US3134798A - Preparation of dialkyl disulfides - Google Patents
Preparation of dialkyl disulfides Download PDFInfo
- Publication number
- US3134798A US3134798A US128677A US12867761A US3134798A US 3134798 A US3134798 A US 3134798A US 128677 A US128677 A US 128677A US 12867761 A US12867761 A US 12867761A US 3134798 A US3134798 A US 3134798A
- Authority
- US
- United States
- Prior art keywords
- reaction
- nitrogen dioxide
- mercaptan
- mercaptans
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000002019 disulfides Chemical class 0.000 title claims description 16
- 238000002360 preparation method Methods 0.000 title description 5
- 238000006243 chemical reaction Methods 0.000 claims description 52
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 40
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 claims description 39
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 22
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical group S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 19
- 239000007791 liquid phase Substances 0.000 claims description 9
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 26
- 239000012071 phase Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 13
- -1 Alkyl sulfides Chemical class 0.000 description 11
- CETBSQOFQKLHHZ-UHFFFAOYSA-N Diethyl disulfide Chemical compound CCSSCC CETBSQOFQKLHHZ-UHFFFAOYSA-N 0.000 description 10
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 10
- 239000000376 reactant Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 8
- 239000012263 liquid product Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- RNXYUXLKBXISRZ-UHFFFAOYSA-N thionitrosooxyethane Chemical compound CCON=S RNXYUXLKBXISRZ-UHFFFAOYSA-N 0.000 description 4
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 3
- 238000010574 gas phase reaction Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- CVDWPILENQYMEJ-UHFFFAOYSA-N thionitrosooxymethane Chemical compound CON=S CVDWPILENQYMEJ-UHFFFAOYSA-N 0.000 description 3
- GAYUSSOCODCSNF-UHFFFAOYSA-N 1-(dodecyldisulfanyl)dodecane Chemical compound CCCCCCCCCCCCSSCCCCCCCCCCCC GAYUSSOCODCSNF-UHFFFAOYSA-N 0.000 description 2
- PMBXCGGQNSVESQ-UHFFFAOYSA-N 1-Hexanethiol Chemical compound CCCCCCS PMBXCGGQNSVESQ-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical compound CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- 150000002898 organic sulfur compounds Chemical class 0.000 description 2
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 150000003462 sulfoxides Chemical class 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- ZRKMQKLGEQPLNS-UHFFFAOYSA-N 1-Pentanethiol Chemical compound CCCCCS ZRKMQKLGEQPLNS-UHFFFAOYSA-N 0.000 description 1
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- VTXVGVNLYGSIAR-UHFFFAOYSA-N decane-1-thiol Chemical compound CCCCCCCCCCS VTXVGVNLYGSIAR-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- ORTRWBYBJVGVQC-UHFFFAOYSA-N hexadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCS ORTRWBYBJVGVQC-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000012035 limiting reagent Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- ICRHORQIUXBEPA-UHFFFAOYSA-N thionitrous acid Chemical compound SN=O ICRHORQIUXBEPA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C319/00—Preparation of thiols, sulfides, hydropolysulfides or polysulfides
- C07C319/14—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C381/00—Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
Definitions
- This invention relates to new and useful improvements in processes for the prep ration of dialkyl disulfides, and more particularly to the preparation of dialkyl disulfides by partial oxidation of primary and secondary mercaptans with nitrogen dioxide.
- Mercaptans have been oxidized by air or oxygen in the presence of aqueous alkali. Mercaptans have also been oxidized by ozone, permanganates, perborates, fuming nitric acid, chlorine, iodine, etc.
- the various techniques of oxidation of mercaptans with the oxidation agents reported in the prior art give rise to a variety of products. In some cases monosulfides are formed, while in other cases disulfides or polysulfides are formed. In many cases the sulfides which are formed in the oxidation process are further oxidized to sulfones, sulfoxides, and sulfonic acids.
- a feature of this invention is the provision of an improved process for the preparation of dialkyl disulfides and alkyl thionitrites by reaction of nitrogen dioxide with a primary or secondary aliphatic mercaptan.
