US3180058A - Joint structure for plasterboard - Google Patents

Joint structure for plasterboard Download PDF

Info

Publication number
US3180058A
US3180058A US82736759A US3180058A US 3180058 A US3180058 A US 3180058A US 82736759 A US82736759 A US 82736759A US 3180058 A US3180058 A US 3180058A
Authority
US
United States
Prior art keywords
board
joint
core
edge
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Paul W Tillisch
Albert F Raffaelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaiser Gypsum Co Inc
Original Assignee
Kaiser Gypsum Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaiser Gypsum Co Inc filed Critical Kaiser Gypsum Co Inc
Priority to US82736759 priority Critical patent/US3180058A/en
Priority to US297476A priority patent/US3233301A/en
Application granted granted Critical
Publication of US3180058A publication Critical patent/US3180058A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/043Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of plaster
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/08Apparatus or processes for treating or working the shaped or preshaped articles for reshaping the surface, e.g. smoothing, roughening, corrugating, making screw-threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/0044Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for shaping edges or extremities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249968Of hydraulic-setting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • Plasterboard as used in building or construction operations is, as is well known, composed of a core consisting essentially of set gypsum crystals with minor amounts of modifying additives, and fibrous or paper covers or liners within which such core is deposited and set.
  • the boards are placed'so that the edges of two boards abut and the board surfaces are in coplanar relationship.
  • an adhesive compound or joint cement is filled in at the joints and a fibrous or paper tape is laid over and adheres to suchadhesive or cement and overlies a portion of the board adjacent the abutting edge.
  • finishing compound or plaster is applied over the boards and joint to provide a finished surface.
  • the joint cement. or adhesive prevents the appearance or occurrence of unsightly cracks and fissures at the joints after the work is finished and. hardened, and assist in maintaining a pleasing surface appearance.
  • the operator applies cementitious or adhesive material at the joints, applies tape over the cement, wipes oif the excess. cement and spreads the material evenly over the joint area by means of a broad knife, and in doing so, often removes too much of the adhesive material, or completely removes it from some portions of the joint zone, so that the tape fails to adhere, air bubbles or blisters form under the tape and the resulting joint is defective and unsightly.
  • FIGURE 1 is a perspective view of a portion of plasterboard according to the invention, showing location of indentations;
  • FiGURE 2 is a sectional view through two abutting tapered boards according to the invention.
  • FIGURE 3 is a sectional View through a taped joint according to this invention.
  • FIGURE 4 is a perspective view of one side of a boardmaking apparatus showing the indenting step of the operation in particular;
  • FIGURE 5 is a top view of an-element of the indenting device according to the present invention.
  • FIGURE 6 is a top view of another embodiment of the indenting device.
  • FIGURE 7 is a side view of the device of FIGURE 5.
  • a plasterboard having a plurality of shallow, discontinuous indentations in multiple rows inat least one surafce adjacent the edge thereof, and adapted to retain joint cement applied to such surface to insure a joint which is satisfactory and of pleasing appearance.
  • the indentations or depressions are shallow and do not deleteriously affect the strength of the board edge, and suitably are from 0.003
  • the depressions are of any desired configuration, e.g. of square, round or diamond-shaped cross section and the bottom orbase of such depression can also be of any desired configuration, for example flat, rounded or other. It is suitable that the depressed areas amount to from 15% to of the total area ofthe zone to be cemented; and that preferably from 20% to 40% of such area be depressed.
  • the indentations may vary in depth from one to another, i.e. as among themselves. That is to say, every depression need not be of the same depth as every other depression.
  • the indentations are disposed in a zone of the plasterboard surface at the edge thereof and preferably extendingfrom the edge of the board inwardly to cover at; least and preferably'slightly more than the area which will eventuall-y underlie the tape to be applied when the board is; installed.
  • the indentations be disposed in a longitudinal zone extending inwardly about 1.5 inches from theedge of the board, so that inapplying a tape of about 2 to 2% inches width, presence of joint cement at and beyond the edge of the tape insures adhesion over the whole width of such tape, anda tight joint of pleasing appearance, after application of the finishingcompound.
  • the indentations are disposed at one or more edges of the board, as desired.
  • the indentations are'applied to any desired gypsum core board, suitably board having paper covers or liners, such aswallboard, lath, light weight Wallboard, fire-resistant wallboard of heavier unit weights, or other.
  • such boards are provided with tapered edges to form the joints because such tapers have been deemed to receive and retain joint cement and tape and provide a uniform surface.
  • wiping with a broadknife-still removes excessive amounts of joint cement from the small valleysprovided by such taper.
  • a plasterboardcalcined gypsum such slurry being understood to contain any desired additive or modifying ingredient such as starch, expanded perlite, vermiculite, asbestos, sawdust, glass or paper fibers, an accelerator such as K 50 or a retarder such as partially hydrolyzed protein, and any other desired ingredient.
  • the calcined'gypsum plastic slurry is deposited on a paper liner on a board-forming line, preferably the edges of the liner are folded over'on the slurry to form a covered-edge board, and a top liner is placed over the slurry.
  • the board is formed under a suitable smooth-surfaced roll to the desired thickness, eg. of inch, /2 inch, /3 inch or other, and is forwarded on a supporting belt toward the drier.
  • indentations are formed in the board surface under suitable pressure. Preferably, this formation is effected prior to final set; but it can be done after final set, at which time considerably increased pressures will be employed. It has been found that the application of pressure between initial and final setting times results in a satisfactory permanent deformation of the paper liner and the surface of the gypsum core with lower pressures. In making the depressions by the method of the invention, it has been an unexpected result that strength of the core edge is retained and no cracks or destructive fissures are found through the edge, the depressions being only at the surface and of very slight extent. The pressure applied is such pressure is is sufi'icient to effect the desired depression, and this is usually apparentupon inspection.
  • the forming pressure is applied for a short time only, and advantageously by means of a toothed or embossed roller, as will be further described below.
  • a plurality of indentations are pressed into the board surface adjacent one or more edges thereof, being disposed in multiple rows in a zone extending a short distance inwardly from the edge and generally parallel thereto.
  • a device for effecting the indentations comprises an embossed means for indenting, a pressure means to enable impressing the embossed means on the board surface, and preferably means for rotating the embossed means at an angle to the horizontal, along its axis, to conform to the taper where a tapered edge board is to be indented.
  • FIGURE 4 shows a horizontal board line having a series of rollers to support board llwhich is composed of core 12 consisting essentially of-a mass of set gypsum crystals with any desired additives, facing paper liner 13 and backing paper liner 14.
  • the board has come from the board-forming station which is well known in this art and will not be fur-' ther described herein, and the board core has acquired its initial set.
  • the board now passes beneath superposed hold-down means, e.g. roller 15 which is asteel cylinder of any desired diameter, extending across board 11 and of sufficient weight to hold the board against the indenting pressure to be applied.
  • Roller 15 is supported at each end on a suitable standard 16 provided with a notch 17 at the top to support roller '15, the roller being vertically adjustable, to accomrnodate different board thicknesses, by means of lock nut 18.
  • embossed roller 19 Disposed beneath the board line and adjacent the outer edge of the lower surface of board 11 is embossed roller 19 which is a steel cylinder having bosses 21 disposed over its periphery.
  • bosses 21 are square in shape, arranged in a plurality of rectilinear vertical and horizontal rows, and occupying about of the total surface area of cylinder 26.
  • the bosses are about inch in depth, but this is variable except that the bosses are at least slightly more than thedepth of indentation desired.
  • the height, or depth, of the embossing protuberance or lug is easily determined for any given indenting operation.
  • Roller 19 is supported at both ends, as shown at 22 in FIGURE 4, by a forked or bifurcate support means .23.
  • lever arm 25 is rotatably connected by means of a ball-and-socket joint, indicated at 2 Yoke 23 thus rotates freely on arm 25, and therefore roller 19 is brought into uniform contact over its width with varying tapers of wallboard edge surface 26.
