US3159581A - Detergency composition - Google Patents

Detergency composition Download PDF

Info

Publication number
US3159581A
US3159581A US187327A US18732762A US3159581A US 3159581 A US3159581 A US 3159581A US 187327 A US187327 A US 187327A US 18732762 A US18732762 A US 18732762A US 3159581 A US3159581 A US 3159581A
Authority
US
United States
Prior art keywords
builder
detergent
water
sodium
ehdp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US187327A
Inventor
Francis L Diehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US187327A priority Critical patent/US3159581A/en
Application granted granted Critical
Publication of US3159581A publication Critical patent/US3159581A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/361Phosphonates, phosphinates, phosphonites

Description

1964 F. L. DIEHL 7 3,159,581

' DETERGENCY COMPOSITION Filed April 15, 1962 -TRISOD|UM ETHANE-I-HYDROXY-l, l- DIPHOSPHONATE """SODTUM TRIPOLYPHOSPHATE CLEANING GRADE I l I l l l .9 L0 Ll L2 1.3 L4

DETERGENT USAGE EXPRESSED AS MILLIMOLAR CONCENTRATION OF BUILDER IN WASH WATER FIGURE 1 FORMULA 20% TALLOW ALKYL SULFATE 50% SODIUM TRl-POLYPHOSPHATE or MOLAR EQUIVALENT OF EHDP 6% SODIUM SILICATE SOLIDS 24 SODIUM SULFATE Francis L. Diehl INVENTOR.

ATTORNEY 3,159,5S1 DETERGENCY CUI /ilQSlTlON Francis lb. Dichi, Wyoming, Qhio, assignar to The Procter g Gamble Company, Cincinnati, @hio, a corporation of bio Filed Apr. 113, i962, Ser. No. 187,327 6 t'llaims. Cl. 252-152) This invention relates to detergent compositions, and more particularly detergent compositions containing socalled builder materials that serve to enhance the cleaning capacity of detergent compounds.

The use of builders as adjuncts to soap and synthetic detergents, and the property which some materials have of improving detergency levels of such detergent compounds are well known phenomena. The phenomena are widely appreciated but the exact behavior and mechanics of how builders perform their function has never been fully explained. While many explanations for the behavior of builders may be found, there still has not been determined a set of criteria which would permit one to accurately predict which compounds actually possess builder properties.

This may be explained, in part, by the complex nature of detergency itself and the countless factors which are conceptually involved. Among the many facets of built detergency systems in which builder materials are thought to have some effect are such factors as stabilization of solid soil, suspensions, emulsification of soil particles,the surface activity of the aqueous detergent solution, sol'ubilization of water-insoluble materials, foaming or suds producing characteristics of the washing solutions, peptization of soil agglomerates, neutralization of acid soil and sequestration of mineral constituents present in the washing solution tending to harden it. There might be mentioned many other areas in which a builder material might be of some assistance. The point is that no general basis has been found either as regards physical properties or chemical structure on which one might predict the behavior of chemical materials as overall detergency builders.

Among the builder materials described in the prior art, are water-soluble inorganic alkaline builder salts which are used alone or in combination. Examples are alkali metal carbonates, borates, phosphates, polyphosphates, bicarbonates and silicates.

Examples of organic builder compounds known heretofore and which also can be used alone and in. combination are alkali metal, ammonium or substituted ammonium aminopolycarboxylates, e.g., sodium'and potassium ethylenediaminetetraacetate, sodium and potassium N-(2- hydroxyethyl)-ethylenediaminetriacetate, sodium and potassium nitrilotriacetate and sodium, potassium and tri- United States Patent v sess builder properties to an exceptional degree.

3,l5d,58l Patented Dec. 1, 1964 ice builders and, in fact, form undesirable precipitates in the aqueous washing solution. Such lower forms include orthoand pyrophosphates.

- It has now been surprisingly discovered that watersoluble salts of ethane-bhydroxy-l,l-diphosphonate pos- Moreover, it has also been discovered that these compounds can be used to build detergent compositions containing a broad range of known detergent active materials. For instance, these compounds can build detergent compositions containing as active ingredients anionic, nonionic, ampholytic and zwitterionic detergent compounds.

It is, therefore, a primary object of this invention to provide new and improved builder compounds having increased efiiciency over previously known builders. Another object is to provide improved detergent compositions containing as the builder material, a water-soluble salt of ethane-l-hydroxy-l,l-diplrosphonate. A yet further object is to provide improved built detergent compositions in which the builder material is a water-soluble salt of ethane-bhydroxy-l,l-diphosphonate and which built compositions are surprisingly effective in cool Water washing situations.

Still further objects and the entire scope of applicability of the present invention will become apparent from the detailed description given hereinafter; it should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the invent-ion, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

The attached drawing, FIGURE 1, is a graph showing washing grades obtained as a function of the molar concentration of two builder materials as hereinafter more fully described.

The water-soluble builder salts of this invention are derivatives of ethane -l-hydroxy-l,l-diphosphonic acid which has the following molecular formula CHSU a 2h hydrogens are replaced by sodium. Hence, the salt comethanolammonium N (2 hydroxyethyl)-nitrilodiacetate. Alkali metal salts of phytic acid, e.g.,' sodium phytate are also suitable asorganic builders.

An ever increasing interest in builder materials has resulted in an expanding list'of compounds which when used in conjunction'with known cleaning agents serve to enhance the cleaning performance of such detergents. This increased interest has brought about the fuller appreciation that improved builders are highly desirable to avoid certain limitations and disadvantages of prior art builder materials. I v

One of the more well known of the disadvantagesis associated with probably the most widely usedg roup of builder materials. This would be the series of condensed inorganic poly phosphate compounds such as alkali metal tripolyphosphates and higher condensed phosphates. These compounds have a strong tendency to hydrolyze when usedin detergent compositions into less condensed phosphorus compounds which are relatively inferior monly prepared is the trisodium salt, which gives a pH near 9.5 in distilled water. The anhydrous trisodium salt has the structure It crystallizes normally as the hexahydrate, which loses some water during air-drying to yield a mixture of the hexaand monohydrate averaging 3 to 4 molecules of water of hydration. It is much more stable toward hydrolysis than ordinary condensed polyphosphates.

While any alkali metal or ammonium or substituted ammonium salt form can be used as the builder in this invention, the tetrasodium salt, the trisodium salt and mixtures thereof are the preferred forms. Mixtures of the tetrasodium and trisodium salts give a pH in water solution from about 9.5 to 11.5. Each of the lesser neutralized forms such as monosodium and disodium derivatives or the free acid have comparable builder capacity to the trisodium and tetrasodium salt forms'provided that additional alkali is added to adjust the pH of the washing solution to about 9 to about 12. The standard alkaline materials can be used for this purpose, such as alkali metal silicates, phosphates, borates and carbonates.

3 Free alkali materials such as sodium and potassium hydroxides can also be used.

Hereinafter in this specification the novel builder compound is referred to as EHDP and is intended to broadly cover the acid as well as all of the various neutralized salt forms thereof.

As mentioned above, it has already been suggested to combine synthetic detergent compounds with various builder salts to produce built detergent compositions. As far as is known, however, no one prior to this invention has discovered the particular combination of compounds and proportions described herein that offer as advantages, stability against deterioration during storage and use, high detergent power, and outstanding performance in hard water. As illustrated hereinafter in more detail, the detergent compositions of this invention offer extraordinary results in the important area of whiteness maintenance or whiteness retention.

These and other advantages are obtained according to this invention by providing cleaning and laundering compositions consisting essentially of a synthetic non-soap detergent surfactant compound and as a builder, a watersoluble salt of ethane-l-hydroxy-l,l-diphosphonate, such as the sodium or potassium salts, the ratio by weight of the builder to the detergent surfactant compound being in the range of about 1:2 to about 10:1, said composition providing in solution a pH of about 9 to 12. The preferred ratio of diphosphonate builder to said detergent surfactant compound is in the range of about 1:1 to about 5:1 and the optimum pH range is 9.5 to 11.5.