- Another feature of this invention is the provision of an improved process for the preparation of diallryl disulfides and alkyl thionitrites in which a primary or secondary C -C alkyl mercaptan is reacted with nitrogen dioxide at a temperature of about 50 to +250 C. under essentially anhydrous conditions.
- This invention is based upon our discovery that dialkyl disulfides can be produced in excellent yields, together with small amounts of alkyl thionitrites, by the uncatalyzed reaction of primary or secondary alkyl mercaptans with nitrogen dioxide under essentially anhydrous conditions.
- the reaction is exothermic and takes place readily at room temperature although it may be carried out at ambient temperatures ranging from 50 to +250 C.
- a primary or secondary alkyl mercaptan preferably a C C primary or secondary allcyl mercaptan
- the reaction can be carried out in any convenient reaction system, and the reactor may be of any material of construction which is inert toward the reactants and products of reaction under reaction conditions.
- the reactor may be made of glass,
- reaction When the reaction is carried out in liquid phase, it is preferred to avoid the use of a stoichiometric excess of nitrogen dioxide as the results in the formation of sulfoxides or sulfones rather than the desired disulfides.
- the rate of feed of reactants is not critical and the total gaseous hourly space velocity of reactants in the gasphase reaction may vary widely from as little as to as high as 5000 or more. Equivalent feed rates can be used in the liquid-phase reaction.
- the reaction products are withdrawn from the reaction zone, and settle into two phases. The lower phase consists essentially of water and some dissolved products.
- the upper phase which is bright red, consists essentially of a dialkyl disulfide (derived from the mercaptan) containing in solution a small amount of an allcyl thionitrite.
- the thionitrite is decomposed and a substantially pure dialkyl disulfide is obtained as the product.
- This process is limited to the reaction of nitrogen dioxide with primary and secondary alkyl mercaptans under essentially anhydrous conditions (i.e., free of water other than the byproduct water of reaction).
- Mercaptans which may be used in this reaction include methanethiol, ethanethiol, propanethiol (both primary and secondary isomers), pentanethiol, hexanethiol, octanethiol, decanethiol, dodecanethiol, hexadecanethiol, etc.
- EXAMPLE I A 21-mm. O.D. glass reactor-tube, having a volume of 92 cc., was mounted vertically and connected so that two separate gas streams could be charged at the top. Helium at cc./min. was bubbled through ethanethiol at room temperature and charged to the reactor tube at an ethanethiol flow rate of 46 cc./min. Nitrogen dioxide gas was also charged at the top of the reactor tube at a rate of 39 cc./min. At the point in the reactor tube where the two gas streams met, there was an exothermic reaction with the formation of a liquid product.
- the lower liquid phase was separated and analyzed by infrared spectroscopy. This phase was found to consist essentially of water.
- the upper phase was analyzed by infrared spectroscopy and found to consist of about diethyl disulfide, together with a small amount of diethyl sulfide. The intense red color was an indication of the formation of ethyl thionitrite (there is no accurate method of analysis for thionitrites).
- Mass spectrometric analyses of the charge and product gas samples showed that nitric oxide was a major gaseous product while a minor amount of sulfur dioxide was formed.
- Example II The apparatus described in Example I is used for carrying out the reaction of methanethiol with nitrogen dioxide.
- Helium diluent at 50 cc./min. and methane-thiol gas at 110 cc./min. are charged to the top of the reactor tube.
- Nitrogen dioxide gas at 50 cc./min. is also charged to the top of the reactor tube.
- the liquid product is separated as in Example I and an aqueous phase is separated and discarded.
- the non-aqueous phase consists of a major amount of dimethyl disulfide and a minor amount of methyl thionitrite, together with small amounts of dimethyl sulfide.
- dimethyl disulfide can be produced in yields inexcess of 70% and selectivities approaching 100%.
- EXAMPLE III An apparatus similar to that used in Example I is used for the reaction of various mercaptans with nitrogen di oxide under the conditions set forth in Table I and with the results indicated therein. The only change in procedure is that the mercaptans are charged to the reactor tube as liquids.