  • pivot support means 29 Disposed between the two ends and of lever arm 25 .is pivot support means 29 which acts as a fulcrum in the operation of the indenting device and method, as will be later explained.
  • Lever arm 25 is fixed against forward travel by pin 35 in fulcrum 29, in this embodiment.
  • End 28 of lever arm 25, beyond eight 39 passes through slot 37 of guide means 36, which acts to prevent roller 19 from swinging out of line during forward motion of the board.
  • latch 38 catches and holds end 23 of arm 25, lowering roller 19 out of operative position.
  • a weight 30 is applied at end 23 of arm 25, and this acfing through fulcrum 29 forces roller 19 upwardly against the lower edge surface 26 of board-11.
  • embossed roller 19 rotates freely at 22, and pressing against the lower surface of the board forms therein a multiplicity of indentations, as shown in the board of FIGURE 1, for example, at 31, disposed in a plurality of longitudinal and transverse rows with respect to the board edge. It has been found that a pressure of from to 300 lbs. per square inch applied at close to the initial setting time of the core provides suitable indentations. Increasing pressures, up to about 450 lbs.
  • the embossed roller 19 forms in the board surface indentationsas shown at 31 in FIGURE 1. If the edge is tapered or bevelled, the roller 19 isrotatably inclined, as
  • FIGURES 2 and 3 wherein the size of each indentation is exaggerated.
  • indentations are exhibited both by the paper liners 13, 14 and the gypsum core 12.
  • FIGURE 2 there are shown two boards 11, 11 placed in abutting relation as such boards will be installed.
  • a joint is formed therebetween by applying joint cement 33 which fills up the recess formed by the tapered portions of edges 26, 26 and also fills indentations 31 which are so disposed in the taper that some of them will underlie the edge of the tape to be applied.
  • joint cement After the joint cement has been filled into the area where'the joint is to be formed, wallboard tape 34 is applied and adhesively attached by means of the cement, and excess cement iswiped off with a broadknife, some being retained in indentations 31.
  • the joint cement employed can be of any desired composition, several such cements being well known in this art.
  • a suitable type of oint cement is'shown, for example, in Riddell and Kirk, U.S. Patent 2,662,024, issued December 8,1952.
  • a lightweight wallboard is formed by depositing between paper liners a plasticslurry in Water of an admixture of calcined gypsum, expanded vesiculated perlite, sawdust, starch'and a retarder, as described in Riddell and Kirk, US; Patent 2,803,575, issued August 20, 1957.
  • the core and liners are passed between forming rolls and then forwarded along the board-line on a supporting belt until the core has taken its initial set, as will be shown for example by testing -With the Vicat apparatus to see whether it still exhibits plastic-flow, after which the board moves forward on rollers. 10.
  • the indenting roller 19 is placed in the line just beyond the stage where the board has taken its initial set, and-a weight 30 is placed at end 28 of lever arm 25 to apply a pressure of about 200 lbs. per sq. in. at the contact between roller 19 and board face edge 26.
  • the indenting roller has square protuberances, each about As-inch on a side and about Aa-inch deep, the protuberances or teeth occupying about 25% of the area of the roller surface.
  • the roller indents the board face from the edge inwardly about 1.5 inches, applying six rows of indentations, each indentation being about 0.005 to 0.008 inch in depth.
  • the board moves forward along the line until the core takes its final set, and thence to the drying Zone Where it is dried at a temperature of from about 210 degrees F. to about 400 degrees F., the temperature preferably not exceeding about 350 degrees F.
  • the board is removed from the drying Zone and cut into the desired lengths, A
  • the board edges exhibit the desired permanent indentations which have not been effected by the completion of hardening and the drying steps.
  • the boards are installed to form the interior walls of a building, using a commercial joint cement and wallboard tape, with formation of excellent joints, firm adhesion of the tape to the joint areas and freedom from tears or non-adhered portions.
  • the depressions are not subject to damage in handling and shipping because the plane surface is of such extent as to protect the depressions whereas projections raised above the plane surface of the board edge would be liable to shear off or be distorted during manipulation of the board. It is a further advantage of the invention that the device provided for forming the depressions is of simple, inexpensive construction and can be readily installed in the usual commercial board-forming arrangement without disruption of the usual operation thereof.
  • pressure has been shown to be applied to the embossed roller by means of a weight on a lever arm but, alternatively, such pressure can be applied by a spring means or, in other words, the lever arm can be spring-biased.
  • other means of applying such pressure can be employed, if desired.
  • the embossed roller is of steel, but other hard-surfaced roller means can be employed.
  • the discontinuous depressions can be impressed by impact means, but a roller is an efiicient continuous device for the purpose.
  • the example has shown applying the depressions at the edge of a lightweight gypsum core board, but they can also be applied to boards having other gypsum core compositions, e.g. as containing foam cells, or being of heavier construction, higher pressures generally being desirable with heavier core compositions.
  • a pair of such boards are placed on a support (e.g. stud 39) in abutting relation, joint cement or adhesive applied, then fibrous tape is applied and excess cement removed, as described above, and then finishing cement is applied over the joint.
  • the discontinuous, shallow depressions are preferably impressed in the gypsum core board edge surface at a time between the initial setting time and the final setting time to provide suitable indentations without damage to the core edge.
  • the indentations can alterna- 6 tively be impressed afterthe final setting time with-application of greater pressures than are required when working the preferred interval.
  • the paper liners are not broken but merely exhibit depressions therein.
  • edge surface or edge of surface it is to be understood to mean the zone along the edge at a'face of the board in question rather than the narrow transverse or-sectional edge across the depth or thickness of the board, the latter being the inch, A2 inch or like dimension.
  • the surface in question in'other words, is that parallel to the tape which is later applied. It is preferred that the surface area of the joint zone of the board exhibitno extensive plane surface without indentations closely adjacent the edge.
  • the initial set of the core often takes place Within two minutes after formation of the board, but this can be changed by the addition of an accelerator orretarder, as desired.
  • the final set may take place from eight to fifteen minutes after the initial set, but this also varies depending upon the addition of accelerator or retarder, and it can be Idetenmined in any event by observing the temperatures exhibited by the core. That is, setting is an exothermic reaction and results in a rise in temperature in the core, and when the temperature levels oif and no longer rises, final set will have occurred.
  • the initial set can be determined by taking samples of the slurry feed at intervals, allowing to set and testing with a Vicat needle in the known way. In a board line,
  • the board from the forming s-tationis supported on a belt until initial set has occurred and then is forwarded on rollers, so that in practice it is useful to indent just after the board leaves the belt.
  • the indentations can be formed in a tapered edge'or a straight or nontapered board surface, preferably to from 1 to 2 inches in from the edge.
  • the tape employed is of any desired type and can be plain, spark-punched or other. It is to be understood that the above specific description and example are given for purposes of illustration only and that variations and modifications can be made therein without departing from the spirit and scope of the appended claims.
  • Plasterboard of improved joint-forming property consisting essentially of a core of interlaced set gypsum crystals and paper liners covering the faces of said board, said board having shallow, discontinuous depressions disposed in a plurality of transverse and longitudinal rows in a zone of a surface of said board adjacent an edge only of said surface and adapted to underlie the edge of later-applied wallboard tape.
  • each of said boards consisting essentially of a core of set gypsum crystals and paper liners covering said core, said boards being disposed in abutting relationship to form a joint, the abutting edge of'each of said boards tapering to form a cement-receiving depression in com bination with the edge of the other of said pair of boards, shallow, discontinuous joint cement-receiving depressions disposed in a plurality of longitudinal and transverse rows in said paper liner and said core in each of said tapered edges, joint cement in said joint and retained in said depressions and fibrous tape disposed over said joint and depressions and in contact with said joint cement at least some of said depressions underlying the edges of said tape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Finishing Walls (AREA)

