US3130365A - Electrical ratiometer - Google Patents

Electrical ratiometer Download PDF

Info

Publication number
US3130365A
US3130365A US154739A US15473961A US3130365A US 3130365 A US3130365 A US 3130365A US 154739 A US154739 A US 154739A US 15473961 A US15473961 A US 15473961A US 3130365 A US3130365 A US 3130365A
Authority
US
United States
Prior art keywords
coil
airgap
coils
section area
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US154739A
Inventor
Clarke C Minter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US154739A priority Critical patent/US3130365A/en
Application granted granted Critical
Publication of US3130365A publication Critical patent/US3130365A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • G01R27/10Measuring resistance by measuring both voltage and current using two-coil or crossed-coil instruments forming quotient
    • G01R27/12Measuring resistance by measuring both voltage and current using two-coil or crossed-coil instruments forming quotient using hand generators, e.g. meggers

Definitions

  • FIG. 2 ELECTRICAL RATIOMETER Filed Nov. 24, 1961 ANGULAR DSEGR 4O 0 6O FIG. 1 FIG. 2
  • This invention relates to electrical measuring instruments and describes a novel ratiometer so constructed that both moving coils swing in a single semicircular gap between the pole pieces of a magnet.
  • One disadvantage of the present type of moving coil ratiometer is that since each coil swings in its own separate gap the torque developed is necessarily only half that developed in a conventional moving coil type in which a single coil swings in two gaps.
  • One object of the present invention therefore, is to increase the torque developed in the two coils by causing both coils to swing in one semicircular gap in wmch the flux densities are twice as great as those in a magnetic system containing two gaps in series.
  • Another disadvantage of the conventional twogap ratiometer is that no matter how the two gaps Vary in length from top to bottom, whether alike or unlike, the ratio of the total fluxes (p for the two gaps will always equal 1.000 in a horizontal plane, or when the movement has been deflected 45 from the end of the scale, with the pointer vertical.
  • Another object of the present invention is to make unity at the end of the scale when the movement is in the 90 position.
  • the ratiometer has two independent magnetic systems side by side with the two coils mounted on the ends of a long shaft.
  • This type of construction is difiicult and expensive and it is a further object of this invention to obtain the advantages of a ratiometer employing two independent magnetic systems by means of a single magnetic system in which both coils swing in a single semicircular gap of uniform length between the pole pieces of a magnet.
  • the flux density is constant over the entire gap of about 200 of arc. Since the magnetomotive force 3,130,365 Patented Apr. 21, 1964 across the gap is uniform, a constant flux density is obtained by means of a gap of uniform length.
  • the ratio of the currents in the two coils is equal to the ratio of the areas of the pole faces at those points in the gap occupied by the coils. Or better, the ratio of the two currents in the two coils at any position of the movement is equal to the inverse ratio of the areas of the two coils actually in the gap in that position.
  • FIG. 1 is a schematic view of the front.
  • 1 is a powerful permanent magnet
  • 2 and 3 are the soft iron pole pieces.
  • 4 is an angular section of the semichcular gap of about 100 in which the flux density and the area of the pole faces are uniform
  • 5 is an angular section of about in which the flux density is the same as in gap 4 but the total flux at any point increases from the bottom to the top of the gap.
  • 6 is the coil which swings in the uniform portion 4 of the gap, called the deflecting coil
  • 7 are the torqueless leads to coil 6.
  • h is the control coil and 9 are its torqueless current leads.
  • Both 6 and 8 are suitably attached at right angles to one another to the pivot post 10. Attached to ill are also the pointer 11 and the balancing weights 12. 13 is a scale calibrated from 090 or in any desired manner.
  • FIG. 2 is a side view of the magnetic system and moving coils shown in FIG. 1.
  • 1 is the permanent magnet
  • 2 the left-hand pole piece
  • 5 the variable portion of the gap in which swings control coil 8.
  • 6 is the deflecting coil. The torqueless leads are not shown.
  • FIG. 3 is a side view of the magnetic system when the control coil moves through a magnetic field in which the total flux increases exponentially or according to some power greater than unity.
  • FIG. 4 is a side view of the magnetic system when the control coil moves through a magnetic field which increases logarithmically or according to some power less than 1.00.
  • the action of the ratiometer can be understood by noting that pole piece 2 is cut away at one side. This shows that the pole piece increases in width from bottom to top, thereby increasing the number of lines of flux through which coil 8 must pass at it rotates in a clockwise direction (FIG. 1), so that if the current in 8 is constant the torque developed will increase linearly as the coil rotates.
  • the torque developed in coil 8 is opposed by that developed by coil 6 which moves in a uniform field.
  • coil 6 deflecting coil
  • coil 8 control coil
  • the two are equal and It can be seen from FIG. 2 that the number of lines of flux through which coil 8 rotates increases linearly in a clockwise direction. This is due to the increasing width of the pole pieces from the bottom up.
  • the coil acts like a spring in a conventional type moving coil instrument.
  • An electrical ratiorneter comprising a substantially planar magnetic circuit consisting of a U-shaped permanent magnet having soft-iron polepieces thereon, said polepieces having spaced concave and convex polefaces to form a single arcuate-shaped approximately 200 degree airgap of constant length, approximately one half of said airgap having a constant cross-section area and the remaining approximately one half of the airgap having a nonuniform cross-section area due to reduction in depth of the polefaces, and a pivot-post mounted to rotate at right angles to the magnetic field in said airgap, said pivot-post carrying a deflecting coil and a control coil mounted at right angles to each other and each of said coils having an active side in the single airgap, whereby upon movement of the coils the active side of one coil travels in the constant cross-section area part of the airgap and the active side of the other coil travels in the nonuniform cross-section area part of the airgap.