- EXAMPLE V A gas flask, equipped with a stirrer and bubbler tube, was charged with 150 g. n-dodecanethiol (0.741 mol) and 200 ml. carbon tetrachloride. Gaseous nitrogen dioxide cc./min.) and nitrogen (20 cc./min.) were bubbled into the stirred liquid mixture until 6.7 g. (0.146 mol) nitrogen dioxide were charged. The temperature of the reaction mixture was maintained at 24 C. during the reaction. In this experiment di-dodecyl disulfide was obtained with the yield of 84.2% based on the nitrogen dioxide (limiting reactant) charged.
- the yield of the product disulfide was less than half obtained using a non-aqueous solvent.
- dialkyl disulfides and alkyl thionitrites can be obtained by the reaction of nitrogen dioxide with one or more primary or secondary alkanethiols at ambient temperatures.
- the reaction is preferably carried out in gas phase,
- a liquid-phase reaction in an inert solvent such as carbon tetrachloride, hydrocarbons, etc.
- the reaction is carried out at temperatures in the range of about to +250 C, at a mercaptan/nitrogen dioxide mol ratio in the range of about 1:10 to 20:1.
- the reaction is preferably carried out at temperatures of about 0-'30 C.
- the reaction can be carried out using a wide range of reactant ratios.
- the total amount of nitrogen dioxide charged provided a mercaptan/nitrogen dioxide mol ratio of 3.1:1.
- the ethanethiol reddened and the color progressively deepened.
- the red color is attributed to the formation of ethyl thionitrite' (which is deep red in color), but no analytical procedure for identification of thionitrites is available.
- the gaseous effluent from the flask was colorless, thus indicating that no unreacted nitrogen dioxide was present.
- the final liquid product consisted of two phases, a deep cherry red upper phase and a small amount of a clear, colorless lower phase (mostly water).
- a method of preparing dialkyl disulfides and alkyl thionitrites which comprises reacting nitrogen dioxide under anhydrous conditions with at least one alkyl mercaptan selected from the group consisting of primary and secondary mercaptans, at a mercaptan/nitrogen dioxide mol ratio in the range of about 1:10 to 2011 with the provision that a stoichiometric excess of said mercaptan is used when the reaction is carried out in liquid phase, and a reaction temperature of about -50 to +250 C.
- a method for the partial oxidation of mercaptans whihc comprises reacting nitrogen dioxide under anhydrous conditions with at least one alkyl mercaptan selected from the group consisting of primary and secondary mercaptans, at a temperature of about to +250 C., said reaction being carried out in liquid phase using a stoichiometric excess of said mercaptan, and recovering an organic product containing a major portion of a dialkyl disulfide.
- a method for the partial oxidation of mercaptans which comprises reacting nitrogen dixoxide under anhydrous conditions with at least one lower alkyl mercaptan selected from the group consisting of primary and secondary mercaptans, at a temperature of about 50 to +250 C., said reaction being carried out in gas phase at a total gaseous hourly space velocity of reactants in the range from about 50 to 5,000, and recovering an organic product containing a major portion of a dialkyl disulfide.
- a method of preparing dialkyl disulfides and alkyl thionitrites which comprise reacting nitrogen dioxide under anhydrous conditions with at least one lower alkyl mercaptan selected from the group consisting of primary and secondary mercaptans, said reaction being carried out in gas phase at a mercaptan/nitrogen dioxide mol ratio in the range of about 1:10 to 20:1 and at a temperature of about 50 to +250 C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
United States Patent 3,134,798 lPREPARATl-SN @F DEALKYL DTSULFHDES William L. Fierce and Roger L. Weichman, Crystal Lake,
and W alter 3i. Sandner, Carpentersville, 113., assignors to The Pure Gil Company, ialatine, 111., a corporation of Qhio No Drawing. Filed Aug. 2, 1961, Ser. No. 128,677
12 Claims. (Cl. 26t)-4S3) This invention relates to new and useful improvements in processes for the prep ration of dialkyl disulfides, and more particularly to the preparation of dialkyl disulfides by partial oxidation of primary and secondary mercaptans with nitrogen dioxide.