Description

April27,1965 P. w. TILLISCH ETAk I 3,180,058
JOINT STRUCTURE FOR PLASTERBOARD Filed July 15, 1959 s Sheets-Sheet. 1
mvENToRs: PAUL W.- TILLISCH ALBERT F. PAFFAELLI April 7, 1965 P.w.1'|L| |sc|-| ETAL 3,180,058
JOINT smucwunm FOR rmsmnaom 3 Sheets-Sheet 2 Filed July 15, 1959 INVENTOR. 0.401. W TILL lscl-l BY A LBER TEPAFIAEL I April 27, 1965 p. w. TILLISCH ETAL 3,180,058
JOINT STRUCTURE FOR PLASTERBOARD 5 Sheets-Sheet 3 Filed July 15, 1959 R. m u N E 4 V v N 5 L I w cm Wm m L6 .T Z 2 PA W Y B United States Patent 3 180,058 sonar srnucrunn non rLAsrnnnoARn Paul W. Tilliseh, Antioch, and Albert F. Raifaelh', Concord, Calif assignors to Kaiser Gypsum Company, lne, Gahland, Califi, a corporation of Washington Filed July 15, 1959, Ser. No. 827,367 8 Ciaims. (Cl. 50-194) This invention relates to a plasterboard of improved joint-forming properties and an improved joint; and it relates more particularly to a method and device for producing such improved plasterboard and joint, in dry wall construction. I
Plasterboard as used in building or construction operations is, as is well known, composed of a core consisting essentially of set gypsum crystals with minor amounts of modifying additives, and fibrous or paper covers or liners within which such core is deposited and set. In the installation of such boards, which will be understood'to inelude also lath, the boards are placed'so that the edges of two boards abut and the board surfaces are in coplanar relationship. In order to form a smooth abutting joint, an adhesive compound or joint cement is filled in at the joints and a fibrous or paper tape is laid over and adheres to suchadhesive or cement and overlies a portion of the board adjacent the abutting edge. After this joint structure is set and hardened, finishing compound or plaster is applied over the boards and joint to provide a finished surface. The joint cement. or adhesive prevents the appearance or occurrence of unsightly cracks and fissures at the joints after the work is finished and. hardened, and assist in maintaining a pleasing surface appearance.
In one method of installation of such boards and the formation of such joints, the operator applies cementitious or adhesive material at the joints, applies tape over the cement, wipes oif the excess. cement and spreads the material evenly over the joint area by means of a broad knife, and in doing so, often removes too much of the adhesive material, or completely removes it from some portions of the joint zone, so that the tape fails to adhere, air bubbles or blisters form under the tape and the resulting joint is defective and unsightly. In methods where the joint cement is..applied by means of a gun, or-is pumped onto the joint as a stream of slurry, a rather thin slurry must be fed and the mud thereby deposited at the joint may provide insufiicient adhesive material, or in other words, may be too lean, and again, joint failures frequently occur from this cause.
t is an object of this invention to'pr'ovide a plasterboard having improved joint-forming properties. It is another object to provide a method for making a plasterboard having improved joint-forming properties. It is a further object to provide a method for indenting the surface edge zones of paper-lined plasterboards to improve the joint FIGURE 1 is a perspective view of a portion of plasterboard according to the invention, showing location of indentations; I
FiGURE 2 is a sectional view through two abutting tapered boards according to the invention;
FIGURE 3 is a sectional View through a taped joint according to this invention;
ice
FIGURE 4 is a perspective view of one side of a boardmaking apparatus showing the indenting step of the operation in particular;
FIGURE 5 is a top view of an-element of the indenting device according to the present invention;
FIGURE 6 is a top view of another embodiment of the indenting device;
FIGURE 7 is a side view of the device of FIGURE 5. According to the present invention there is provided a plasterboard having a plurality of shallow, discontinuous indentations in multiple rows inat least one surafce adjacent the edge thereof, and adapted to retain joint cement applied to such surface to insure a joint which is satisfactory and of pleasing appearance. The indentations or depressions are shallow and do not deleteriously affect the strength of the board edge, and suitably are from 0.003
to 0.012 inch, and preferably from 0.005 to 0.008 inch, in depth; The depressions are of any desired configuration, e.g. of square, round or diamond-shaped cross section and the bottom orbase of such depression can also be of any desired configuration, for example flat, rounded or other. It is suitable that the depressed areas amount to from 15% to of the total area ofthe zone to be cemented; and that preferably from 20% to 40% of such area be depressed. The indentations may vary in depth from one to another, i.e. as among themselves. That is to say, every depression need not be of the same depth as every other depression.
The indentations are disposed in a zone of the plasterboard surface at the edge thereof and preferably extendingfrom the edge of the board inwardly to cover at; least and preferably'slightly more than the area which will eventuall-y underlie the tape to be applied when the board is; installed. For example, in the usual installation, it is preferredthat the indentations be disposed in a longitudinal zone extending inwardly about 1.5 inches from theedge of the board, so that inapplying a tape of about 2 to 2% inches width, presence of joint cement at and beyond the edge of the tape insures adhesion over the whole width of such tape, anda tight joint of pleasing appearance, after application of the finishingcompound. The indentations are disposed at one or more edges of the board, as desired.
The indentations are'applied to any desired gypsum core board, suitably board having paper covers or liners, such aswallboard, lath, light weight Wallboard, fire-resistant wallboard of heavier unit weights, or other. In many instances, such boards are provided with tapered edges to form the joints because such tapers have been deemed to receive and retain joint cement and tape and provide a uniform surface. However, it has been foundin practice that wiping with a broadknife-still removes excessive amounts of joint cement from the small valleysprovided by such taper. Such removal is especially excessive at the outer edge of the taper whe're it meets the plane surface of the board and results in blister-s or in failure to bond the edge ofthe later-applied-tape, so that'the tape is liable to tear when finishing compound is-applied and an unsatisfactory joint results. i It will be understood, of course, that thetaper is necessarily slight in order to maintain strength of the board edges. According to this in.- vention, a plurality of shallow, discontinuous depressions or indentations are provided in or at the tapered surfaces and insure retention in such surface of the required joint cement. The. indentationsare providedlikewi'se in multiple rows to provide for a sufficient number. of depressions to efiect a satisfactory cementing action, as disclosed above.
In the production of the indentations a plasterboardcalcined gypsum, such slurry being understood to contain any desired additive or modifying ingredient such as starch, expanded perlite, vermiculite, asbestos, sawdust, glass or paper fibers, an accelerator such as K 50 or a retarder such as partially hydrolyzed protein, and any other desired ingredient. The calcined'gypsum plastic slurry is deposited on a paper liner on a board-forming line, preferably the edges of the liner are folded over'on the slurry to form a covered-edge board, and a top liner is placed over the slurry. The board is formed under a suitable smooth-surfaced roll to the desired thickness, eg. of inch, /2 inch, /3 inch or other, and is forwarded on a supporting belt toward the drier.
After the gypsum core has acquired its initial set, the