In view of the complex functions and behavior of builders and built systems, it is difiicult to explain exactly why superior results are obtained with an EHDP-built detergency system, be it granular, tablet or liquid.

The fact is, however, that now it surprisingly has been discovered that the complex formed between EHDP and the hardness imparting ingredients of water possesses builder effectiveness per se while the complex formed between sodium tripolyphosphate and the hardness imparting ingredients does not possess such capabilities. This phenomenon has not been known or described prior to this invention.

One possible explanation of the superior laundering performance of EHDP-built compositions over STP-built compositions may lie in the different behavior of the complexes which each builder forms with the hardness imparting ingredients contained in the water. The EHDP complex forms a highly soluble compound in water whereas the ST? complex forms a sodium salt which is substantially less soluble and tends to precipitate out on the articles being washed. The insoluble complex which precipitates out on the articles firmly adheres to such articles. During the rinsingcycle the precipate is ex posed to an excess of hardness imparting ingredients which proceed to react with the precipitated complex salt and transform it to an even more insoluble adherent form. Thus, the washing process can be complicated by the complex forming properties of an STP built detergent composition where the active STP builder is consumed and bound up in an insoluble complex. In contradistinction, EHDP when used as a detergency builder is bound up in a solubiliz ed form which allows it to participate in and carry on the many other builder functns.

It is not intended that the invention should be limited by the foregoing since it is proffered merelyas one possible explanation for the superior performance obtained by EHDP over STP in the areas of cleaning, whiteness and whiteness maintenance.

Among the synthetic organic detergent surfactant compounds which can be successfully built by EHDP and which are clearly within the contemplation of this invention are the following examples:

(a) Anionic synthetic detergents: This class of synthetic detergents can be broadly described as the watersoluble salts, particularly the alkali metal salts of organic sulfuric reaction products having in their molecular structure an alkyl radical containing from about 8 to about 22 carbon atoms and a radical selected from the group consisting of sulfonic acid and sulfuric acid ester radicals. (Included in the term alkyl is the alkyl portion of higher acyl radicals.) Important examples of the synthetic detergents which form a part of the preferred compositions of the present invention are the sodium alkyl sulfates, especially those obtained by sulfating the higher alcohols (C C carbon atoms) produced by reducing the glycerides of tallow or coconut oil; sodium or potassium alkylbenzenesulfonates, in which the alkyl group contains from about 9 to about 15 carbon atoms, especially those of the types described in United States Letters Patent Numbers 2,220,099, and 2,477,383; sodium alkylglycerylethersulfonates, especially those ethers of the higher alcohols derived from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfates and sulfonates; sodium or potassium salts of sulfuric acid esters of the reaction product of one mole of a higher fatty alcohol (e.g., tallow or coconut oil alcohols) and about 1 to 6 moles of ethylene oxide; sodium or potassium salts of alkylphenol ethylene oxide ether sulfate with about 1 to about 10 units of ethylene oxide per molecule and in which the alkyl radicals contain about 9 to about 12 carbon atoms; the reaction product of fatty acids esterified with isethionic acid and neutralized with sodium hydroxide, where, for example, the fatty acids are derived from coconut oil; sodium or potassium salts of fatty acid amide of a methyltauride in which the fatty acids, for example, are derived from coconut oil; and others known in the art, a number being specifically set forth in United States Letters Patent Numbers 2,486,921, 2,486,922 and 2,396,278.

(b) Nonionic synthetic detergents: This class of synthetic detergents may be broadly defined as compounds aliphatic or alkyl aromatic in nature which do not ionize in water solution.

For example, a well known class of nonionic synthetic detergents is made available on the market under the trade name of Pluronic. These compounds are formed by condensing ethylene oxide with an hydrophobic base formed by the condensation of propylene oxide with propylene glycol. The hydrophobic portion of the molecule which, of course, exhibits water insolubility has a molecular weight of from about 1200 to 2500. The addition of polyoxyethylene radicals to this hydrophobic portion tends to increase the water solubility of the molecule as a whole and the liquid character of the product is retained up to the point where polyoxyethylene content is about 50% of the total weight of the condensation product.

Other suitable nonionic synthetic detergents include:

(1) The polyethylene oxide condensates of alkylphenols, e.g., the condensation products of alkylphenols or dialkylphenols wherein the alkyl group contains from about 6 to 12 carbon atoms in either a straight chain or branched chain configuration, with ethylene oxide, the said ethylene oxide being present in amounts equal to 10 to 25 moles of ethylene oxide per mole of alkylphenol. The alkyl substituent in such compounds may be derived from polymerized propylene, diisobutylene, n-octene, or

'n-nonene, for example.

(2) Those derived from the condensation of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine. For example, compounds containing from about 40% to about polyoxyethylene by weight and having a molecular weight of from about 5000 to about 11,000 resulting from the (3) The condensation product of aliphatic alcohols having from 8 to 18 carbon atoms, in either straight chain or branched chain configuration, with ethylene oxide, e.g., a coconut alcohol-ethylene oxide condensate having from to 30 moles of ethylene oxide per mole of coconut alcohol, the coconut alcohol fraction having from 10 to 14 carbon atoms.

(4) Long chain tertiary amine oxides corresponding to the following general formula, R R R N O, wherein R is an alkyl radical of from about 8 to 18 carbon atoms, and R and R are each methyl or ethyl radicals. The arrow in the formula is a conventionalrepresentation of a semi-polar bond. Examples of amine oxides suitable for use in this invention include dimethyldodecylarnine oxide, dimethyloctylamine oxide, dimethyldecylamine oxide, dimethyltetradecylamine oxide, dimethylhexadecylamine oxide.

(5) Long chain tertiary phosphine oxides correspond ing to the following general formula RRR"P O wherein R is an alkyl, alkenyl or monohydroxyalkyl radical ranging from 10 to 18 carbon atoms in chain length and R and R are each alkyl or monohydroxyalkyl groups containing from 1 to 3' carbon atoms. The arrow in the formula is a conventional representation of a semi-polar bond. Examples of suitable phosphine oxides are:

about 8 to 18 carbon atoms, and an'anionic water solubilizing group, e.g., carboxy, sulfo, or sulfato. Examples of compounds falling Within this definition are sodium-3- dodecylaminopropionate and sodium-3-dodecylaminopropanesulfonate.

(d) Zwitterionic synthetic detergents: This class of synthetic detergents can be broadly described as'derivatives of aliphatic quaternary ammonium compounds, in which the aliphatic radical may be straight chain or branched andwherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an anionic water solubilizing group, e.g., car'boxy,

life of delicate fabrics and materials (synthetics such as nylon, Dacron as well as woolens and silks) which cannot tolerate the harsh treatment of severe hot water washing. It is well known that certain fabrics have a pronounced tendency to shrink, wrinkle, or draw up when washed in very hot water. In addition to the fabrics and materials already mentioned, other wash-wear fabrics such as 'Creslan, resin-treated cottons and fabrics made from Kodel polyester fibers are also adversely affected when washed at hot water temperatures.

The anionic, nonionic, ampholytic and zwitterionic detergent surfactants mentioned above can be used singly or in combination in the practice of the present invention. The above examples are merely specific illustrations of the numerous detergents which can find application within the scope of thisinvention.

'T he foregoing synthetic organic detergent compounds can be built into any of the several commercially desirable composition forms, for example, granular, fiake, liquid and tablet forms.

Granular detergent compositions according to one embodiment of this invention can contain the EHDP builder and the detergent active in the ratio of about'lzZ to about 10: 1. The preferred ratio of builder to active is about 1:1 to aboutSzl.

Another embodiment of this invention is a liquid detergent composition also containing the EHDPbuilder and the detergent active in the ratio of about 1:2 to about about 1:2 to about 3:1.

