US3136888A - Selecting mass spectrometer having substantially doubled resolving power - Google Patents

Selecting mass spectrometer having substantially doubled resolving power Download PDF

Info

Publication number
US3136888A
US3136888A US183825A US18382562A US3136888A US 3136888 A US3136888 A US 3136888A US 183825 A US183825 A US 183825A US 18382562 A US18382562 A US 18382562A US 3136888 A US3136888 A US 3136888A
Authority
US
United States
Prior art keywords
ion
envelope
circular path
collectors
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US183825A
Inventor
Andras Karoly
Dallos Andras
Erdelyi Janos
Toth Sandor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tavkoezlesi Kutato Intezet
Original Assignee
Tavkozlesi Ki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tavkozlesi Ki filed Critical Tavkozlesi Ki
Application granted granted Critical
Publication of US3136888A publication Critical patent/US3136888A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/28Static spectrometers
    • H01J49/284Static spectrometers using electrostatic and magnetic sectors with simple focusing, e.g. with parallel fields such as Aston spectrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

June 9, 1964 ND A ETAL 3,136,888
SELECTING MASS SPECTROMETER HAVING SUBSTANTIALLY DOUBLED RESOLVING POWER Filed March 30, 1962 15 R MRwflM r OD O TNfiEZ 4 n 5. m? M mwm n K United States Patent I r 3,136,888 SELECTING MASS SPECTROMETER HAVING SUB- STANTIALLY DOUBLED RESOLVING POWER Karoly Andras and Andras Dallos, Budapest, Janos Erdlyi, Dunakeszi,.and Sandor Toth, Budapest, Hungary, assignors to Tavkozlesi Kutato Intezet, Budapest, Hungary Filed Mar. 30, 1962, Ser. No. 183,825
Claims priority, application Hungary Apr. 7, 1961 4 Claims. (Cl. 250-419) This invention relates to mass spectrometers and, more particularly, to a novel selecting mass spectrometer in which the principles of Aston and Busch are combined to obtain a substantial doubling of the resolving power and elimination of errors caused by energy spread of the ion source.
In spectrometers embodying the Aston principle, the ions moving perpendicularly to the magnetic field follow circular paths of different radii respectively proportional to the relative masses of the ions. On the other hand, in spectrometers operating on the Busch principle of measuring the specific charge, the particles are caused to follow helical paths, and the ratio between the charge and the mass is ascertained from the pitch of the helical path, this pitch being proportional to the angular velocity of the particles.
In accordance with the present invention, there is provided a selecting mass spectrometer operating on a novel combination of the Aston and Busch principles, and having novel construction and operational features. With the mass spectrometer. of the invention, the resolving power is doubled with respectto prior constructions, and the errors caused by the energy spread of the ion source are eliminated.
For an understanding of the principles of the invention, reference is made to the following description of a typical embodiment thereof as illustrated in the accompanying drawings. In the drawings:
FIG. 1 is a perspective view, partly broken away, of a mass spectrometer embodying the invention; and FIG. 2 is a view taken on the line II--II of FIG. 1 and further illustrating certain relations of component elements of the spectrometer shown in FIG. 1.
Referring to the drawings, the mass spectrometer embodying the invention comprises an ion gun 1 operatively associated with a selecting diaphragm 2. The ions passing through the diaphragm 2 are directed between a pair of deflecting electrodes 3 which direct the ions through an arcuate gap 41 in the circular end 42 of a screening cylinder 4. The other circular end 43 of screening cylinder 4 is formed with one or more gaps or apertures 5, each of which has associated therewith a collector 6. All of the mentioned elements are mounted on the screening cylinder, and the entire arrangement is disposed within an evacuated envelope 7. Envelope 7 is positioned in a magnetic field whose direction is indicated by the arrow B of FIG. 1.
The ion gun I is disposed eccentrically of the axis of screening cylinder 4 and adjacent the outer surface of the circular upper end 42 thereof. The particles emerging from the ion gun are directed perpendicularly to the direction of the axially extending magnetic field B, and are thus constrained by the latter to follow a circular path as indicated at 8. The diaphragm 2 makes a particular selection of the ion beam and thus acts as a. filter with respect to the direction and energy spread of the ion stream from gun 1.
The ion beam or stream, the homogeneity of which is dependent upon the structure of the diaphragm 2, then passes between the deflecting electrodes 3 and through the arcuate gap 41. The beam follows a helical path Patented June 9, 1964 "ice due to force components acting parallel to the axis of V the screening cylinder 4, and thus the beam enters the screening cylinder. With a suitable correlation between the accelerating and deflecting voltages, and the magnetic induction, as set forth more fully hereinafter, the ion beam is caused to enter the gap 5 and to impinge upon the collector 6. Due to the filtering action provided by the diaphragm 2 with respect to the direction and energy spread of the beam from the ion gun 1, which amounts to a preselection of the ion beam, these characteristics of the ion beam cannot cause any errors in the measurement of the mass by measurement of the polar angle.