The chemistry of organic sulfur compounds has been investigated extensively in recent years as a result of the necessity for removing sulfur compounds from petroleum fractions. Mercaptans occur extensively in petroleum or are produced in the refining of petroleum fractions, and the utilization of these compounds is important if maximum return is to be obtained for petroleum products. Alkyl sulfides and disulfides are well-known organic sulfur compounds which have a variety of uses. These compounds are intermediate in the formation of other sulfur-containing organic compounds and in some cases are useful as solvents. Mercaptans have been oxidized to dialkyl disulfides by a variety of oxidizing agents, see Organic Chemistry of Bivalent Sulfur, Reid, Chemical Publishing Company, 1958. Mercaptans have been oxidized by air or oxygen in the presence of aqueous alkali. Mercaptans have also been oxidized by ozone, permanganates, perborates, fuming nitric acid, chlorine, iodine, etc. The various techniques of oxidation of mercaptans with the oxidation agents reported in the prior art give rise to a variety of products. In some cases monosulfides are formed, while in other cases disulfides or polysulfides are formed. In many cases the sulfides which are formed in the oxidation process are further oxidized to sulfones, sulfoxides, and sulfonic acids.
It is therefore one object of this invention to provide a new and improved process for the preparation of dialkyl disulfides and alkyl thionitrites in good yield and high selectivity.
A feature of this invention is the provision of an improved process for the preparation of dialkyl disulfides and alkyl thionitrites by reaction of nitrogen dioxide with a primary or secondary aliphatic mercaptan. Another feature of this invention is the provision of an improved process for the preparation of diallryl disulfides and alkyl thionitrites in which a primary or secondary C -C alkyl mercaptan is reacted with nitrogen dioxide at a temperature of about 50 to +250 C. under essentially anhydrous conditions.
Other objects and features of this invention will be come apparent from time to time throughout the specification and claims as hereinafter related.
This invention is based upon our discovery that dialkyl disulfides can be produced in excellent yields, together with small amounts of alkyl thionitrites, by the uncatalyzed reaction of primary or secondary alkyl mercaptans with nitrogen dioxide under essentially anhydrous conditions. The reaction is exothermic and takes place readily at room temperature although it may be carried out at ambient temperatures ranging from 50 to +250 C. In carrying out this process, a primary or secondary alkyl mercaptan (preferably a C C primary or secondary allcyl mercaptan) is contacted with nitrogen dioxide in a reactor. The reaction can be carried out in any convenient reaction system, and the reactor may be of any material of construction which is inert toward the reactants and products of reaction under reaction conditions. The reactor may be made of glass,
quartz, stainless steel, etc. When the mercaptan is mixed with nitrogen dioxide, an instantaneous exothermic reaction takes place which completely consumes the nitrogen dioxide (unless an excess of nitrogen dioxide is used). When a lower mercaptan (e.g., CH SH, C H SH, C H SH) is reacted, the reaction is preferably carried out in the gas phase. When a higher boiling mercaptan is reacted, the nitrogen dioxide is bubbled through (or otherwise contacted with) the liquid mercaptan. The raio of reactants in the gas-phase reaction is not critical and the mercaptan and nitrogen dioxide may be fed in widely varying mol ratios ranging from 1:10 to 20:1. When the reaction is carried out in liquid phase, it is preferred to avoid the use of a stoichiometric excess of nitrogen dioxide as the results in the formation of sulfoxides or sulfones rather than the desired disulfides. The rate of feed of reactants is not critical and the total gaseous hourly space velocity of reactants in the gasphase reaction may vary widely from as little as to as high as 5000 or more. Equivalent feed rates can be used in the liquid-phase reaction. The reaction products are withdrawn from the reaction zone, and settle into two phases. The lower phase consists essentially of water and some dissolved products. The upper phase, which is bright red, consists essentially of a dialkyl disulfide (derived from the mercaptan) containing in solution a small amount of an allcyl thionitrite. When the upper phase is separated, dried, and heated, the thionitrite is decomposed and a substantially pure dialkyl disulfide is obtained as the product. This process is limited to the reaction of nitrogen dioxide with primary and secondary alkyl mercaptans under essentially anhydrous conditions (i.e., free of water other than the byproduct water of reaction). Mercaptans which may be used in this reaction include methanethiol, ethanethiol, propanethiol (both primary and secondary isomers), pentanethiol, hexanethiol, octanethiol, decanethiol, dodecanethiol, hexadecanethiol, etc.