10: 1; On the other hand, the preferred ratio and optimum results in such compositions are obtained when Ei-IDP and the detergent active are mixed in ratiosby weight of The detergent compositions described by this invention employing EHDP as a builder can have special and unusually outstanding applicability in the area of built liquid detergents. This area presents special problems to the 'formulator in view of the peculiarities inherent in aqueous systems and the special requirements of solubility of the 40. ingredients and, more especially, their stability in such mediums. It iswell known, for instance, that sodium tripolyphosphate, while outstanding in its behavior in granular compositions, is generally regarded as being unsuited for built liquid detergents. It has a strong propensity to hydrolyze into orthoand pyro-forrns of phosphates. Thus, as a practical consideration there has been a necessity ofresorting to'alkali metal pyrophosphates such as Na P O or K P O in order to prepare a built liquid detergent. This has been true notwithstanding the known inferiority of pyrophosphates to sodium tripolyphosphate, for example, as a builder for heavy duty detergency.

In view of the increasing acceptance by the general I public of built liquid detergents for virtually all Washing sulfo or sulfato. Examples of compounds falling within 1 this definition are 3-(N,N-dimethyl-N-hexadecylarnmohim-propane and 3 (N,N-dirnethyl-N-hexadecylammonio) Z-hydrbxypropyane-l-sulfonate.

It has been unexpectedly discovered that the zwitterronlc detergent surfactant compounds mentioned above when and cleaning situations including laundering and dishwashing, it is a very significant contribution of this invention that an improved built liquid detergent product is :made possible that will provide detergency levels comparable to and in some aspects superior to a sodium tripolyphosphate built liquid'product without the troublesome stability problem presented by sodium tripolyphosphate.

Most of the built liquid detergents commercially available at the present time are either water based or have a mixture of water and alcohol as the liquid vehicle. Such vehicles can be employed in formulating an EHDP built A liquid detergent without fear of encountering stability Washing-water which general household laundering situae tions have required the past. Suchf'conventional wash-f I ingtemperatureslare in the range offlllSOiYFgloabout 140 Fraud 14 5 Cool water as usedfher ein is in the temperature rangeofabout 40? F; to about 100? F. I I V V V V V there will aofte'n be added in minor amounts materials A detergent formul'ationgpossessing high cleansing per formance at such low temperatures ha s -obvious advan- 'which make the productmore effective or more attractive. The following are mentioned by way of example. A sol- :1uble sodium vcarho);ymethylcellulose may be added, in

problems. Accordingly, a'sample'built detergent composition' of this invention can consist essentially of EHDP and a detergent surfactant in: the ratios above described and the balance beinga vehiclemediurn, for example, water, a, g V "water-alcohol mixture, nonionic. surfactant compounds, 7'0 a In a finished detergent formulation ofthis invention F minor amounts to inhibit soil redeposition. A tarnish inhibitor such as benzotriazole or ethylenethiourea may also be added in amounts up to about 2%. Fluorescers, perfume and color while not essential in the compositions of the invention, may be added in amounts up to about 1%. An alkaline material or alkali such as sodium hydroxide or potassium hydroxide can be added in minor amounts as supplementary pH adjusters. There might also be mentioned as suitable additives moisture, brightening agents, sodium sulfate, and sodium carbonate.

Corrosion inhibitors generally are also added. Soluble silicates are highly effective inhibitors and can be added to certain formulas of this invention at levels of from about 3% to about 8%. Alkali metal, preferably potassium or sodium, silicates having a weight ratio of SiO M O of from 1.0:1 to 28:1 will be used. M in this ratio refers to sodium and potassium. A sodium silicate having a ratio of SiO :Na O of about 1.6:1 to 2.45:1 is especially pre ferred for economy and effectiveness.

In the embodiment of this invention which provides for a built liquid detergent, a hydrotropic agent may at times be found desirable. Suitable hydrotropes are water-soluble alkali metal salts of toluenesulfonate, benzenesulfomate, and xylenesulfonate. The preferred hydrotropes are the potassium or sodium toluenesulfonatcs. The hydrotrope salt may be added, if desired, at levels of to about 12%. While a hydrotrope will not ordinarily be found necessary, it can be added if so desired for any reason such as to produce a product which retains its homogeneity at a low temperature.

The following compositions will serve to illustrate this facet of the invention. gent formulation according to this invention has the following composition, in which the percentages are by weight.

6.0% sodium dodecylbenzenesulfonate (the dodecyl radical being a polypropylene, predominantly tetrapropylene averaging 12 carbon atoms) 6.0% dimethyldodecylamine oxide 20.0% trisodium ethane-l-hydroxy-1,1-diphosphonate 8.0% potassium toluenesulfonate 3.8% sodium silicate (ratio SiO :Na O of 2.45: 1)

0.3% carboxymethyl hydroxyethyl cellulose Balance water 7 Performance of this detergent composition was excellent in laundry tests as well as dishwashing evaluations. Its resistance to hydrolysis made possible cleaner washes as well as longer shelf life since EHDP builder remained in its active form through the complete washing cycle notwithstanding the large amounts of water present.

An excellent granular detergent composition giving outstanding cleaning and whiteness maintenance results in washing situations was prepared-having the following ingredients in the percentages indicated:

17.5% sodium dodecylbenzenesulfonate (dodecyl group derived from tetrapropylene) 2.0% potassium toluenesulfonate 47.0% trisodium ethane-l-hydroxy-l,l-diphosphonate 6.0% sodium silicate (ratio siO zNa O of 2:1)

13.8% sodium sulfate 2.7% coconut fatty acid ethanolamide Balance moisture A granular detergent composition was prepared having Condensation products of ethylene oxide with a hydrophobic oase formed by the condensation of propylene oxide avitlz propylene glycol and having molecular weights of approximately 3000 and 8000 respectively.

Washing performance characteristics of this composition are exceptionally good from the point of view of general cleaning and whiteness maintenance performance.

An excellent built liquid deter Another highly effective granular detergent offering equally good laundering performance in the area of whiteness, cleaning and whiteness maintenance was prepared having the following formulation:

20.0% sodium dodecylbenzenesulfonate (dodecyl group derived from tetrapropylene) 2.0% potassium toluenesulfonate .5 trichlorocarbanilide (as a bacteriostat) 30.0% trisodium ethane-1-hydr0x -1,1-diphosphonate 6.0% sodium silicate (ratio SiO :Na O of 2:1)

:and one deep rinse) and then dried.

32.3% sodium sulfate 1.6% coconut fatty acid ethanolamide 1.6% miscellaneous 6.0% water An effective cool water built liquid detergent which also performs exceptionally well as a heavy duty detergent composition, especially in the areas of cleaning and whiteness maintenance, has the following composition:

12.0% 3(N,N-dimethyl-N hexadecylammonio) 2 hydroxypropane-l-sulfonate 20.0% trisodium ethane-l-hydroxy-1,1-diphosphonate 3.8% sodium silicate (SiO :Na O=1.6:1)

8.5% potassium toluenesulfonate .3% sodium carboxymethyl hydroxyethyl cellulose .12% fluorescent dye .15 perfume .02% benzotriazole 55.11% water An effective cool water built granular composition according to this invention has the following composition:

17.0% 3-(N,N dimethyl N hexadecylammonio) propane-l-sulfonate 45.0% trisodium ethane-l-hydroxy-1,1-diphosphonate 6.0% sodium silicate (Na O:SiO =1:2.5)

.3% sodium carboxymethyl cellulose 28.0% sodium sulfate 3.5% water Balance miscellaneous Excellent whiteness maintenance and cleaning performance results are obtained by laundering with this composition.

Wash-wear tests using standardized detergent compositions, described below, were conducted to determine the relative builder effectiveness of EHDP. Sodium tripolyphosphate was used as a standard builder due to its current wide use in the industry. Surprisingly, EHDP consistently performed as a superior builder in virtually all cleaning characteristics which were graded.

The test employed was conducted in the following manner. White dress shirts, cotton T-shirts and other fabrics were distributed among various individuals. Each dress shirt and T-shirt was worn for one normal working day under uniform conditions and the other articles were used for their generally intended purposes. The soiled clothes and fabrics were then washed in an automatic agitating type washer, for a period of ten minutes, with detergent solutions at F. temperature. The wash water was at a pH of 10 and had a hardness of 7 grains per gallon.

After washing, the clothes were rinsed (six spray rinses (No fluorescers or bleaches were used).