Description

April 21, 1964 c. c. MINTER 3,130,365
ELECTRICAL RATIOMETER Filed Nov. 24, 1961 ANGULAR DSEGR 4O 0 6O FIG. 1 FIG. 2
INVENIOR mam United States Patent 3,130,365 ELECTRICAL RATIOM'EI'ER Clarke C. Minter, 1517 30th St. NW., Washington 7, D.C.
Filed Nov. 24, 1961, Ser. No. 154,739 3 Claims. (Cl. 324140) This invention relates to electrical measuring instruments and describes a novel ratiometer so constructed that both moving coils swing in a single semicircular gap between the pole pieces of a magnet.
Electrical ratiometers are well known and have been used extensively in the past. In the most common moving coil design the two coils attached to the same pivot post swing through two separate magnetic gaps in which the flux densities are made to increase uniformly from bottom to top by positioning the core so that its center is slightly above the exact geometrical center of the pole faces. As the movement rotates, one coil moves into a magnetic field of increasing strength (because the gap is decreasing in length), while the other coil moves into a field of decreasing strength (because the gap is increasing in length). The torques in the two coils oppose one another and at equilibrium are equal and opposite. At equilibrium we have Torque in coil #l=NI B (deflecting coil) Torque in coil #2=NI B (control coil) N number of turns I=current through coil B=tlux density The last equation states that at a position of equilibrium the ratio of the currents in the two coils is equal to the ratio of the flux densities at the equilibrium points in the two gaps,
While the conventional ratiometer has many uses in its present form, there are two characteristics which seriously limit its usefulness. One disadvantage of the present type of moving coil ratiometer is that since each coil swings in its own separate gap the torque developed is necessarily only half that developed in a conventional moving coil type in which a single coil swings in two gaps. One object of the present invention, therefore, is to increase the torque developed in the two coils by causing both coils to swing in one semicircular gap in wmch the flux densities are twice as great as those in a magnetic system containing two gaps in series.
Another disadvantage of the conventional twogap ratiometer is that no matter how the two gaps Vary in length from top to bottom, whether alike or unlike, the ratio of the total fluxes (p for the two gaps will always equal 1.000 in a horizontal plane, or when the movement has been deflected 45 from the end of the scale, with the pointer vertical. Another object of the present invention is to make unity at the end of the scale when the movement is in the 90 position.
The two advantages disclosed in the present invention can be obtained conventionally only if the ratiometer has two independent magnetic systems side by side with the two coils mounted on the ends of a long shaft. This type of construction is difiicult and expensive and it is a further object of this invention to obtain the advantages of a ratiometer employing two independent magnetic systems by means of a single magnetic system in which both coils swing in a single semicircular gap of uniform length between the pole pieces of a magnet. In the present invention, the flux density is constant over the entire gap of about 200 of arc. Since the magnetomotive force 3,130,365 Patented Apr. 21, 1964 across the gap is uniform, a constant flux density is obtained by means of a gap of uniform length. The total flux passing through each of the two coils at any position of the movement will then depend solely on the area of the pole faces adjacent to the coils. In the present invention, therefore, We have where S and S are area of pole faces at points 1 and 2 in the gap Torque in coil s ir-N1 8 (deflecting coil) Torque in coil #2=NI S (control coil) and at equilibrium I /I :S /S
or the ratio of the currents in the two coils is equal to the ratio of the areas of the pole faces at those points in the gap occupied by the coils. Or better, the ratio of the two currents in the two coils at any position of the movement is equal to the inverse ratio of the areas of the two coils actually in the gap in that position.
The invention is easily understood by referring to the attached figures.
FIG. 1 is a schematic view of the front. In the figure, 1 is a powerful permanent magnet, 2 and 3 are the soft iron pole pieces. 4 is an angular section of the semichcular gap of about 100 in which the flux density and the area of the pole faces are uniform, while 5 is an angular section of about in which the flux density is the same as in gap 4 but the total flux at any point increases from the bottom to the top of the gap. 6 is the coil which swings in the uniform portion 4 of the gap, called the deflecting coil, and 7 are the torqueless leads to coil 6. h is the control coil and 9 are its torqueless current leads. Both 6 and 8 are suitably attached at right angles to one another to the pivot post 10. Attached to ill are also the pointer 11 and the balancing weights 12. 13 is a scale calibrated from 090 or in any desired manner.