The following non-limiting examples are illustrative of the scope of this invention.
EXAMPLE I A 21-mm. O.D. glass reactor-tube, having a volume of 92 cc., was mounted vertically and connected so that two separate gas streams could be charged at the top. Helium at cc./min. was bubbled through ethanethiol at room temperature and charged to the reactor tube at an ethanethiol flow rate of 46 cc./min. Nitrogen dioxide gas was also charged at the top of the reactor tube at a rate of 39 cc./min. At the point in the reactor tube where the two gas streams met, there was an exothermic reaction with the formation of a liquid product.
The gaseous and liquid products of the reaction were withdrawn from the bottom of the reactor over a coldfinger condenser and into a large glass receiver. From this point, gaseous products were directed through a condenser and then a gas-sampling tube. The final gaseous product was essentially colorless, thus indicating that most of the nitrogen dioxide had been consumed in the reaction. After a run of 45 minutes duration, there was obtained 6.6 ml. of a liquid product which had separated into two phases. The lower phase (0.7 ml.) was almost colorless while the upper phase (5.9 ml.) was cherry-red.
The lower liquid phase was separated and analyzed by infrared spectroscopy. This phase was found to consist essentially of water. The upper phase was analyzed by infrared spectroscopy and found to consist of about diethyl disulfide, together with a small amount of diethyl sulfide. The intense red color was an indication of the formation of ethyl thionitrite (there is no accurate method of analysis for thionitrites). Mass spectrometric analyses of the charge and product gas samples showed that nitric oxide was a major gaseous product while a minor amount of sulfur dioxide was formed.
In this run, ethanethiol and nitrogen dioxide were fed in a mol ratio of 1.18 mols of the former to 1 mol of the latter. In the reaction, 91.2% of the ethanethiol was consumed and diethyl disulfide Was formed in a yield of 73.4% (based on ethanethiol charged) and a selectivity of 80.5% (based on ethanethiol consumed in the reaction). In this reaction there was also produced a small amount of dimethyl disulfide which resulted from a small amount (6.5%) of methanethiol in the feed.
EXAMPLE II The apparatus described in Example I is used for carrying out the reaction of methanethiol with nitrogen dioxide. Helium diluent at 50 cc./min. and methane-thiol gas at 110 cc./min. are charged to the top of the reactor tube. Nitrogen dioxide gas at 50 cc./min. is also charged to the top of the reactor tube. At the point in the tube where the gas streams mix, there is an exothermic reaction with the formation of a liquid product. The liquid product is separated as in Example I and an aqueous phase is separated and discarded. The non-aqueous phase consists of a major amount of dimethyl disulfide and a minor amount of methyl thionitrite, together with small amounts of dimethyl sulfide. In this reaction, dimethyl disulfide can be produced in yields inexcess of 70% and selectivities approaching 100%.
EXAMPLE III An apparatus similar to that used in Example I is used for the reaction of various mercaptans with nitrogen di oxide under the conditions set forth in Table I and with the results indicated therein. The only change in procedure is that the mercaptans are charged to the reactor tube as liquids.
disulfide and unreacted ethanethiol were the major components. In this experiment about 54% of the mercaptan was consumed. Diethyl disulfide was obtained in a yield of about 30% based on the nitrogen dioxide charged to the reaction.
EXAMPLE V A gas flask, equipped with a stirrer and bubbler tube, was charged with 150 g. n-dodecanethiol (0.741 mol) and 200 ml. carbon tetrachloride. Gaseous nitrogen dioxide cc./min.) and nitrogen (20 cc./min.) were bubbled into the stirred liquid mixture until 6.7 g. (0.146 mol) nitrogen dioxide were charged. The temperature of the reaction mixture was maintained at 24 C. during the reaction. In this experiment di-dodecyl disulfide was obtained with the yield of 84.2% based on the nitrogen dioxide (limiting reactant) charged.