Direct comparisons were made by a panel of five graders between pairs of, shirts and fabrics worn and soiled by the same individual. The dress shirts, T-shirts' and other fabrics used, were graded on the degree of whiteness and the degree of cleaningobtained, paying particular attention on this latter feature to the dress shirt collars and formulation scored, in all cuffs. For purposes of this invention, the term cleaning or cleanliness measuresthe ability of a washing comures the ability of a cleaning composition to whiten areas which are, only slightly or moderately soiled. Clean washcloth size swatches of cotton terry cloth and muslin were washed along with the soiled clothes to arrive at an independent evaluation of the whiteness maintenance ,or whiteness retention property of the particular cleaning compositions. The relative cleaning eiiectiveness of each detergent composition in each area was graded on a raw score under U.V.-free'artificial light, averaged, and then translated onto a -10 scale wherein the highest grade of was assigned to the relatively best performance obtained. Generally a grade-of 0 to l was indicative of washing results obtained when soiled clothes were washed in water alone without any detergent composition at all. Intermediate grades accordingly represented relative performances between these limits. p

The detergent composition employed during the tests consisted of 20% sodium tallow alkyl sulfate asthe detergent active, (the alkyl chain length distribution of tallow alkyl sulfate was approximately 66% C 30% C and 4% others), 50% sodium tripolyphosphate or a molar equivalent of EHDP, 6% sodium silicate and 24% sodium sulfate. On a total basis of 100%, a molar equivalent of 50% sodium tripolyphosphate is 37.0% EI-IDP (as trisodium salt). In this instancewhen EHDP was employed,

the difference between the lesser percentage of EHDP 10 even as the molar concentration of the STP builder and theEHDP builder was'decreased from about 1.4 to .9 gram moles l0- per liter, and simultaneously as the weightconcentr-ation of EHDP (as trisodiurn salt) was decreased from 037% to .024% and of STP was decreased from .()50% to 033%. This is evidence of the fact that EHDP is a very markedly more eflicient builder at lower concentrations thanis STP. This constitutes an important novel feature of this invention for according to this invention it is now possible for consumers to obtain superior washing performance in' household washing situations with EHDP-built formulations using considerably less of an EHDP builder material than would generally be thought necessary based on conventional builders and STP can be made up with 13% water. The pH of the washing solution was 10.

The grading results obtained in the manner described above were charted on a graph and are here presented in FIGURE 1. It will be notedfrom this figure that the dress shirt and T-shirt whiteness and cleaning results obtained by the EHDP formulation are surprisingly and markedly superior to sodium tripolyphosphate (STP) over virtually the full range of molar concentrations tested. It will also be noted that the whiteness mainte- Y nance results obtained by washing with the. compositions of this invention are greatly improved over those obtained by washing with a conventional builder material such as sodium tripolyphosphate. Whiteness maintenance measures the capacity of the washing composition to prevent the redeposition of .soil which has been removed from soiled areas of the washed articles. fact, the prevention of redeposition of suspended soil in washing processes is so important that it frequently is characterized as a fundamental phenomenon, on a par with the removal of soil itself from the fabrics. .It is, therefore, a valuable and unpredictable feature'of the compositions of the present invention that they are superior to conventional builders in this important area of detergency. The concentrations of FIGURE 1" are millimoles of EHDP or STP per liter of wash water. concentration of the builder detergent in solution was varied from about 033% to .050% of STPiand..024% to 037% of EHDP (as trisodiumsalt) to provide the molar concentration of builder in the wash water set of'the builder materials. p I

As-seen in FIGURE 1, the articles washed with the EHDPabuilt formulation scored :grades in the range of 6.7 tof9.7 in each characteristic'that was graded. On

the ,otherhanifthe. article's washed with *the STP-builtbut one instance, grades rang ;ingfrom 0.5 to about 7.

In point of t dimethyl-N-hexadecylammonio) 2 hydroXypropane-lsuch as STP. Wash-wear tests have established that washing performances obtained with a 0.03% concentration of EHDP in a washing solution can only be obtained with STP-built compositions when about double the EHDP concentration is employed or in the neighborhood of .06 to .07% of STP. This increased efiiciency is illustrated by FIGURE l where it will be noted that the grading curves for EHDP are relatively flat over the range of concentrations tested whereas the grading curves for STP fall off precipitously as the concentration of builder in 'the washing solution is decreased toward the left hand'side of the graph. As established earlier in this specification, the exceptional builder property of EHDP could not have been predicted from any data previously known.

The foregoing description of the invention has been presented describing certain operable and preferred em.- bodiments. It is not intended that the invention should be'so limited since variations and modifications thereof will be obvious to those skilled in the art, all of which are within the spirit and scope of this invention.

What is claimed is: 1

1. An improved cleansing and laundering composition consisting essentially of a water-soluble trisodium salt of ethane-l-hydroxy-l,l-diphosphonate as a builder and. an organic water-soluble non-soap synthetic detergent surfactant having pronounced detergent power selected from the group consisting of anionic, nonionic, zwitterionic, ampholyrtic detergent surfactants, and mixtures thereof, the ratio, by weight, of said disph'osphonate builder to said detergent surfactant being in the range of about 1:2 to about 10:1, said composition providing in aqueous solution a pH between about 9 and about 12.

2. The composition of claim 1 wherein the ratio, by

consisting essentially of a water-soluble trisodiurn salt of eth-ane-l-hydroXy-l,l-diphosphonate as'a builder and as a detergent active an organic water-soluble zwitterionic detergent surfactant having pronounced detergent power selected from the group consisting of 3-(N,N-dimethyl- N-hexadecylammouio)-propane-l-sulfonate, and 3-(N,N-

sulfonate, the ratio of said diphosphonate builder to said detergent active being in the range of about 1:2 to about ;10:1, said composition providing in aqueous solution a pH between about 9.and about 12.

5. An improved cleansing and laundering composition consisting essentially of awater-soluble trisodium salt of ethane-l-hydroxy-1,1-diphosphonateas a builder and as a detergent active. an anionic Water-solublealkali metal salt Yof an organic sulfuric reaction product having in its jmolccular structure an alkyl radical having 8 to '22 carbon atoms and'a radical selecte d from the group consisting of Itwill benoted from FIGURE 1 that this snperiority i of *the .EHDP formulation was l, consistently maintained sulfonicacid and sulfuric acid/ester radicals, the ratio of said diphosphonate builder to said detergentfactive being inthe range of 5 about.-1. 2 to about 10:1,. said.

composition providing in aqueous solution a pH between References Cited in the file of this patent abOutg UNITED STATES PATENTS 6. The cleansing and laundering compositlon of claim 5 wherein the anionic detergent active is selected from 2,491,920 Emsberger 1949 the group consisting of alkali metal alkyl sulfates in 5 which the alkyl substituent contains from about 8 to 18 FOREIGN PATENTS carbon atoms, alkali metal alkylbenzenesulfonates in 1,010,965 Germany May 8, 1956 which the alkyl group contains from about 9 to about 15 1,072,346 Germany Dec. 31, 1959 carbon atoms, and alkali metal alkylglycerylethersulfo- 1,082,235 Germany May 25, 1960 mates in which the alkyl is derived from the higher alcohols 10 1 107,207 Germany May 25, 19 1 obtained from tallow and coconut oil.