FIG. 2 is a side view of the magnetic system and moving coils shown in FIG. 1. 1 is the permanent magnet, 2 the left-hand pole piece, 5 the variable portion of the gap in which swings control coil 8. 6 is the deflecting coil. The torqueless leads are not shown.
FIG. 3 is a side view of the magnetic system when the control coil moves through a magnetic field in which the total flux increases exponentially or according to some power greater than unity.
FIG. 4 is a side view of the magnetic system when the control coil moves through a magnetic field which increases logarithmically or according to some power less than 1.00.
The action of the ratiometer can be understood by noting that pole piece 2 is cut away at one side. This shows that the pole piece increases in width from bottom to top, thereby increasing the number of lines of flux through which coil 8 must pass at it rotates in a clockwise direction (FIG. 1), so that if the current in 8 is constant the torque developed will increase linearly as the coil rotates.
On the other hand, the torque developed in coil 8 is opposed by that developed by coil 6 which moves in a uniform field. This means that the current in coil 6 has to increase in order to cause the movement to rotate in a clockwise direction. The following condition exists: coil 6 (deflecting coil) carries an increasing current through a constant flux, while coil 8 (control coil) carries a constant current through an increasing flux. At equilibrium the two are equal and It can be seen from FIG. 2 that the number of lines of flux through which coil 8 rotates increases linearly in a clockwise direction. This is due to the increasing width of the pole pieces from the bottom up. In this type of control the coil acts like a spring in a conventional type moving coil instrument.
While a linear control is in most cases desirable there are occasions in which the deflecting coil increases in a non-linear manner. If, for example, the current through deflecting coil 23 in FIG. 3 increases exponentially or according to some power greater than unity, the torque developed by coil 23 will increase according to e l or 1 where n 1.00
whereas it may be desirable to have a linear scale on the dial of the indicator. In that case, it will be necessary to shape the portion 26 of the pole pieces through which the control coil moves so that the flux increases exponentially or in any desired manner.
If the current through deflecting coil 33 in FIG. 4 increases logarithmically or according to some power less than unity, it will be necessary to shape the portion 36 of the pole pieces through which control coil 34 moves so that the flux increases logarithmically or according to some power necessary to permit the use of a linear scale on the dial of the indicator.
It is also possible to keep the width of the pole pieces uniform over that portion of the gap through which the control coil moves. The flux through this portion of the gap can be made to increase in a clockwise direction by decreasing the len th of the gap uniformly, thereby increasing the flux density from bottom to top of the gap. This design is not so advantageous as that shown in the figures.
While this invention has been illustrated above in limited embodiments, it is understood that modifications and variations may be made without departing from the spirit 35 and scope of the invention as defined by the appended claims.
What is claimed is:
1. An electrical ratiorneter comprising a substantially planar magnetic circuit consisting of a U-shaped permanent magnet having soft-iron polepieces thereon, said polepieces having spaced concave and convex polefaces to form a single arcuate-shaped approximately 200 degree airgap of constant length, approximately one half of said airgap having a constant cross-section area and the remaining approximately one half of the airgap having a nonuniform cross-section area due to reduction in depth of the polefaces, and a pivot-post mounted to rotate at right angles to the magnetic field in said airgap, said pivot-post carrying a deflecting coil and a control coil mounted at right angles to each other and each of said coils having an active side in the single airgap, whereby upon movement of the coils the active side of one coil travels in the constant cross-section area part of the airgap and the active side of the other coil travels in the nonuniform cross-section area part of the airgap.
2. An electrical ratiometer as in claim 1 wherein the nonuniform cross-section area of the remaining approximately one half of the airgap is due to a linear variation in depth of the polefaces.
3. An electrical ratiometer as in claim 1 wherein the nonuniform cross-section area of the remaining approximately one half of the airgap is due to an exponential or a logarithmic variation in depth of the polefaces.
References Cited in the file of this patent UNITED STATES PATENTS 1,171,907 Trent Feb. 15, 1916 1,782,588 Terman Nov. 25, 1930 FOREIGN PATENTS 165,150 Great Britain June 30, 1921