indentations are formed in the board surface under suitable pressure. Preferably, this formation is effected prior to final set; but it can be done after final set, at which time considerably increased pressures will be employed. It has been found that the application of pressure between initial and final setting times results in a satisfactory permanent deformation of the paper liner and the surface of the gypsum core with lower pressures. In making the depressions by the method of the invention, it has been an unexpected result that strength of the core edge is retained and no cracks or destructive fissures are found through the edge, the depressions being only at the surface and of very slight extent. The pressure applied is such pressure is is sufi'icient to effect the desired depression, and this is usually apparentupon inspection. After the gypsum core has acquired its initial set, it will no longer be subject to plastic flow, although not completely hardened, and the depressions formed retain their form and shape. Thus, preferably, the forming pressure is applied for a short time only, and advantageously by means of a toothed or embossed roller, as will be further described below. A plurality of indentations are pressed into the board surface adjacent one or more edges thereof, being disposed in multiple rows in a zone extending a short distance inwardly from the edge and generally parallel thereto.
A device for effecting the indentations according to the present invention comprises an embossed means for indenting, a pressure means to enable impressing the embossed means on the board surface, and preferably means for rotating the embossed means at an angle to the horizontal, along its axis, to conform to the taper where a tapered edge board is to be indented.
One suitable device for carrying out this invention is shown in FIGURES 4 and 5. FIGURE 4 shows a horizontal board line having a series of rollers to support board llwhich is composed of core 12 consisting essentially of-a mass of set gypsum crystals with any desired additives, facing paper liner 13 and backing paper liner 14. The board has come from the board-forming station which is well known in this art and will not be fur-' ther described herein, and the board core has acquired its initial set. The board now passes beneath superposed hold-down means, e.g. roller 15 which is asteel cylinder of any desired diameter, extending across board 11 and of sufficient weight to hold the board against the indenting pressure to be applied. Roller 15 is supported at each end on a suitable standard 16 provided with a notch 17 at the top to support roller '15, the roller being vertically adjustable, to accomrnodate different board thicknesses, by means of lock nut 18. a
Disposed beneath the board line and adjacent the outer edge of the lower surface of board 11 is embossed roller 19 which is a steel cylinder having bosses 21 disposed over its periphery. In the embodiment shown in FIG- URESSand 7, bosses 21 are square in shape, arranged in a plurality of rectilinear vertical and horizontal rows, and occupying about of the total surface area of cylinder 26. In the embodiment shown the bosses are about inch in depth, but this is variable except that the bosses are at least slightly more than thedepth of indentation desired. Thus, the height, or depth, of the embossing protuberance or lug is easily determined for any given indenting operation.
Roller 19 is supported at both ends, as shown at 22 in FIGURE 4, by a forked or bifurcate support means .23. At the central portion of the base of bifurcate support, or yoke 23, lever arm 25 is rotatably connected by means of a ball-and-socket joint, indicated at 2 Yoke 23 thus rotates freely on arm 25, and therefore roller 19 is brought into uniform contact over its width with varying tapers of wallboard edge surface 26. Disposed between the two ends and of lever arm 25 .is pivot support means 29 which acts as a fulcrum in the operation of the indenting device and method, as will be later explained. Lever arm 25 is fixed against forward travel by pin 35 in fulcrum 29, in this embodiment. End 28 of lever arm 25, beyond eight 39 passes through slot 37 of guide means 36, which acts to prevent roller 19 from swinging out of line during forward motion of the board. When it is desired to release roller 1%? from contact with the board surface, latch 38 catches and holds end 23 of arm 25, lowering roller 19 out of operative position.
In the mode of operating the device and the embodiment thereof shown in FIGURE 4, a weight 30 is applied at end 23 of arm 25, and this acfing through fulcrum 29 forces roller 19 upwardly against the lower edge surface 26 of board-11. As board 11 moves forward (shown by the arrow) on support rollers 10, embossed roller 19 rotates freely at 22, and pressing against the lower surface of the board forms therein a multiplicity of indentations, as shown in the board of FIGURE 1, for example, at 31, disposed in a plurality of longitudinal and transverse rows with respect to the board edge. It has been found that a pressure of from to 300 lbs. per square inch applied at close to the initial setting time of the core provides suitable indentations. Increasing pressures, up to about 450 lbs. per square inch, for example, are applied when indentations are formed in the board at times approaching the final setting time; and pressures of 600 to 800 p.s.i. are useful if indenting after final set. For instance, if the roller '19 in FIGURE 4 is so disposed in the board line that when pressed against the board it indents just after the core has taken its initial set, it has been found that a satisfactory result is achieved with a pressure of about 200 lbs. per square inch. On the other hand, if the roller 19 is disposed farther from the forming station along the board line and at a point-where the core is about to take its final set, it has been found that a pressure of about 400 lbs. per square inch gives a satisfactory result.
The embossed roller 19 forms in the board surface indentationsas shown at 31 in FIGURE 1. If the edge is tapered or bevelled, the roller 19 isrotatably inclined, as
These can be more clearly in FIGURES 2 and 3, wherein the size of each indentation is exaggerated. However, it is found in practice that indentations are exhibited both by the paper liners 13, 14 and the gypsum core 12. In FIGURE 2 there are shown two boards 11, 11 placed in abutting relation as such boards will be installed. A joint is formed therebetween by applying joint cement 33 which fills up the recess formed by the tapered portions of edges 26, 26 and also fills indentations 31 which are so disposed in the taper that some of them will underlie the edge of the tape to be applied.
After the joint cement has been filled into the area where'the joint is to be formed, wallboard tape 34 is applied and adhesively attached by means of the cement, and excess cement iswiped off with a broadknife, some being retained in indentations 31. The joint cement employed can be of any desired composition, several such cements being well known in this art. A suitable type of oint cement is'shown, for example, in Riddell and Kirk, U.S. Patent 2,662,024, issued December 8,1952.