When the same reaction was carried out using water as the diluent for the reaction, the yield of the product disulfide was less than half obtained using a non-aqueous solvent.
From the foregoing examples and other experimental work, we have found that good yields of dialkyl disulfides and alkyl thionitrites can be obtained by the reaction of nitrogen dioxide with one or more primary or secondary alkanethiols at ambient temperatures. Where low-molecular-weight mercaptans are used as the reactant, the reaction is preferably carried out in gas phase,
' although a liquid-phase reaction in an inert solvent (such as carbon tetrachloride, hydrocarbons, etc.) can be used. The reaction is carried out at temperatures in the range of about to +250 C, at a mercaptan/nitrogen dioxide mol ratio in the range of about 1:10 to 20:1. The reaction is preferably carried out at temperatures of about 0-'30 C. In the gas-phase reaction, the reaction can be carried out using a wide range of reactant ratios. In the liquid-phase reaction an excess of nitrogen diox- T able I Mercaptan 053551; Products N O 2 0 Ratio GHQCHCHQ 2.5 CH3 CH3 CH3 SI-I (1HSSCH+('3HSNO 0 Ha C H: JHa
CHaCI-IzCH2CH2SH. 2. 5 n-C4H9-S-S11C H +I1C H9SNO CHaCHOHzCHzCHm..- 2.5 CH3 CH3 CH3 S H 3HSS(JH+ HSNO 33E111 Cali-I1 CHsHy n C H SI-I 2. 5 220 I1C5H7S-SI1CBII17+IICBH17SNO EXAMPLE IV A glass flask was charged with 32.7 g, liquid ethanethiol and a mixture of helium and nitrogen dioxide was bubbled therethrough at 30 cc./min. each for 110 minutes. The total amount of nitrogen dioxide charged provided a mercaptan/nitrogen dioxide mol ratio of 3.1:1. On contact with the nitrogen dioxide, the ethanethiol reddened and the color progressively deepened. The red color is attributed to the formation of ethyl thionitrite' (which is deep red in color), but no analytical procedure for identification of thionitrites is available. The gaseous effluent from the flask was colorless, thus indicating that no unreacted nitrogen dioxide was present. The final liquid product consisted of two phases, a deep cherry red upper phase and a small amount of a clear, colorless lower phase (mostly water). Analysis of the product gas by mass spectrometer showed that it contained helium, nitric oxide, ethanethiol, and water. Distillation and an infrared analysis of the red liquid showed that diethyl ide should be avoided since it tends to reduce the yield of disulfides by forming solid reaction products. In the liquid-phase reaction, the use of an inert solvent is preferred and the reaction should be carried out under substantially anhydrous conditions (i.e., in the absence of water other than the by-product water of reaction). The reaction is limited to primary and secondary mercaptans since the reactions of tertiary mercaptans with nitrogen dioxide usually produces alkyl thionitrates.
While we have described our invention fully and completely with special emphasis on several preferred embodiments thereof, We wish it to be understood that within the scope of the appended claims this invention may be practiced otherwise than as specifically described herein.
The embodiments of the invention in which an exclusive property or privilege is claimed are as follows:
1. A method of preparing dialkyl disulfides and alkyl thionitrites which comprises reacting nitrogen dioxide under anhydrous conditions with at least one alkyl mercaptan selected from the group consisting of primary and secondary mercaptans, at a mercaptan/nitrogen dioxide mol ratio in the range of about 1:10 to 2011 with the provision that a stoichiometric excess of said mercaptan is used when the reaction is carried out in liquid phase, and a reaction temperature of about -50 to +250 C.
2. A method in accordance with claim 1 in which the mercaptan reactant 1's methanethiol and the product is a mixture of dimethyl disulfide and methyl thionitrite.
3. A method in accordance with claim 1 in which the mercaptan reactant is ethanethiol and the product is a mixture of diethyl disulfide and ethyl thionitrite.