Claims (1)

1. AN ELECTRICAL RATIOMETER COMPRISING A SUBSTANTIALLY PLANAR MAGNETIC CIRCUIT CONSISTING OF A U-SHAPED PERMANENT MAGNET HAVING SOFT-IRON POLEPIECES THEREON, SAID POLEPIECES HAVING SPACED CONCAVE AND CONVEX POLEFACES TO FORM A SINGLE ARCUATE-SHAPED APPROXIMATELY 200 DEGREE AIRGAP OF CONSTANT LENGTH, APPROXIMATELY ONE HALF OF SAID AIRGAP HAVING A CONSTANT CROSS-SECTION AREA AND THE REMAINING APPROXIMATELY ONE HALF OF THE AIRGAP HAVING A NONUNIFORM CROSS-SECTION AREA DUE TO REDUCTION IN DEPTH OF THE POLEFACES, AND A PIVOT-POST MOUNTED TO ROTATE AT RIGHT ANGLES TO THE MAGNETIC FIELD IN SAID AIRGAP, SAID PIVOT-POST CARRYING A DEFLECTING COIL AND A CONTROL COIL MOUNTED AT RIGHT ANGLES TO EACH OTHER AND EACH OF SAID COILS HAVING AN ACTIVE SIDE IN THE SINGLE AIRGAP, WHEREBY UPON MOVEMENT OF THE COILS THE ACTIVE SIDE OF ONE COIL TRAVELS IN THE CONSTANT CROSS-SECTION AREA PART OF THE AIRGAP AND THE ACTIVE SIDE OF THE OTHER COIL TRAVELS IN THE NONUNIFORM CROSS-SECTION AREA PART OF THE AIRGAP.
US154739A 1961-11-24 1961-11-24 Electrical ratiometer Expired - Lifetime US3130365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US154739A US3130365A (en) 1961-11-24 1961-11-24 Electrical ratiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US154739A US3130365A (en) 1961-11-24 1961-11-24 Electrical ratiometer