Claims (1)

1. AN IMPROVED CLEANSING AND LAUNDERING COMPOSITION CONSISTING ESSENTIALLY OF A WATER-SOLUBLE TRISODIUM SALT OF ETHANE-1-HYDROXY-1,1-DIPHOSPHONATE AS A BUILDER AND AN ORGANIC WATER-SOLUBLE NON-SOAP SYNTHETIC DETERGENT SURFACTANT HAVING PRONOUNCED DETERGENT POWER SELECTED FROM THE GROUP CONSISTING OF ANIONIC, NONIONIC, ZWITTERIONIC, AMPHOLYTIC DETERGENT SURFACTANTS, AND MIXTURES THEREOF, THE RATIO, BY WEIGHT, OF SAID DISPHOSPHONATE BUILDER TO SAID DETERGENT SURFACTANT BEING IN THE RANGE OF ABOUT 1:2 TO ABOUT 10:1, SAID COMPOSITION PROVIDING IN AQUEOUS SOLUTION A PH BETWEEN ABOUT 9 AND ABOUT 12.
US187327A 1962-04-13 1962-04-13 Detergency composition Expired - Lifetime US3159581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US187327A US3159581A (en) 1962-04-13 1962-04-13 Detergency composition

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
NL132418D NL132418C (en) 1962-04-13
US187327A US3159581A (en) 1962-04-13 1962-04-13 Detergency composition
DK156563A DK111829B (en) 1962-04-13 1963-04-04 Cleaning and detergent.
FI72863A FI41762B (en) 1962-04-13 1963-04-11
DE19631467648 DE1467648A1 (en) 1962-04-13 1963-04-11 Washing and cleaning agents
GB1468963A GB1035913A (en) 1962-04-13 1963-04-11 Detergent composition
FR931532A FR1439824A (en) 1962-04-13 1963-04-12 detergent compositions especially effective carriers
AU51843/64A AU294552B2 (en) 1962-04-13 1964-11-18 Detergent composition
NL6413483A NL6413483A (en) 1962-04-13 1964-11-19
BE655988A BE655988A (en) 1962-04-13 1964-11-19

Publications (1)

Publication Number Publication Date
US3159581A true US3159581A (en) 1964-12-01

Family

ID=22688518

Family Applications (1)

Application Number Title Priority Date Filing Date
US187327A Expired - Lifetime US3159581A (en) 1962-04-13 1962-04-13 Detergency composition

Country Status (9)