The polar angle of theillustrated helical path, as
measured in radians, is given by the following equation:
It will be noted that in the above equation, the factor m,
appearing in the denominator, is of the first power. Conversely, in the deflection formulae of mass spectroeters operating of the Aston principle, m is only of the half power. Thus it will be seen that the resolving power of the mass spectrometer illustrated in the drawing is twice that of mass spectrometers operating on the Aston principle.
The radius R of the helical path, as measured in meters, may be derived from the following formula:
In this formula, U is the accelerating voltage measured in volts.
As the resolving power of the described masss spectrometer increases toward that end of the spectrum having the smaller mass numbers, the spectrometer of the invention is particularly and preferably useful for analyzing gases at low pressure, utilizing a vacuum technique, since the mass numbers, in utilizing such technique, are generally below 50. a
By way of example, an experimental construction of the mass spectrometer embodying the invention may have the following parameters:
R=25 mm. D=3.5 mm. L=50 mm.
B, which is variable, may range fromg 0 to 0.2 webers per square meter.
U,, which is variable, may range from 0 to 50 volts.
U which is variable, may range from 0 to 30 volts.
With these parameters, the spectrometer according to the invention can be used to measure masses m from 1 to 50 kg.
It will be appreciated that, by arranging outlet gaps 5, with their associated collector 6, in angularly spaced relation along a circular path concentric with the axis of the screening cylinder 4, ions having differing masses can be separated by varying the accelerating voltage U,
.3 without varying the deflecting voltage U which latter determines the helix ascent or descent angle.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
What is claimed is:
1. A selecting mass spectrometer comprising, in combination, an evacuated envelope disposed in a magnetic field' extending unidirectionally of said envelope; an ion 1 gun in saidenvelope oriented to accelerate anion'stream perpendicularlyto the direction of the magnetic field to follow a circularpathunder the influence ofthe magnetic field; a diaphragm positioned in said envelope along said circular path in angularly spaced relation to said ion gun to selectively filter the ionstrearn with respect to direction and energy spread of the latter; a' pair of deflecting electrodes positioned in said envelope in-the path of ions passing through said diaphragm and oriented to provide an ion \velocity component axially of such circular path so that ions passing-between said electrodes will follow a helical path; and at least two ion collectors positioned in said envelope at selected points downstream of said electrodes so coordinated with the ion accelerating and deflecting voltages and with the strength of the magnetic field that ions following such helical path will enter said collectors; said ion collectors being arranged in angularly spaced relation along the circumference of a circle concentric with-said circular path and lying in a plane perpendicular to the axis of such circular path; whereby ions of different masses can be including a screening cylinder disposed within said envelope; said ion gun, said diaphragm and said pair of deflecting electrodes being positioned adjacent the outer surface of one end of said cylinder, and the axis of said cylinder being coaxial with said circular path; said deflecting electrodes directing the ions passing therebetween through an arcuate opening in one wall of said cylinder; said ion outlets being formed in the opposite end wall of said cylinder; said collectors extending outwardly from said gaps.
4. A selecting-mass spectrometer, as claimed in claim 1, including a screening cylinder disposed within said envelope coaxially with such circular path; said ion gun, said diaphragm and said pair of deflecting electrodes being positioned adjacent the outer surface of one; end wall'of said cylinder; said deflecting electrodes directing the ions passing therebetween to fiow through an arcuate gapin such one end wall; the other end wall of said cylinder being formed with at least two ion outlet gaps arranged in angularly spaced relation along the circumferenceof a circle coaxial with such circular path, whereby ions of different masses can be selectively directed to a selected one of said gaps by varying the accelerating voltagewhile maintaining the deflecting voltage constant; and a plurality of ion collectors equal in number to said gaps, each collector being operatively associated with a selectively directed to a selected one ofsaid collectors by varying the accelerating voltage while maintaining the deflecting voltage constant.
2. A selecting mass spectrometer, as claimed in claim 1, including means forming an ion outlet gap at each of such selected joints for passage of the ions into said collectors.
different respective one of said outlet gaps and extending outwardly therefrom.
ReferencesCited in the file of this patent UNITED STATES PATENTS 2,245,174 Banks June 10,1941 2,471,935 Coggeshall et al =May 3 1, 1949 2,698,905 Goudsrnit Jan. 4, .1955 2,709,750 Smith May 31, 1955 2,987,618 Long June 6, 1961