Publications (1)

Publication Number Publication Date
US3130365A true US3130365A (en) 1964-04-21

Family

ID=22552572

Family Applications (1)

Application Number Title Priority Date Filing Date
US154739A Expired - Lifetime US3130365A (en) 1961-11-24 1961-11-24 Electrical ratiometer

Country Status (1)

Country Link
US (1) US3130365A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490835A (en) * 1966-09-20 1970-01-20 Photo Electronics Corp Automatic film exposure system for motion picture cameras
US3497806A (en) * 1964-11-02 1970-02-24 Sigma Instruments Inc Miniaturized high torque,single air gap meter mechanism
US3506364A (en) * 1966-03-31 1970-04-14 Duro Test Corp Color rendition index meter
US3528010A (en) * 1966-11-07 1970-09-08 Viktor Ivanovich Efimenko Measuring instrument having a movable iron member
US4139821A (en) * 1976-03-29 1979-02-13 Kizo Adachi Inner magnet type movable coil instrument with linear scale

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB165150A (en) *
US1171907A (en) * 1914-11-16 1916-02-15 Harold E Trent Electrical measuring instrument.
US1782588A (en) * 1930-11-25 Electrical measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB165150A (en) *
US1782588A (en) * 1930-11-25 Electrical measuring instrument
US1171907A (en) * 1914-11-16 1916-02-15 Harold E Trent Electrical measuring instrument.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497806A (en) * 1964-11-02 1970-02-24 Sigma Instruments Inc Miniaturized high torque,single air gap meter mechanism
US3506364A (en) * 1966-03-31 1970-04-14 Duro Test Corp Color rendition index meter
US3490835A (en) * 1966-09-20 1970-01-20 Photo Electronics Corp Automatic film exposure system for motion picture cameras
US3528010A (en) * 1966-11-07 1970-09-08 Viktor Ivanovich Efimenko Measuring instrument having a movable iron member
US4139821A (en) * 1976-03-29 1979-02-13 Kizo Adachi Inner magnet type movable coil instrument with linear scale

Similar Documents

Publication Publication Date Title
US2750461A (en) Apparatus for metering conductive materials
US2852243A (en) Magnetic accelerometer
US3130365A (en) Electrical ratiometer
US2002445A (en) Transversely magnetized vane instrument
US3154728A (en) High sensitivity magnetic relay
US2978639A (en) Moving magnet instrument
US2697204A (en) Calibratable electrical instrument
US2980857A (en) Dual magnet electrical instrument
US2718603A (en) Reference voltage generator
US1759933A (en) Contact-making device
US2345011A (en) Pull-off device for telemeter indicators
US1849831A (en) Apparatus for measuring irregularity of movement
US1757193A (en) hotopp
US3813566A (en) Electromagnetic motive device
US1033409A (en) Apparatus for measuring the ratio of two electric currents.
US1952160A (en) Measuring instrument
US2798200A (en) Long-scale ratio instrument
US3045152A (en) Electromagnetic device having a movable element
US2516740A (en) Moving coil electrical instrument
US1022517A (en) Electrical measuring instrument.
US3390332A (en) Suppressed scale electrical instrument with adjustable auxiliary spring means
US2889520A (en) Moving magnet meter movement
US2275868A (en) Current responsive device
US3510774A (en) Moving magnet instrument adapted for blind assembly
US2313352A (en) Electrical meascbing instrument