Country Link
US (1) US3159581A (en)
AU (1) AU294552B2 (en)
BE (1) BE655988A (en)
DE (1) DE1467648A1 (en)
DK (1) DK111829B (en)
FI (1) FI41762B (en)
FR (1) FR1439824A (en)
GB (1) GB1035913A (en)
NL (2) NL6413483A (en)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297578A (en) * 1963-07-26 1967-01-10 Monsanto Co Bleaching, sterilizing, disinfecting, and deterging compositions
US3303896A (en) * 1965-08-17 1967-02-14 Procter & Gamble Process for drilling boreholes in the earth utilizing amine oxide surfactant foaming agent
US3312627A (en) * 1965-09-03 1967-04-04 Procter & Gamble Toilet bar
US3312626A (en) * 1965-09-03 1967-04-04 Procter & Gamble Toilet bar
US3313735A (en) * 1963-09-25 1967-04-11 Procter & Gamble Shampoo composition
US3318817A (en) * 1965-07-16 1967-05-09 Procter & Gamble Process for preparing detergent tablets
US3346873A (en) * 1962-08-10 1967-10-10 Procter & Gamble Liquid detergent composition containing solubilizing electrolytes
US3346504A (en) * 1962-08-10 1967-10-10 Procter & Gamble Detergent compositions
US3351559A (en) * 1963-11-13 1967-11-07 Henkel & Cie Gmbh Pourable and free-flowing detergent, wetting, and emulsifying compositions
US3351558A (en) * 1966-09-06 1967-11-07 Procter & Gamble Detergent composition containing organic phosphonate corrosion inhibitors
US3368978A (en) * 1964-12-28 1968-02-13 Monsanto Co Builder compositions and detergent compositions using same
US3392121A (en) * 1962-11-05 1968-07-09 Procter & Gamble Built detergent compositions
US3394083A (en) * 1963-08-15 1968-07-23 Monsanto Co Effervescent builder compositions and detergent compositions containing the same
US3400176A (en) * 1965-11-15 1968-09-03 Procter & Gamble Propanepolyphosphonate compounds
US3400148A (en) * 1965-09-23 1968-09-03 Procter & Gamble Phosphonate compounds
US3404178A (en) * 1963-03-18 1968-10-01 Procter & Gamble Substituted methylene diphosphonic acids and their salts
US3422137A (en) * 1965-12-28 1969-01-14 Procter & Gamble Methanehydroxydiphosphonic acids and salts useful in detergent compositions
US3424689A (en) * 1964-08-28 1969-01-28 Kao Corp Heavy-duty liquid detergent composition
US3453144A (en) * 1965-02-12 1969-07-01 Procter & Gamble Liquid cleaner composition
US3454500A (en) * 1966-02-08 1969-07-08 Procter & Gamble Soap compositions having improved curd-dispersing properties
US3471406A (en) * 1965-09-07 1969-10-07 Plains Chem Dev Co Detergent compositions containing methane tri and tetra phosphonic acid compounds
US3484480A (en) * 1968-02-23 1969-12-16 Procter & Gamble Process for separating ethane - 1 - hydroxy-1,1-diphosphonic acid from a solution of it in an organic solvent which also contains oxyacids of phosphorus
US3488419A (en) * 1965-12-08 1970-01-06 Procter & Gamble Oral compositions for calculus retardation
US3536628A (en) * 1965-12-22 1970-10-27 Frank Lancashire Soap compositions
US3539521A (en) * 1965-05-03 1970-11-10 Procter & Gamble Detergent composition
US3678154A (en) * 1968-07-01 1972-07-18 Procter & Gamble Oral compositions for calculus retardation
US3962100A (en) * 1975-08-18 1976-06-08 The Procter & Gamble Company Fabric softening agents
USRE29182E (en) * 1965-12-08 1977-04-12 The Procter & Gamble Company Oral composition for calculus retardation
US4020091A (en) * 1965-10-28 1977-04-26 Plains Chemical Development Co. Chelation
US4025444A (en) * 1975-08-18 1977-05-24 The Procter & Gamble Company Fabric softening agents
US4329244A (en) * 1979-06-21 1982-05-11 Interox (Societe Anonyme) Particles of stabilized peroxygenated compounds, process for their manufacture, and composition containing such particles
US4421669A (en) * 1979-12-12 1983-12-20 Interox (Societe Anonyme) Process for the stabilization of particles containing peroxygen compounds and bleaching compositions containing particles stabilized according to this process
EP0150532A1 (en) 1983-12-22 1985-08-07 THE PROCTER & GAMBLE COMPANY Peroxygen bleach activators and bleaching compositions
EP0679714A2 (en) 1994-04-28 1995-11-02 THE PROCTER & GAMBLE COMPANY Detergent compositions containing cellulase enzyme and selected perfumes for improved odor and stability
EP0693549A1 (en) 1994-07-19 1996-01-24 THE PROCTER & GAMBLE COMPANY Solid bleach activator compositions
WO1996025478A1 (en) 1995-02-15 1996-08-22 The Procter & Gamble Company Detergent composition comprising an amylase enzyme and a nonionic polysaccharide ether
EP0753559A1 (en) 1995-07-13 1997-01-15 THE PROCTER & GAMBLE COMPANY Method of cleaning textile fabrics
EP0753557A1 (en) 1995-07-13 1997-01-15 THE PROCTER & GAMBLE COMPANY Packaged foaming composition
EP0763594A1 (en) 1995-09-18 1997-03-19 THE PROCTER & GAMBLE COMPANY Process for making granular detergents
EP0771785A1 (en) 1995-11-02 1997-05-07 THE PROCTER & GAMBLE COMPANY Beta-amino ester compounds of perfume alcohols and their use in cleaning or laundry compositions
WO1997042282A1 (en) 1996-05-03 1997-11-13 The Procter & Gamble Company Detergent compositions comprising polyamine polymers with improved soil dispersancy
WO1998031778A1 (en) * 1997-01-21 1998-07-23 Henkel Corporation Process for chelating divalent metal ions in alkaline detergent formulations
US6617300B2 (en) 2000-08-30 2003-09-09 Procter & Gamble Company Granular bleach activators having improved solubility profiles
US20030203035A1 (en) * 2000-09-29 2003-10-30 The Procter & Gamble Company Allergen neutralization compositions
US20030206965A1 (en) * 2000-09-29 2003-11-06 The Procter & Gamble Company Allergen neutralization compositions
US20030216485A1 (en) * 2000-09-13 2003-11-20 The Procter & Gamble Co. Process for making a water-soluble foam component
US6660711B1 (en) 1999-07-16 2003-12-09 The Procter & Gamble Company Laundry detergent compositions comprising zwitterionic polyamines and mid-chain branched surfactants
US6790814B1 (en) 1999-12-03 2004-09-14 Procter & Gamble Company Delivery system having encapsulated porous carrier loaded with additives, particularly detergent additives such as perfumes
US6858570B2 (en) 2001-03-03 2005-02-22 Clariant Gmbh Laundry detergents and laundry treatment compositions comprising one or more dye-transfer-inhibiting dye fixatives
US7091167B2 (en) 2001-03-03 2006-08-15 Clariant Gmbh Laundry detergents and laundry treatment compositions comprising dye-transfer-inhibiting dye fixatives
US20070191246A1 (en) * 2006-01-23 2007-08-16 Sivik Mark R Laundry care compositions with thiazolium dye
US20070277327A1 (en) * 2004-04-08 2007-12-06 Clariant Produkte (Deutschland) Gmbh Detergent And Cleaning Agents Containing Dye Fixatives And Soil Release Polymers
US20080139442A1 (en) * 2004-06-17 2008-06-12 Frank-Peter Lang Highly Concentrated, Aqueous Oligoester And Polyester Formulations
WO2008109384A2 (en) 2007-03-05 2008-09-12 Celanese Acetate Llc Method of making a bale of cellulose acetate tow
DE102007013217A1 (en) 2007-03-15 2008-09-18 Clariant International Ltd. Anionic soil release polymers
DE102007028310A1 (en) 2007-06-20 2008-12-24 Clariant International Ltd. Surfactant mixtures with synergistic properties
US20090036641A1 (en) * 2005-12-21 2009-02-05 Frank-Peter Lang Anionic Soil Release Polymers
US20090053354A1 (en) * 2006-03-03 2009-02-26 Jaroslav Hajduch Venting valve to be used in venting bores of vulcanization molds
DE102008023803A1 (en) 2008-05-15 2009-11-26 Clariant International Ltd. Additives for detergents and cleaners
US7638475B2 (en) 2006-03-24 2009-12-29 Georgia-Pacific Consumer Products Lp Space saving toilet cleaning system
US20100022434A1 (en) * 2001-02-28 2010-01-28 Chandrika Kasturi Liquid detergent composition exhibiting enhanced alpha-amylase enzyme stability
US20100105597A1 (en) * 2008-10-27 2010-04-29 Roy Jerome Harrington Methods for making a nil-phosphate liquid automatic dishwashing composition
US20100197545A1 (en) * 2009-01-30 2010-08-05 Ecolab USA High alkaline detergent composition with enhanced scale control
WO2011100405A1 (en) 2010-02-12 2011-08-18 The Procter & Gamble Company Benefit compositions comprising crosslinked polyglycerol esters
WO2011100411A1 (en) 2010-02-12 2011-08-18 The Procter & Gamble Company Benefit compositions comprising polyglycerol esters
WO2011100500A1 (en) 2010-02-12 2011-08-18 The Procter & Gamble Company Benefit compositions comprising polyglycerol esters
WO2011100420A1 (en) 2010-02-12 2011-08-18 The Procter & Gamble Company Benefit compositions comprising crosslinked polyglycerol esters
WO2012040171A1 (en) 2010-09-20 2012-03-29 The Procter & Gamble Company Non-fluoropolymer surface protection composition
WO2012040131A2 (en) 2010-09-20 2012-03-29 The Procter & Gamble Company Fabric care formulations and methods
WO2012040130A1 (en) 2010-09-20 2012-03-29 The Procter & Gamble Company Non-fluoropolymer surface protection composition
WO2013007366A1 (en) 2011-07-12 2013-01-17 Clariant International Ltd Use of a combination of secondary paraffin sulfonate and amylase for increasing the cleaning capacity of liquid detergents
WO2013007367A1 (en) 2011-07-12 2013-01-17 Clariant International Ltd. Use of secondary paraffin sulfonates for increasing the cleaning capacity of enzymes
DE102012015826A1 (en) 2012-08-09 2014-02-13 Clariant International Ltd. Liquid surfactant-containing alkanolamine-free compositions
DE102013004428A1 (en) 2013-03-15 2014-09-18 Clariant International Ltd. Process for washing and cleaning textiles
US8871702B2 (en) 2009-11-27 2014-10-28 Clariant Finance (Bvi) Limited Soil-release polymers having a grey-inhibiting effect and having high stability in solution
US8871703B2 (en) 2009-11-27 2014-10-28 Clariant Finance (Bvi) Limited Polyester concentrates having high stability in solution and having a greying-inhibiting effect
EP2857485A1 (en) 2013-10-07 2015-04-08 WeylChem Switzerland AG Multi-compartment pouch comprising alkanolamine-free cleaning compositions, washing process and use for washing and cleaning of textiles and dishes
EP2857487A1 (en) 2013-10-07 2015-04-08 WeylChem Switzerland AG Multi-compartment pouch comprising cleaning compositions, washing process and use for washing and cleaning of textiles and dishes
EP2857486A1 (en) 2013-10-07 2015-04-08 WeylChem Switzerland AG Multi-compartment pouch comprising cleaning compositions, washing process and use for washing and cleaning of textiles and dishes
US9796952B2 (en) 2012-09-25 2017-10-24 The Procter & Gamble Company Laundry care compositions with thiazolium dye
DE102016223585A1 (en) 2016-11-28 2018-05-30 Clariant International Ltd Copolymers and their use in detergent compositions
DE102016223584A1 (en) 2016-11-28 2018-05-30 Clariant International Ltd Copolymer-containing detergent compositions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1424356A (en) * 1972-03-17 1976-02-11 Unilever Ltd Detergent composition
GB2283494A (en) * 1993-11-03 1995-05-10 Procter & Gamble Machine dishwashing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2491920A (en) * 1946-05-16 1949-12-20 Du Pont Diesters of 1-ketophosphonic acids
DE1010965B (en) * 1956-05-08 1957-06-27 Henkel & Cie Gmbh A process for the preparation of acid esters of Acylphosphonsaeuren or their salts
DE1072346B (en) * 1959-02-06 1959-12-31 Henkel & Cie Gmbh A method for stabilizing surfactants
DE1082235B (en) * 1958-09-06 1960-05-25 Henkel & Cie Gmbh Use of organic acylation products of phosphorous acid or derivatives thereof as complexing agents for metal ions
DE1107207B (en) * 1959-06-03 1961-05-25 Henkel & Cie Gmbh Stabilizers for peroxy compounds and their solutions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2491920A (en) * 1946-05-16 1949-12-20 Du Pont Diesters of 1-ketophosphonic acids
DE1010965B (en) * 1956-05-08 1957-06-27 Henkel & Cie Gmbh A process for the preparation of acid esters of Acylphosphonsaeuren or their salts
DE1082235B (en) * 1958-09-06 1960-05-25 Henkel & Cie Gmbh Use of organic acylation products of phosphorous acid or derivatives thereof as complexing agents for metal ions
DE1072346B (en) * 1959-02-06 1959-12-31 Henkel & Cie Gmbh A method for stabilizing surfactants
DE1107207B (en) * 1959-06-03 1961-05-25 Henkel & Cie Gmbh Stabilizers for peroxy compounds and their solutions