Claims (1)

1. A SELECTING MASS SPECTROMETER COMPRISING, IN COMBINATION, AN EVACUATED ENVELOPE DISPOSED IN A MAGNETIC FIELD EXTENDING UNIDIRECTIONALLY OF SAID ENVELOPE; AN ION GUN IN SAID ENVELOPE ORIENTED TO ACCELERATE AN ION STREAM PERPENDICULARLY TO THE DIRECTION OF THE MAGNETIC FIELD TO FOLLOW A CIRCULAR PATH UNDER THE INFLUENCE OF THE MEGNETIC FIELD; A DIAPHRAGM POSITIONED IN SAID ENVELOPE ALONG SAID CIRCULAR PATH IN ANGULARLY SPACED RELATION TO SAID ION GUN TO SELECTIVELY FILTER THE ION STREAM WITH RESPECT TO DIRECTION AND ENERGY SPREAD OF THE LATTER; A PAIR OF DEFLECTING ELECTRODES POSITIONED IN SAID ENVELOPE IN THE PATH OF IONS PASSING THROUGH SAID DIAPHRAGM AND ORIENTED TO PROVIDE AN ION VELOCITY COMPONENT AXIALLY OF SUCH CIRCULAR PATH SO THAT IONS PASSING BETWEEN SAID ELECTRODES WILL FOLLOW A HELICAL PATH; AND AT LEAST TWO ION COLLECTORS POSITIONED IN SAID ENVELOPE AT SELECTED POINTS DOWNSTREAM OF SAID ELECTRODES SO COORDINATED WITH THE ION ACCELERATING AND DEFLECTING VOLTAGES AND WITH THE STRENGTH OF THE MAGNETIC FIELD THAT IONS FOLLOWING SUCH HELICAL PATH WILL ENTER SAID COLLECTORS; SAID ION COLLECTORS BEING ARRANGED IN ANGULARLY SPACED RELATION ALONG THE CIRCUMFERENCE OF A CIRCLE CONCENTRIC WITH SAID CIRCULAR PATH AND LYING IN A PLANE PERPENDICULAR TO THE AXIS OF SUCH CIRCULAR PATH; WHEREBY IONS OF DIFFERENT MASSES CAN BE SELECTIVELY DIRECTED TO A SELECTED ONE OF SAID COLLECTORS BY VARYING THE ACCELERATING VOLTAGE WHILE MAINTAINING THE DEFLECTING VOLTAGE CONSTANT.
US183825A 1961-04-07 1962-03-30 Selecting mass spectrometer having substantially doubled resolving power Expired - Lifetime US3136888A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HU3136888X 1961-04-07

Publications (1)

Publication Number Publication Date
US3136888A true US3136888A (en) 1964-06-09

Family

ID=11003869

Family Applications (1)

Application Number Title Priority Date Filing Date
US183825A Expired - Lifetime US3136888A (en) 1961-04-07 1962-03-30 Selecting mass spectrometer having substantially doubled resolving power