4. A method in accordance with claim 1 in which methanethiol and nitrogen dioxide are mixed at room temperature to effect a spontaneous exothermic reaction and a liquid product is obtained consisting essentially of a mixture of dimethyl disulfide and methyl thionitrite.
5. A method in accordance with claim 1 in which ethanethiol and nitrogen dioxide are mixed at room temperature to efiect a spontaneous exothermic reaction and a liquid product is obtained consisting essentially of a mixture of diethyl disulfide and ethyl thionitrite.
6. A method in accordance with claim 1 in which the reaction is carried out in an inert non-aqueous diluent.
7. A method in accordance with claim 6 in which nitrogen dioxide is bubbled into a mixture of n-dodecanethiol and carbon tetrachloride to produce di-n-dodecyl disulfide.
8. A method in accordance with claim 1 in which the reaction is carried out at a temperature of about 30 C.
9. A method for the partial oxidation of mercaptans whihc comprises reacting nitrogen dioxide under anhydrous conditions with at least one alkyl mercaptan selected from the group consisting of primary and secondary mercaptans, at a temperature of about to +250 C., said reaction being carried out in liquid phase using a stoichiometric excess of said mercaptan, and recovering an organic product containing a major portion of a dialkyl disulfide.
10. A method for the partial oxidation of mercaptans which comprises reacting nitrogen dixoxide under anhydrous conditions with at least one lower alkyl mercaptan selected from the group consisting of primary and secondary mercaptans, at a temperature of about 50 to +250 C., said reaction being carried out in gas phase at a total gaseous hourly space velocity of reactants in the range from about 50 to 5,000, and recovering an organic product containing a major portion of a dialkyl disulfide.
11. A method of preparing dialkyl disulfides and alkyl thionitrites which comprise reacting nitrogen dioxide under anhydrous conditions with at least one lower alkyl mercaptan selected from the group consisting of primary and secondary mercaptans, said reaction being carried out in gas phase at a mercaptan/nitrogen dioxide mol ratio in the range of about 1:10 to 20:1 and at a temperature of about 50 to +250 C.
12. A method in accordance with claim 11 in which the total gaseous hourly space velocity of reactants is in the range from about 50 to 5000.
References Cited in the file of this patent UNITED STATES PATENTS 1,908,935 Tschunkur et a1 May 16, 1933 2,307,624 George Jan. 5, 1943 2,328,709 Crandall et al Sept. 7, 1943 UNITED STATES PATENTEOFFICE CERTIFICATE OF CORRECTION Patent No, $134,798
William L. Fierce et a1,
s in the above numbered pattters Patentshould read as May 26 196 It is hereby certified that error appear d that the said Le ent reqliring correction an corrected below.
Column 2 line 10, for "raio" read ratio line 15 for "the first occurrence, read this column 5 line 33, for "whihc" read which column 6 line 9 for "dixoxide" read dioxide Signed and sealed this 27th day of October 1964,
(SEAL) Abtest:
EDWARD J. BRENNER ERNEST Wm SWIDER I Aitesting Ufficei' Commissioner of Patents UNITED STATES PATENTCFFICE CERTIFICATE OF CORRECTION Patent No. $134,798
William L. Fierce et a1 ears in the above numbered pat- I It is hereby certified that error app ent requiring correction and that the said Letters Patent should read as corrected below May 26 1964 line 10, for "raio" read ratio line l5 read this column 5 line column o line 9 for Column 2 for "the", first occurrence,
33. for "'whihc" read which "dixoxide" read dioxide sealed this 27th day of October 19640 Signed and (SEAL) Attest:
ERNEST W. SWIDER i EDWARD J. BRENNER Attesting Officer 7 Commissioner of Patents
Claims (1)