Cited By (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346873A (en) * 1962-08-10 1967-10-10 Procter & Gamble Liquid detergent composition containing solubilizing electrolytes
US3346504A (en) * 1962-08-10 1967-10-10 Procter & Gamble Detergent compositions
US3392121A (en) * 1962-11-05 1968-07-09 Procter & Gamble Built detergent compositions
US3404178A (en) * 1963-03-18 1968-10-01 Procter & Gamble Substituted methylene diphosphonic acids and their salts
US3297578A (en) * 1963-07-26 1967-01-10 Monsanto Co Bleaching, sterilizing, disinfecting, and deterging compositions
US3394083A (en) * 1963-08-15 1968-07-23 Monsanto Co Effervescent builder compositions and detergent compositions containing the same
US3313735A (en) * 1963-09-25 1967-04-11 Procter & Gamble Shampoo composition
US3351559A (en) * 1963-11-13 1967-11-07 Henkel & Cie Gmbh Pourable and free-flowing detergent, wetting, and emulsifying compositions
US3424689A (en) * 1964-08-28 1969-01-28 Kao Corp Heavy-duty liquid detergent composition
US3368978A (en) * 1964-12-28 1968-02-13 Monsanto Co Builder compositions and detergent compositions using same
US3453144A (en) * 1965-02-12 1969-07-01 Procter & Gamble Liquid cleaner composition
US3539521A (en) * 1965-05-03 1970-11-10 Procter & Gamble Detergent composition
US3318817A (en) * 1965-07-16 1967-05-09 Procter & Gamble Process for preparing detergent tablets
US3303896A (en) * 1965-08-17 1967-02-14 Procter & Gamble Process for drilling boreholes in the earth utilizing amine oxide surfactant foaming agent
US3312626A (en) * 1965-09-03 1967-04-04 Procter & Gamble Toilet bar
US3312627A (en) * 1965-09-03 1967-04-04 Procter & Gamble Toilet bar
US3471406A (en) * 1965-09-07 1969-10-07 Plains Chem Dev Co Detergent compositions containing methane tri and tetra phosphonic acid compounds
US3892676A (en) * 1965-09-07 1975-07-01 Plains Chemical Dev Co Detergent compositions containing methane diphosphonic acid compounds
US3400148A (en) * 1965-09-23 1968-09-03 Procter & Gamble Phosphonate compounds
US3451937A (en) * 1965-09-23 1969-06-24 Procter & Gamble Phosphonate compounds
US4020091A (en) * 1965-10-28 1977-04-26 Plains Chemical Development Co. Chelation
US3400176A (en) * 1965-11-15 1968-09-03 Procter & Gamble Propanepolyphosphonate compounds
US3502585A (en) * 1965-11-15 1970-03-24 Procter & Gamble Detergent compositions containing propanepolyphosphonate compounds
US3488419A (en) * 1965-12-08 1970-01-06 Procter & Gamble Oral compositions for calculus retardation
USRE29182E (en) * 1965-12-08 1977-04-12 The Procter & Gamble Company Oral composition for calculus retardation
US3536628A (en) * 1965-12-22 1970-10-27 Frank Lancashire Soap compositions
US3422137A (en) * 1965-12-28 1969-01-14 Procter & Gamble Methanehydroxydiphosphonic acids and salts useful in detergent compositions
US3454500A (en) * 1966-02-08 1969-07-08 Procter & Gamble Soap compositions having improved curd-dispersing properties
US3351558A (en) * 1966-09-06 1967-11-07 Procter & Gamble Detergent composition containing organic phosphonate corrosion inhibitors
US3484480A (en) * 1968-02-23 1969-12-16 Procter & Gamble Process for separating ethane - 1 - hydroxy-1,1-diphosphonic acid from a solution of it in an organic solvent which also contains oxyacids of phosphorus
US3678154A (en) * 1968-07-01 1972-07-18 Procter & Gamble Oral compositions for calculus retardation
US3962100A (en) * 1975-08-18 1976-06-08 The Procter & Gamble Company Fabric softening agents
US4025444A (en) * 1975-08-18 1977-05-24 The Procter & Gamble Company Fabric softening agents
US4329244A (en) * 1979-06-21 1982-05-11 Interox (Societe Anonyme) Particles of stabilized peroxygenated compounds, process for their manufacture, and composition containing such particles
US4421669A (en) * 1979-12-12 1983-12-20 Interox (Societe Anonyme) Process for the stabilization of particles containing peroxygen compounds and bleaching compositions containing particles stabilized according to this process
EP0150532A1 (en) 1983-12-22 1985-08-07 THE PROCTER & GAMBLE COMPANY Peroxygen bleach activators and bleaching compositions
EP0679714A2 (en) 1994-04-28 1995-11-02 THE PROCTER & GAMBLE COMPANY Detergent compositions containing cellulase enzyme and selected perfumes for improved odor and stability
EP0693549A1 (en) 1994-07-19 1996-01-24 THE PROCTER & GAMBLE COMPANY Solid bleach activator compositions
WO1996025478A1 (en) 1995-02-15 1996-08-22 The Procter & Gamble Company Detergent composition comprising an amylase enzyme and a nonionic polysaccharide ether
EP0753559A1 (en) 1995-07-13 1997-01-15 THE PROCTER & GAMBLE COMPANY Method of cleaning textile fabrics
EP0753557A1 (en) 1995-07-13 1997-01-15 THE PROCTER & GAMBLE COMPANY Packaged foaming composition
EP0763594A1 (en) 1995-09-18 1997-03-19 THE PROCTER & GAMBLE COMPANY Process for making granular detergents
EP0771785A1 (en) 1995-11-02 1997-05-07 THE PROCTER & GAMBLE COMPANY Beta-amino ester compounds of perfume alcohols and their use in cleaning or laundry compositions
WO1997042282A1 (en) 1996-05-03 1997-11-13 The Procter & Gamble Company Detergent compositions comprising polyamine polymers with improved soil dispersancy
WO1998031778A1 (en) * 1997-01-21 1998-07-23 Henkel Corporation Process for chelating divalent metal ions in alkaline detergent formulations
US5929020A (en) * 1997-01-21 1999-07-27 Henkel Corporation Process for chelating divalent metal ions in alkaline detergent formulations
US6660711B1 (en) 1999-07-16 2003-12-09 The Procter & Gamble Company Laundry detergent compositions comprising zwitterionic polyamines and mid-chain branched surfactants
US6790814B1 (en) 1999-12-03 2004-09-14 Procter & Gamble Company Delivery system having encapsulated porous carrier loaded with additives, particularly detergent additives such as perfumes
US6617300B2 (en) 2000-08-30 2003-09-09 Procter & Gamble Company Granular bleach activators having improved solubility profiles
US20030216485A1 (en) * 2000-09-13 2003-11-20 The Procter & Gamble Co. Process for making a water-soluble foam component
US6953587B2 (en) 2000-09-13 2005-10-11 Proacter & Gamble Company Process for making a water-soluble foam component
US20030206965A1 (en) * 2000-09-29 2003-11-06 The Procter & Gamble Company Allergen neutralization compositions
US20030203035A1 (en) * 2000-09-29 2003-10-30 The Procter & Gamble Company Allergen neutralization compositions
US20110053824A1 (en) * 2001-02-28 2011-03-03 Chandrika Kasturi Liquid detergent composition exhibiting enhanced alpha-amylase enzyme stability
US20100022434A1 (en) * 2001-02-28 2010-01-28 Chandrika Kasturi Liquid detergent composition exhibiting enhanced alpha-amylase enzyme stability
US6858570B2 (en) 2001-03-03 2005-02-22 Clariant Gmbh Laundry detergents and laundry treatment compositions comprising one or more dye-transfer-inhibiting dye fixatives
US7091167B2 (en) 2001-03-03 2006-08-15 Clariant Gmbh Laundry detergents and laundry treatment compositions comprising dye-transfer-inhibiting dye fixatives
US20070277327A1 (en) * 2004-04-08 2007-12-06 Clariant Produkte (Deutschland) Gmbh Detergent And Cleaning Agents Containing Dye Fixatives And Soil Release Polymers
US20080139442A1 (en) * 2004-06-17 2008-06-12 Frank-Peter Lang Highly Concentrated, Aqueous Oligoester And Polyester Formulations
US7790665B2 (en) 2004-06-17 2010-09-07 Clariant Produkte (Deutschland) Gmbh Highly concentrated, aqueous oligoester and polyester formulations
US20090036641A1 (en) * 2005-12-21 2009-02-05 Frank-Peter Lang Anionic Soil Release Polymers
US20070191246A1 (en) * 2006-01-23 2007-08-16 Sivik Mark R Laundry care compositions with thiazolium dye
US20100325814A1 (en) * 2006-01-23 2010-12-30 Mark Robert Sivik Laundry care compositions with thiazolium dye
US8299010B2 (en) 2006-01-23 2012-10-30 The Procter & Gamble Company Laundry care compositions with thiazolium dye
US20090053354A1 (en) * 2006-03-03 2009-02-26 Jaroslav Hajduch Venting valve to be used in venting bores of vulcanization molds
US7638475B2 (en) 2006-03-24 2009-12-29 Georgia-Pacific Consumer Products Lp Space saving toilet cleaning system
WO2008109384A2 (en) 2007-03-05 2008-09-12 Celanese Acetate Llc Method of making a bale of cellulose acetate tow
DE102007013217A1 (en) 2007-03-15 2008-09-18 Clariant International Ltd. Anionic soil release polymers
DE102007028310A1 (en) 2007-06-20 2008-12-24 Clariant International Ltd. Surfactant mixtures with synergistic properties
DE102008023803A1 (en) 2008-05-15 2009-11-26 Clariant International Ltd. Additives for detergents and cleaners
US20100105597A1 (en) * 2008-10-27 2010-04-29 Roy Jerome Harrington Methods for making a nil-phosphate liquid automatic dishwashing composition
US7790664B2 (en) 2008-10-27 2010-09-07 The Procter & Gamble Company Methods for making a nil-phosphate liquid automatic dishwashing composition
US20110071065A1 (en) * 2009-01-30 2011-03-24 Ecolab USA High alkaline detergent composition with enhanced scale control
US20100197545A1 (en) * 2009-01-30 2010-08-05 Ecolab USA High alkaline detergent composition with enhanced scale control
US8809249B2 (en) 2009-01-30 2014-08-19 Ecolab Usa Inc. High alkaline detergent composition with enhanced scale control
US8481473B2 (en) 2009-01-30 2013-07-09 Ecolab Usa Inc. High alkaline detergent composition with enhanced scale control
US8871703B2 (en) 2009-11-27 2014-10-28 Clariant Finance (Bvi) Limited Polyester concentrates having high stability in solution and having a greying-inhibiting effect
US8871702B2 (en) 2009-11-27 2014-10-28 Clariant Finance (Bvi) Limited Soil-release polymers having a grey-inhibiting effect and having high stability in solution
WO2011100420A1 (en) 2010-02-12 2011-08-18 The Procter & Gamble Company Benefit compositions comprising crosslinked polyglycerol esters
WO2011100411A1 (en) 2010-02-12 2011-08-18 The Procter & Gamble Company Benefit compositions comprising polyglycerol esters
WO2011100405A1 (en) 2010-02-12 2011-08-18 The Procter & Gamble Company Benefit compositions comprising crosslinked polyglycerol esters
WO2011100500A1 (en) 2010-02-12 2011-08-18 The Procter & Gamble Company Benefit compositions comprising polyglycerol esters
WO2012040171A1 (en) 2010-09-20 2012-03-29 The Procter & Gamble Company Non-fluoropolymer surface protection composition
US8633146B2 (en) 2010-09-20 2014-01-21 The Procter & Gamble Company Non-fluoropolymer surface protection composition comprising a polyorganosiloxane-silicone resin mixture
US8637442B2 (en) 2010-09-20 2014-01-28 The Procter & Gamble Company Non-fluoropolymer surface protection composition comprising a polyorganosiloxane-silicone resin mixture
WO2012040130A1 (en) 2010-09-20 2012-03-29 The Procter & Gamble Company Non-fluoropolymer surface protection composition
WO2012040131A2 (en) 2010-09-20 2012-03-29 The Procter & Gamble Company Fabric care formulations and methods
WO2013007366A1 (en) 2011-07-12 2013-01-17 Clariant International Ltd Use of a combination of secondary paraffin sulfonate and amylase for increasing the cleaning capacity of liquid detergents
WO2013007367A1 (en) 2011-07-12 2013-01-17 Clariant International Ltd. Use of secondary paraffin sulfonates for increasing the cleaning capacity of enzymes
WO2014023427A1 (en) 2012-08-09 2014-02-13 Clariant International Ltd Liquid surfactant-containing alkanolamine-free compositions
US9777249B2 (en) 2012-08-09 2017-10-03 Weylchem Switzerland Ag Liquid surfactant-containing alkanolamine-free compositions
DE102012015826A1 (en) 2012-08-09 2014-02-13 Clariant International Ltd. Liquid surfactant-containing alkanolamine-free compositions
US9796952B2 (en) 2012-09-25 2017-10-24 The Procter & Gamble Company Laundry care compositions with thiazolium dye
DE102013004428A1 (en) 2013-03-15 2014-09-18 Clariant International Ltd. Process for washing and cleaning textiles
EP2857486A1 (en) 2013-10-07 2015-04-08 WeylChem Switzerland AG Multi-compartment pouch comprising cleaning compositions, washing process and use for washing and cleaning of textiles and dishes
EP2857487A1 (en) 2013-10-07 2015-04-08 WeylChem Switzerland AG Multi-compartment pouch comprising cleaning compositions, washing process and use for washing and cleaning of textiles and dishes
WO2015051901A1 (en) 2013-10-07 2015-04-16 Weylchem Wiesbaden Gmbh Multi-compartment pouch comprising alkanolamine-free cleaning compositions, washing process and use for washing and cleaning of textiles and dishes
EP2857485A1 (en) 2013-10-07 2015-04-08 WeylChem Switzerland AG Multi-compartment pouch comprising alkanolamine-free cleaning compositions, washing process and use for washing and cleaning of textiles and dishes
WO2018095916A1 (en) 2016-11-28 2018-05-31 Clariant International Ltd Copolymers and their use in detergent compositions
DE102016223585A1 (en) 2016-11-28 2018-05-30 Clariant International Ltd Copolymers and their use in detergent compositions
DE102016223584A1 (en) 2016-11-28 2018-05-30 Clariant International Ltd Copolymer-containing detergent compositions
WO2018095923A1 (en) 2016-11-28 2018-05-31 Clariant International Ltd Detergent compositions containing copolymer