As an example of the method of carrying out this invention, a lightweight wallboard is formed by depositing between paper liners a plasticslurry in Water of an admixture of calcined gypsum, expanded vesiculated perlite, sawdust, starch'and a retarder, as described in Riddell and Kirk, US; Patent 2,803,575, issued August 20, 1957. The core and liners are passed between forming rolls and then forwarded along the board-line on a supporting belt until the core has taken its initial set, as will be shown for example by testing -With the Vicat apparatus to see whether it still exhibits plastic-flow, after which the board moves forward on rollers. 10. The indenting roller 19 is placed in the line just beyond the stage where the board has taken its initial set, and-a weight 30 is placed at end 28 of lever arm 25 to apply a pressure of about 200 lbs. per sq. in. at the contact between roller 19 and board face edge 26. In this example, the indenting roller has square protuberances, each about As-inch on a side and about Aa-inch deep, the protuberances or teeth occupying about 25% of the area of the roller surface. The roller indents the board face from the edge inwardly about 1.5 inches, applying six rows of indentations, each indentation being about 0.005 to 0.008 inch in depth. The board moves forward along the line until the core takes its final set, and thence to the drying Zone Where it is dried at a temperature of from about 210 degrees F. to about 400 degrees F., the temperature preferably not exceeding about 350 degrees F. At the end of the drying cycle the board is removed from the drying Zone and cut into the desired lengths, A
weighing about 1900 lbs./ 1000 sq. ft. The board edges exhibit the desired permanent indentations which have not been effected by the completion of hardening and the drying steps. The boards are installed to form the interior walls of a building, using a commercial joint cement and wallboard tape, with formation of excellent joints, firm adhesion of the tape to the joint areas and freedom from tears or non-adhered portions.
It is an advantage of the invention that the depressions are not subject to damage in handling and shipping because the plane surface is of such extent as to protect the depressions whereas projections raised above the plane surface of the board edge would be liable to shear off or be distorted during manipulation of the board. It is a further advantage of the invention that the device provided for forming the depressions is of simple, inexpensive construction and can be readily installed in the usual commercial board-forming arrangement without disruption of the usual operation thereof.
In the above description, pressure has been shown to be applied to the embossed roller by means of a weight on a lever arm but, alternatively, such pressure can be applied by a spring means or, in other words, the lever arm can be spring-biased. An alternative design for a roller, having diamond-shaped protuberances 32, is shown in FIG. 6. Also, other means of applying such pressure can be employed, if desired. Suitably, the embossed roller is of steel, but other hard-surfaced roller means can be employed. Alternatively, the discontinuous depressions can be impressed by impact means, but a roller is an efiicient continuous device for the purpose. The example has shown applying the depressions at the edge of a lightweight gypsum core board, but they can also be applied to boards having other gypsum core compositions, e.g. as containing foam cells, or being of heavier construction, higher pressures generally being desirable with heavier core compositions. In dry wall construction a pair of such boards are placed on a support (e.g. stud 39) in abutting relation, joint cement or adhesive applied, then fibrous tape is applied and excess cement removed, as described above, and then finishing cement is applied over the joint.
The discontinuous, shallow depressions are preferably impressed in the gypsum core board edge surface at a time between the initial setting time and the final setting time to provide suitable indentations without damage to the core edge. However, the indentations can alterna- 6 tively be impressed afterthe final setting time with-application of greater pressures than are required when working the preferred interval. In forming the indentations, the paper liners are not broken but merely exhibit depressions therein. Where the term edge surface or edge of surface is employed herein, it is to be understood to mean the zone along the edge at a'face of the board in question rather than the narrow transverse or-sectional edge across the depth or thickness of the board, the latter being the inch, A2 inch or like dimension. The surface in question, in'other words, is that parallel to the tape which is later applied. It is preferred that the surface area of the joint zone of the board exhibitno extensive plane surface without indentations closely adjacent the edge.
The initial set of the core often takes place Within two minutes after formation of the board, but this can be changed by the addition of an accelerator orretarder, as desired. The final set may take place from eight to fifteen minutes after the initial set, but this also varies depending upon the addition of accelerator or retarder, and it can be Idetenmined in any event by observing the temperatures exhibited by the core. That is, setting is an exothermic reaction and results in a rise in temperature in the core, and when the temperature levels oif and no longer rises, final set will have occurred. The initial set can be determined by taking samples of the slurry feed at intervals, allowing to set and testing with a Vicat needle in the known way. In a board line,
the board from the forming s-tationis supported on a belt until initial set has occurred and then is forwarded on rollers, so that in practice it is useful to indent just after the board leaves the belt. It is to be understood that the indentations can be formed in a tapered edge'or a straight or nontapered board surface, preferably to from 1 to 2 inches in from the edge.
The tape employed is of any desired type and can be plain, spark-punched or other. It is to be understood that the above specific description and example are given for purposes of illustration only and that variations and modifications can be made therein without departing from the spirit and scope of the appended claims.
Having now described the invention, what is claimed 1. Plasterboard of improved joint-forming property consisting essentially of a core of interlaced set gypsum crystals and paper liners covering the faces of said board, said board having shallow, discontinuous depressions disposed in a plurality of transverse and longitudinal rows in a zone of a surface of said board adjacent an edge only of said surface and adapted to underlie the edge of later-applied wallboard tape.
2. Plasterboard as in claim 1 wherein said depressions are from 0.003 to 0.012 inch in depth.
3. Plasterboard as in claim 1 wherein said depressions occupy from 15% to of the area of said zone.
4. In dry wall construction a pair of gypsum core' discontinuous joint cement-retaining depressions in said paper and core at said tapered edge, said depressions being disposed within said tapered edge surface in a plurality of transverse and longitudinal rows and maintaining said paper in unbroken state, and adapted to underlie the edges of tape when assembled.
6. Plasterboard as in claim wherein said depressions depressions are from 0.003 to 0.012 inch in depth.
7. Plasterboard as in claim 6 wherein said de-pres sions are from 15% to 80% of the total areaof the surface of said tapered edge.
8. In dry Wall construction a pair of gypsum core boards, each of said boards consisting essentially of a core of set gypsum crystals and paper liners covering said core, said boards being disposed in abutting relationship to form a joint, the abutting edge of'each of said boards tapering to form a cement-receiving depression in com bination with the edge of the other of said pair of boards, shallow, discontinuous joint cement-receiving depressions disposed in a plurality of longitudinal and transverse rows in said paper liner and said core in each of said tapered edges, joint cement in said joint and retained in said depressions and fibrous tape disposed over said joint and depressions and in contact with said joint cement at least some of said depressions underlying the edges of said tape.
References Cited by th s Examiner UNITED STATES PATENTS Roorne 15445.9
6/26 Schumacher 154-87 8/27 Utzman 15445.9 11/29 Zaisser 50--194 6/36 Walper 154-87 5/43 Brusse 156-71 8/49 Buttress 44 5/55 Buttress 2544 FORErGN PATENTS 1/49 Australia.
EARLM. BERGERT, Prin zary Examiner.
ALEXANDER WYMAN, CARL F. KRAFFT,
Examiners.