Country Status (1)

Country Link
US (1) US3136888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033564A1 (en) * 2002-08-19 2004-02-19 Seong Balk Lin Method for increasing solubility of target protein using RNA-binding protein as fusion partner
US6794647B2 (en) 2003-02-25 2004-09-21 Beckman Coulter, Inc. Mass analyzer having improved mass filter and ion detection arrangement
US20050087684A1 (en) * 2003-10-23 2005-04-28 Farnsworth Vincent R. Time of flight mass analyzer having improved mass resolution and method of operating same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2245174A (en) * 1936-02-08 1941-06-10 Rca Corp Electron discharge device
US2471935A (en) * 1945-03-19 1949-05-31 Gulf Research Development Co Method and apparatus for separating charged particles of different masses
US2698905A (en) * 1949-03-24 1955-01-04 Samuel A Goudsmit Magnetic time-of-flight mass spectrometer
US2709750A (en) * 1951-10-17 1955-05-31 Lincoln G Smith Magnetic-period mass spectrometer
US2987618A (en) * 1957-09-12 1961-06-06 Long Robert Warren Mass spectrometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2245174A (en) * 1936-02-08 1941-06-10 Rca Corp Electron discharge device
US2471935A (en) * 1945-03-19 1949-05-31 Gulf Research Development Co Method and apparatus for separating charged particles of different masses
US2698905A (en) * 1949-03-24 1955-01-04 Samuel A Goudsmit Magnetic time-of-flight mass spectrometer
US2709750A (en) * 1951-10-17 1955-05-31 Lincoln G Smith Magnetic-period mass spectrometer
US2987618A (en) * 1957-09-12 1961-06-06 Long Robert Warren Mass spectrometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033564A1 (en) * 2002-08-19 2004-02-19 Seong Balk Lin Method for increasing solubility of target protein using RNA-binding protein as fusion partner
US6794647B2 (en) 2003-02-25 2004-09-21 Beckman Coulter, Inc. Mass analyzer having improved mass filter and ion detection arrangement
US20050087684A1 (en) * 2003-10-23 2005-04-28 Farnsworth Vincent R. Time of flight mass analyzer having improved mass resolution and method of operating same
US20050285030A1 (en) * 2003-10-23 2005-12-29 Farnsworth Vincent R Time of flight mass analyzer having improved detector arrangement and method of operating same
US7186972B2 (en) 2003-10-23 2007-03-06 Beckman Coulter, Inc. Time of flight mass analyzer having improved mass resolution and method of operating same

Similar Documents

Publication Publication Date Title
US4072862A (en) Time-of-flight mass spectrometer
US2582216A (en) Mass spectrometer
US3953732A (en) Dynamic mass spectrometer
US2427484A (en) Ionic gas analysis
US2627034A (en) Mass spectrometry
US3136888A (en) Selecting mass spectrometer having substantially doubled resolving power
JP3392345B2 (en) Time-of-flight mass spectrometer
US3321623A (en) Multipole mass filter having means for applying a voltage gradient between diametrically opposite electrodes
US2769093A (en) Radio frequency mass spectrometer
US6624410B1 (en) Cycloidal mass spectrometer
US3457404A (en) Quadrupole mass analyzer
US3197633A (en) Method and apparatus for separating ions of respectively different specific electric charges
US3239662A (en) Mass spectrometer having a concentric cylindrical electrode structure
US2659821A (en) Spectrometric analysis of solids
US3356843A (en) Mass spectrometer electron beam ion source having means for focusing the electron beam
US2688088A (en) Mass spectrometer
US2667582A (en) Mass separator
US3609352A (en) Secondary electron energy analyzing apparatus
US2995659A (en) Mass spectrometers
US2958774A (en) Omegatron with orbit increment detection
Meckbach et al. Ratio of the effective charge of He beams traversing gaseous and metallic cadmium
US3308293A (en) Method of selectively separating charged particles using a variable intensity non-uniform magnetic field
US2735942A (en) brubaker
US2845539A (en) Mass spectrometry
US3387131A (en) Dual orbit mass spectrometer for analyzing ions in the mass range of 1 to 100