Also Published As

Publication number Publication date
DK156563A (en)
BE655988A (en) 1965-05-19
DE1467648A1 (en) 1969-10-16
AU294552B2 (en) 1969-09-29
FI41762B (en) 1969-10-31
DK111829B (en) 1968-10-14
GB1035913A (en) 1966-07-13
AU5184364A (en) 1966-05-19
FR1439824A (en) 1966-05-27
NL132418C (en)
NL6413483A (en) 1966-05-20

Similar Documents

Publication Publication Date Title
US3519570A (en) Enzyme - containing detergent compositions and a process for conglutination of enzymes and detergent compositions
US3360470A (en) Laundering compositions
US3400148A (en) Phosphonate compounds
US3332880A (en) Detergent composition
US3422021A (en) Detergent composition
US3502585A (en) Detergent compositions containing propanepolyphosphonate compounds
US3351557A (en) Detergent compositions
US3526592A (en) New compounds and detergent compositions containing them
US3679608A (en) Low foaming hard surface cleaners
US3537993A (en) Detergent compositions
US3793233A (en) Liquid detergent compositions
US3202714A (en) Oxy containing tertiary amine oxides
US3700607A (en) Detergent compositions containing n-oxide-aminocarboxylates
AU661672B2 (en) Detergent compositions containing lipase and water-soluble quaternary ammonium compounds
US3676338A (en) Detergent compositions containing a textile softener
US3308067A (en) Polyelectrolyte builders and detergent compositions
US4749509A (en) Aqueous detergent compositions containing diethyleneglycol monohexyl ether solvent
US3703480A (en) Fabric-softener compositions
DK169558B1 (en) detergent
CA1102202A (en) Granular detergent compositions for improved greasy soil removal
US3368978A (en) Builder compositions and detergent compositions using same
US4070309A (en) Detergent composition
US4492646A (en) Liquid dishwashing detergent containing anionic surfactant, suds stabilizer and highly ethoxylated nonionic drainage promotor
EP0213729B1 (en) Detergent compositions
US4999129A (en) Process and composition for washing soiled polyester fabrics