Claims (1)

  1. 5. PLASTERBOARD OF IMPROVED JOINT CEMENT RETENTION PROPERTY CONSISTING ESSENTIALLY OF A CORE OF SET GYPSUM CRYSTALS AND PAPER LINERS COVERING SID CORE, A TAPERED EDGE AT ONE FACE OF SID PAPER-COVERED CORE, AND SHALLOW, DISCONTIUOUS JOINT CEMENT-RETAINING DEPRESSIONS IN SAID PAPER AND CORE AT SAID TAPERED EDGE, SAID DEPRESSION BEING DISPOSED WITHIN SAID TAPERED EGE SURFACE IN A PLURALITY OF TRANSVERSE AND LONGITUDINAL ROWS AND MAINTAINING SAID PAPER IN UNBROKEN STATE, AND ADAPTED TO UNDERLIE THE EDGES OF TAPE WHEN ASSEMBLED.
US82736759 1959-07-15 1959-07-15 Joint structure for plasterboard Expired - Lifetime US3180058A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US82736759 US3180058A (en) 1959-07-15 1959-07-15 Joint structure for plasterboard
US297476A US3233301A (en) 1959-07-15 1963-06-27 Apparatus for surface treatment of wallboard

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82736759 US3180058A (en) 1959-07-15 1959-07-15 Joint structure for plasterboard

Publications (1)

Publication Number Publication Date
US3180058A true US3180058A (en) 1965-04-27

Family

ID=25249038

Family Applications (1)

Application Number Title Priority Date Filing Date
US82736759 Expired - Lifetime US3180058A (en) 1959-07-15 1959-07-15 Joint structure for plasterboard

Country Status (1)

