 (en) * | 2004-04-14 | 2008-11-06 | Lafarge Platres | Coating for wall construction |
US7414085B2 (en) | 2004-04-14 | 2008-08-19 | Lafarge Platres | Coating for wall construction |
US20050229519A1 (en) * | 2004-04-14 | 2005-10-20 | Elizabeth Colbert | System using a drywall board and a jointing compound |
US7469510B2 (en) | 2004-04-14 | 2008-12-30 | Lafarge Platres | System using a drywall board and a jointing compound |
US20100154349A1 (en) * | 2006-01-12 | 2010-06-24 | Peter Penders | Method for Production of a Wall of Gypsum Panels |
US8257526B2 (en) | 2009-03-05 | 2012-09-04 | Csr Building Products Limited | Plasterboard jointing system |
WO2010099563A1 (en) * | 2009-03-05 | 2010-09-10 | Csr Building Products Limited | Improved plasterboard jointing system |
US20120117903A1 (en) * | 2010-11-15 | 2012-05-17 | Stephan Wedi | Planar component with a mortar receiving coating or surface |
US8814555B1 (en) | 2013-05-20 | 2014-08-26 | Alex G. Hensley, Sr. | Drywall tapering device |
WO2018183412A1 (en) * | 2017-03-30 | 2018-10-04 | United States Gypsum Company | Gypsum fiber roof panel with angled edge for accommodating environmentally-induced expansion |
US10486388B2 (en) | 2017-03-30 | 2019-11-26 | United States Gypsum Company | Gypsum fiber roof panel with angled edge for accommodating environmentally-induced expansion |
US20210054635A1 (en) * | 2019-08-23 | 2021-02-25 | Abel SeamPro, LLC | Drywall joint tool |
US11713581B2 (en) * | 2019-08-23 | 2023-08-01 | Marcus Allen Abel | Drywall joint tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3180058A (en) | Joint structure for plasterboard | |
US11280090B2 (en) | Gypsum board suitable for wet or humid areas | |
US5198052A (en) | Method of reshaping a gypsum board core and products made by same | |
US3044919A (en) | Method of applying facing material to a wall surface | |
US5030502A (en) | Cementitious construction panel | |
US6737156B2 (en) | Interior wallboard and method of making same | |
US2760881A (en) | Tile and method of making | |
US3513009A (en) | Method of forming fissured acoustical panel | |
US4016697A (en) | Construction unit | |
US5961900A (en) | Method of manufacturing composite board | |
US2232762A (en) | Composite panel board | |
US4313775A (en) | Wood brick | |
US3233301A (en) | Apparatus for surface treatment of wallboard | |
US2059520A (en) | Building material and process of | |
US2095641A (en) | Process of making artificial stone wall facings | |
USRE26382E (en) | Joint structure for plasterboard | |
US1959960A (en) | Method of making asbestos siding in imitation of brick | |
US2445210A (en) | Manufacture of fibro-cementitious sheets | |
US3364088A (en) | Process for making ornamental wall facings | |
US2432002A (en) | Concrete form lining and method of manufacture | |
USRE22481E (en) | Building unit | |
US20040023002A1 (en) | Ultimate drywall tape | |
US1869367A (en) | Sound absorbing material and method of making the same | |
US4960616A (en) | Corrugated roofing sheets of synthetic fiber-reinforced cement, with a rough surface due to the presence of granular material | |
US1838237A (en) | Composite wall tile |