1. A METHOD OF PREPARING DIALKYL DISULFIDES AND ALKYL THIONITRITES WHICH COMPRISES REACTING NITROGEN DIOXIDE UNDER ANHYDROUS CONDITIONS WITH AT LEAST ONE ALKYL MERCAPTAN SELECTED FROM THE GROUP CONSISTING OF PRIMARY AND SECONDARY MERCAPTANS, AT A MERCAPTAN/NITROGEN DIOXIDE MOL RATIO IN THE RANGE OF ABOUT 1:10 TO 20:1 WITH THE PROVISION THAT A STOICHIOMETRIC EXCESS OF SAID MERCAPTAN IS USED WHEN THE REACTION IS CARRIED OUT IN LIQUID PHASE, AND A REACTION TEMPERATURE OF ABOUT -50* TO +250*C.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US128677A US3134798A (en) | 1961-08-02 | 1961-08-02 | Preparation of dialkyl disulfides |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US128677A US3134798A (en) | 1961-08-02 | 1961-08-02 | Preparation of dialkyl disulfides |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3134798A true US3134798A (en) | 1964-05-26 |
Family
ID=22436450
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US128677A Expired - Lifetime US3134798A (en) | 1961-08-02 | 1961-08-02 | Preparation of dialkyl disulfides |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3134798A (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1908935A (en) * | 1930-05-09 | 1933-05-16 | Ig Farbenindustrie Ag | Process for preparing disulphides |
| US2307624A (en) * | 1940-06-04 | 1943-01-05 | Socony Vacuum Oil Co Inc | Method of making organic thionitrates |
| US2328709A (en) * | 1940-06-27 | 1943-09-07 | Socony Vacuum Oil Co Inc | Method for stabilizing organic thionitrites |
-
1961
- 1961-08-02 US US128677A patent/US3134798A/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1908935A (en) * | 1930-05-09 | 1933-05-16 | Ig Farbenindustrie Ag | Process for preparing disulphides |
| US2307624A (en) * | 1940-06-04 | 1943-01-05 | Socony Vacuum Oil Co Inc | Method of making organic thionitrates |
| US2328709A (en) * | 1940-06-27 | 1943-09-07 | Socony Vacuum Oil Co Inc | Method for stabilizing organic thionitrites |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU765481B2 (en) | Method of producing alkane sulfonic acid | |
| RU2166498C2 (en) | Method of preparing sulfur pentafluorides | |
| Wallace et al. | The base-catalysed oxidation of aliphatic and aromatic thiols and disulphides to sulphonic acids | |
| US4483826A (en) | Combination reaction vessel and aspirator-mixer | |
| US6686506B1 (en) | Process for the preparation of organic disulfides | |
| US4277623A (en) | Conversion of alkane and/or cycloalkane thiols to disulfide with catalyst system comprised of cobalt molybdate and an alkali- or alkaline earth metal hydroxide | |
| US2051806A (en) | Production of mercaptans | |
| US3134798A (en) | Preparation of dialkyl disulfides | |
| US2697722A (en) | Manufacture of sulfonic acids | |
| US4005138A (en) | Process for the manufacture of sulphonic acid fluorides | |
| US3340324A (en) | Process of converting mercaptans to disulfides | |
| US2930815A (en) | Preparation of thioethers | |
| US2884453A (en) | Reaction of metal fluorides with thiophosgene and perchloromethyl mercaptan | |
| US2489316A (en) | Manufacture of sulfonic anhydrides | |
| Lezina et al. | New synthesis of alkane-and arylsulfonyl chlorides by oxidation of thiols and disulfides with chlorine dioxide. | |
| EP0062736B1 (en) | Process for preparing 4-4'-dichlorodiphenyl sulphone | |
| Bittell et al. | Synthesis of thiols and polysulfides from alkyl halides, hydrogen sulfide, ammonia, and sulfur | |
| US4052445A (en) | Process for the production of alkyl sulfonic acids | |
| US3282960A (en) | Propylene monothiocarbonate and processes for making and using the same | |
| JPS59122456A (en) | Preparation of dicyclohexyl disulfide | |
| US2598014A (en) | Conversion of hydrocarbon disulfides to sulfonyl chlorides | |
| US3329708A (en) | Preparation of sulfinates and sulfonates by oxidation of mercaptans with oxygen in non-aqueous alkaline medium | |
| US3153078A (en) | Process for preparing thiolsulfonic acid esters | |
| US4784809A (en) | Process for preparing perfluoroalkyl-alkyl sulfonic acid compounds | |
| US2081766A (en) | Thioethers and their production |