Country Link
US (1) US3180058A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385019A (en) * 1960-02-04 1968-05-28 Nat Gypsum Co Wallboard and wall structure
US3435582A (en) * 1966-03-02 1969-04-01 United States Gypsum Co Wallboard construction
US3469361A (en) * 1968-02-09 1969-09-30 Nat Gypsum Co Gypsum wallboard,wallboard construction method and wall structure
US3708935A (en) * 1966-11-07 1973-01-09 Nat Gypsum Co Simulated monolithic predecorated wall construction
US3769118A (en) * 1970-02-13 1973-10-30 Air Liquide Thermal insulation of receptacles for cryogenic fluids
US4275172A (en) * 1980-01-28 1981-06-23 Union Carbide Corporation Frothable polyurethane composition and a cellular foam produced therefrom suitable for use in joints between wallboards
US4548846A (en) * 1984-11-08 1985-10-22 Kurtz Thomas D Press-on type finger pull
US5088260A (en) * 1990-07-23 1992-02-18 Barton James J System and method for joining structural panels
US5198052A (en) * 1990-10-22 1993-03-30 Domtar, Inc. Method of reshaping a gypsum board core and products made by same
US5230200A (en) * 1988-10-31 1993-07-27 Douglas Waymon J Wallboard and method of joining wallboards
US5333433A (en) * 1992-09-22 1994-08-02 Porambo Bernard A Self-adhesive wallboard finishing tape and tape-and-wallboard panel system
FR2770549A1 (en) * 1997-10-30 1999-05-07 Staff Decor Staff plate for forming partition wall or ceiling
US6105325A (en) * 1995-06-30 2000-08-22 Lafarge Platres Method, assembly and additional coat for the construction of interior works
US20030084633A1 (en) * 1995-06-30 2003-05-08 Francois Zuber Method, assembly and additional coat for the construction of interior works
US20040003570A1 (en) * 2001-10-23 2004-01-08 Phillips Jerry S. Methods of making manufactured housing or modular homes
US20040154264A1 (en) * 2000-08-04 2004-08-12 Colbert Elizabeth A. Coated gypsum board products and method of manufacture
US20050193668A1 (en) * 2004-02-23 2005-09-08 Hamilton Coatings, Llc Drywall joint construction and method
US20050227013A1 (en) * 2004-04-13 2005-10-13 Lafarge Platres Coating spray apparatus and method of using same
US20050234174A1 (en) * 2004-04-14 2005-10-20 Elizabeth Colbert Coating for wall construction
US20050229519A1 (en) * 2004-04-14 2005-10-20 Elizabeth Colbert System using a drywall board and a jointing compound
US20050246993A1 (en) * 2004-04-13 2005-11-10 Elizabeth Colbert System using a drywall board and a jointing compound
US20050252128A1 (en) * 2004-04-13 2005-11-17 Elizabeth Colbert Coating for wall construction
US20060048684A1 (en) * 2002-11-08 2006-03-09 Lafarge Platres Joint coating composition for construction elements and method for producing a structure
US20100154349A1 (en) * 2006-01-12 2010-06-24 Peter Penders Method for Production of a Wall of Gypsum Panels
WO2010099563A1 (en) * 2009-03-05 2010-09-10 Csr Building Products Limited Improved plasterboard jointing system
US20120117903A1 (en) * 2010-11-15 2012-05-17 Stephan Wedi Planar component with a mortar receiving coating or surface
US8814555B1 (en) 2013-05-20 2014-08-26 Alex G. Hensley, Sr. Drywall tapering device
WO2018183412A1 (en) * 2017-03-30 2018-10-04 United States Gypsum Company Gypsum fiber roof panel with angled edge for accommodating environmentally-induced expansion
US20210054635A1 (en) * 2019-08-23 2021-02-25 Abel SeamPro, LLC Drywall joint tool

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US584748A (en) * 1897-06-15 Plaster-board or fireproofing
US1589569A (en) * 1924-07-07 1926-06-22 Schumacher John Method of making plaster-board lath
US1638280A (en) * 1920-04-19 1927-08-09 United States Gypsum Co Fabricated board
US1735447A (en) * 1928-08-20 1929-11-12 Zaisser William Method of waterproofing hollow-tile walls
US2044234A (en) * 1933-12-01 1936-06-16 Gordon R Walper Method of manufacturing wallboard
US2318053A (en) * 1940-06-14 1943-05-04 Lester W Brusse Wall joint construction
US2479207A (en) * 1946-05-11 1949-08-16 George A Buttress Apparatus for forming plaster-keying depressions in plasterboard
US2708300A (en) * 1951-08-03 1955-05-17 George A Buttress Machine for forming plaster keying depressions in plasterboard

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US584748A (en) * 1897-06-15 Plaster-board or fireproofing
US1638280A (en) * 1920-04-19 1927-08-09 United States Gypsum Co Fabricated board
US1589569A (en) * 1924-07-07 1926-06-22 Schumacher John Method of making plaster-board lath
US1735447A (en) * 1928-08-20 1929-11-12 Zaisser William Method of waterproofing hollow-tile walls
US2044234A (en) * 1933-12-01 1936-06-16 Gordon R Walper Method of manufacturing wallboard
US2318053A (en) * 1940-06-14 1943-05-04 Lester W Brusse Wall joint construction
US2479207A (en) * 1946-05-11 1949-08-16 George A Buttress Apparatus for forming plaster-keying depressions in plasterboard
US2708300A (en) * 1951-08-03 1955-05-17 George A Buttress Machine for forming plaster keying depressions in plasterboard

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385019A (en) * 1960-02-04 1968-05-28 Nat Gypsum Co Wallboard and wall structure
US3435582A (en) * 1966-03-02 1969-04-01 United States Gypsum Co Wallboard construction
US3708935A (en) * 1966-11-07 1973-01-09 Nat Gypsum Co Simulated monolithic predecorated wall construction
US3469361A (en) * 1968-02-09 1969-09-30 Nat Gypsum Co Gypsum wallboard,wallboard construction method and wall structure
US3769118A (en) * 1970-02-13 1973-10-30 Air Liquide Thermal insulation of receptacles for cryogenic fluids
US4275172A (en) * 1980-01-28 1981-06-23 Union Carbide Corporation Frothable polyurethane composition and a cellular foam produced therefrom suitable for use in joints between wallboards
US4548846A (en) * 1984-11-08 1985-10-22 Kurtz Thomas D Press-on type finger pull
US5230200A (en) * 1988-10-31 1993-07-27 Douglas Waymon J Wallboard and method of joining wallboards
US5088260A (en) * 1990-07-23 1992-02-18 Barton James J System and method for joining structural panels
US5198052A (en) * 1990-10-22 1993-03-30 Domtar, Inc. Method of reshaping a gypsum board core and products made by same
US5333433A (en) * 1992-09-22 1994-08-02 Porambo Bernard A Self-adhesive wallboard finishing tape and tape-and-wallboard panel system
US6105325A (en) * 1995-06-30 2000-08-22 Lafarge Platres Method, assembly and additional coat for the construction of interior works
US20030084633A1 (en) * 1995-06-30 2003-05-08 Francois Zuber Method, assembly and additional coat for the construction of interior works
US20040216424A1 (en) * 1995-06-30 2004-11-04 Lafarge Platres Construction assembly of plaster boards and a method of assembling a plurality of plaster boards
US8151532B2 (en) 1995-06-30 2012-04-10 Lafarge Platres Construction assembly of skim coated prefabricated elements and jointing material, a kit therefor, and method of assembling the same
US7208225B2 (en) * 1995-06-30 2007-04-24 Lafarge Platres Prefabricated plaster board
US7337587B2 (en) 1995-06-30 2008-03-04 Lafarge Platres Construction assembly of plaster boards and a method of assembling a plurality of plaster boards
FR2770549A1 (en) * 1997-10-30 1999-05-07 Staff Decor Staff plate for forming partition wall or ceiling
US20040154264A1 (en) * 2000-08-04 2004-08-12 Colbert Elizabeth A. Coated gypsum board products and method of manufacture
US20040003570A1 (en) * 2001-10-23 2004-01-08 Phillips Jerry S. Methods of making manufactured housing or modular homes
US20090229736A1 (en) * 2002-11-08 2009-09-17 Lafarge Platres Joint compound composition for building elements and method of producing a structure
US20060048684A1 (en) * 2002-11-08 2006-03-09 Lafarge Platres Joint coating composition for construction elements and method for producing a structure
US7842218B2 (en) 2002-11-08 2010-11-30 Lafarge Platres Method of producing a structure
US7594963B2 (en) 2002-11-08 2009-09-29 Lafarge Platres Joint compound composition for building elements and method of producing a structure
US20050193668A1 (en) * 2004-02-23 2005-09-08 Hamilton Coatings, Llc Drywall joint construction and method
US20050227013A1 (en) * 2004-04-13 2005-10-13 Lafarge Platres Coating spray apparatus and method of using same
US20050252128A1 (en) * 2004-04-13 2005-11-17 Elizabeth Colbert Coating for wall construction
US7214411B2 (en) 2004-04-13 2007-05-08 Lafarge Platres Coating spray apparatus and method of using same
US20050246993A1 (en) * 2004-04-13 2005-11-10 Elizabeth Colbert System using a drywall board and a jointing compound
US20050234174A1 (en) * 2004-04-14 2005-10-20 Elizabeth Colbert Coating for wall construction
US20080275167A1 (en) * 2004-04-14 2008-11-06 Lafarge Platres Coating for wall construction
US7414085B2 (en) 2004-04-14 2008-08-19 Lafarge Platres Coating for wall construction
US20050229519A1 (en) * 2004-04-14 2005-10-20 Elizabeth Colbert System using a drywall board and a jointing compound
US7469510B2 (en) 2004-04-14 2008-12-30 Lafarge Platres System using a drywall board and a jointing compound
US20100154349A1 (en) * 2006-01-12 2010-06-24 Peter Penders Method for Production of a Wall of Gypsum Panels
US8257526B2 (en) 2009-03-05 2012-09-04 Csr Building Products Limited Plasterboard jointing system
WO2010099563A1 (en) * 2009-03-05 2010-09-10 Csr Building Products Limited Improved plasterboard jointing system
US20120117903A1 (en) * 2010-11-15 2012-05-17 Stephan Wedi Planar component with a mortar receiving coating or surface
US8814555B1 (en) 2013-05-20 2014-08-26 Alex G. Hensley, Sr. Drywall tapering device
WO2018183412A1 (en) * 2017-03-30 2018-10-04 United States Gypsum Company Gypsum fiber roof panel with angled edge for accommodating environmentally-induced expansion
US10486388B2 (en) 2017-03-30 2019-11-26 United States Gypsum Company Gypsum fiber roof panel with angled edge for accommodating environmentally-induced expansion
US20210054635A1 (en) * 2019-08-23 2021-02-25 Abel SeamPro, LLC Drywall joint tool
US11713581B2 (en) * 2019-08-23 2023-08-01 Marcus Allen Abel Drywall joint tool

Similar Documents

Publication Publication Date Title
US3180058A (en) Joint structure for plasterboard
US11280090B2 (en) Gypsum board suitable for wet or humid areas
US5198052A (en) Method of reshaping a gypsum board core and products made by same
US3044919A (en) Method of applying facing material to a wall surface
US5030502A (en) Cementitious construction panel
US6737156B2 (en) Interior wallboard and method of making same
US2760881A (en) Tile and method of making
US3513009A (en) Method of forming fissured acoustical panel
US4016697A (en) Construction unit
US5961900A (en) Method of manufacturing composite board
US2232762A (en) Composite panel board
US4313775A (en) Wood brick
US3233301A (en) Apparatus for surface treatment of wallboard
US2059520A (en) Building material and process of
US2095641A (en) Process of making artificial stone wall facings
USRE26382E (en) Joint structure for plasterboard
US1959960A (en) Method of making asbestos siding in imitation of brick
US2445210A (en) Manufacture of fibro-cementitious sheets
US3364088A (en) Process for making ornamental wall facings
US2432002A (en) Concrete form lining and method of manufacture
USRE22481E (en) Building unit
US20040023002A1 (en) Ultimate drywall tape
US1869367A (en) Sound absorbing material and method of making the same
US4960616A (en) Corrugated roofing sheets of synthetic fiber-reinforced cement, with a rough surface due to the presence of granular material
US1838237A (en) Composite wall tile