US3123543A - Method and apparatus for feeding articles - Google Patents

Method and apparatus for feeding articles Download PDF

Info

Publication number
US3123543A
US3123543A US3123543DA US3123543A US 3123543 A US3123543 A US 3123543A US 3123543D A US3123543D A US 3123543DA US 3123543 A US3123543 A US 3123543A
Authority
US
United States
Prior art keywords
tape
headers
solution
articles
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Publication date
Application granted granted Critical
Publication of US3123543A publication Critical patent/US3123543A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/02Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid
    • B65G49/04Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction
    • B65G49/0409Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction specially adapted for workpieces of definite length
    • B65G49/0436Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction specially adapted for workpieces of definite length arrangements for conveyance from bath to bath
    • B65G49/044Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction specially adapted for workpieces of definite length arrangements for conveyance from bath to bath along a continuous circuit
    • B65G49/045Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction specially adapted for workpieces of definite length arrangements for conveyance from bath to bath along a continuous circuit the circuit being fixed
    • B65G49/0454Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction specially adapted for workpieces of definite length arrangements for conveyance from bath to bath along a continuous circuit the circuit being fixed by means of containers -or workpieces- carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/02Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid
    • B65G49/04Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction
    • B65G49/0409Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction specially adapted for workpieces of definite length
    • B65G49/0436Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction specially adapted for workpieces of definite length arrangements for conveyance from bath to bath
    • B65G49/044Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction specially adapted for workpieces of definite length arrangements for conveyance from bath to bath along a continuous circuit
    • B65G49/045Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction specially adapted for workpieces of definite length arrangements for conveyance from bath to bath along a continuous circuit the circuit being fixed
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof

Definitions

  • This invention relates to work feeding methods and apparatus and especially to the attachment of piece parts to a flexible strip to facilitate their processing.
  • the header used in the manufacture of certain transistors comprises a small metallic cup-shaped member wherein the outer surface of the closed end serves as a platform on which the semiconductor Wafer is mounted.
  • the emitter, base, and collector leads sealed in the interior of the header by glass, extend through openings in the platform.
  • the open end of the header includes a flange.
  • a solution of the problem is attained by the use of a flexible steel tape to which the headers are attached to facilitate their transport through various plating baths and other work locations at different angular positions, the tape provid ing a direct electrical path to the headers as needed, at least in certain of the plating tanks.
  • An object of the invention is a method and apparatus for feeding piece parts attached to a flexible strip to a series of work locations.
  • a more specific object of the invention is a method and apparatus for plating objects by attaching piece parts to a flexible strip and feeding the strip and the piece parts attached thereto at different angular positions as required throughout the plating processes.
  • Another object of the invention is a method and apparatus for gold plating transistor headers wherein the headers are attached to a flexible steel tape by means of the header leads, the tape then being fed to a series of work positions.
  • the tape itself provides an electrical path to the headers where electrolytic processing is required.
  • a supply of articles attached to a flexible metal strip is fed to the input of a processing apparatus and the strip and the articles are oriented to different positions as required for feeding and processing at work locations throughout the apparatus, means being provided to feed the strip completely through the apparatus.
  • the strip may serve as an electrical path to the articles where electrical processing is required.
  • a feature of the arrangement is the provision of a series of rollers for guiding a flexible tape with parts attached to different angular positions.
  • FIG. 1 is a schematic of apparatus used in attaching transistor headers to a flexible steel tape
  • FIG. 8 represents a front elevational view of a set of rollers for twisting the tape to an upright or vertical position
  • FIG. 9 is a side view of the rollers partly in section
  • FIG. 10 is a graphical representation of the levels of the solution for the gold plating steps.
  • the apparatus shown in FIG. 1 for attaching the transistor headers 10 to the flexible steel tape 11, is the subject matter of a co-pending application, R. P. Loeper, Serial No. 154,733, filed November 24, 1961.
  • the steel tape 11 is fed from a supply reel, not shown, to a perforating station 12 to perforate feed holes 13 in the tape, and then to a welding station 14 Where the leads 16 of the header are attached to the steel tape by means of a pair of electrodes 17-18.
  • Successive headers have their leads bent in opposite directions by means of bending apparatus 19 in order to assure adequate spacing between adjacent headers during the plating operation.
  • the tape is then wound on a supply reel 21 driven by a suitable motor (not shown) and simultaneously a plastic tape 20 is unwound from the supply reel 22 onto the supply reel 21 to provide spacing between the convoluted layers of transistor headers.
  • the supply reel 21 is placed in a suitable mount so that the steel tape with the transistor headers attached thereto may be unwound and fed to the plating apparatus.
  • the plastic tape 20 is indicated in FIG. 2 is rewound on a reel 22 driven by a suitable motor (not shown).
  • the steel tape with headers attached could be fed directly from the welding and perforating apparatus to the plating apparatus.
  • rollers F are flanged, stainless steel rollers having a tapered surface of slightly increasing diameter 23 toward the flanged portion 24 to retain the steel tape in position.
  • Rollers P are plastic rollers slightly larger in Width than the width of the tape.
  • Rollers C are plain-surfaced, stainless steel rollers. In commencing a plating operation, a plain steel tape 11 with no headers attached may be threaded about the rollers through the various work locations to the main drive 26 shown in FIG. 6 and anchored to a takeup reel 27 driven through a clutch-type drive by a motor (not shown).
  • the leading end of tape 11 with the headers 10 attached thereto is fed over a roller F to a welding station 28 and attached, by means of electrodes 25 and 30, to the trailing end of the plain steel tape llwhich was threaded through the machine.
  • a clamp 29 is provided to temporarily hold the trailing end of the plain tape 11 while it is being joined to the tape 11 with the transistors 10 attached.
  • a suitably mounted drop roller 31 engages a slack portion of the tape extending between a roller F and one of a pair of tooth rollers T of stainless steel. Suflicient slack is provided in the tape to allow eight minutes of feed before the drop roller reaches its uppermost position. This affords ample time for the welding operation. It is to be understood, of course,
  • the actual processing of the transistor headers begins in the alkaline clean tank 34 where any oil or grease on the transistor header is removed by use of a polarized alkaline cleaning solution.
  • the electrical circuit for this cleaning operation is provided from positive voltage over lead 33 in parallel to the rollers F immediately adjacent opposite ends of the tank 34 and to the steel tape and headers, and from negative source over lead 36 to a cathode 35 in the cleaning solution.
  • one of the header leads, such as the collector lead is bonded to the header platform. While this is done primarily for transistor circuit purposes, it assures electrical continuity during the plating process.
  • any alkaline solution remaining on the tape and headers is removed at the water spray tank 37 following which the headers move on to an acid cleaning solution in tank 38 containing an equal mixture of hydrochloric acid and water by volume, the tank being held at a suitable temperature. In each tank, the liquid will be held at temperatures conventionally used in plating processes. Electrical current for the acid cleaning procedure is provided from an A.C. source over leads 39 and 46 in the same manner as described in connection with the alkaline cleaning tank 34.
  • the headers next move through a water rinse tank 47 and past a water spray tank 48, to remove the acid, to a cyanide dip tank 49 to prepare the headers to receive the copper plate undercoating in the tank 51. It should be observed that up to this point the tape, along with the headers, has been fed in a horizontal position. The steel strip now is negative with respect to the anode 50 and becomes in fact a cathode; whereas in the alkaline tank, the steel strip functions as the anode. In this connection, it will be understood that the potentials in each tank are relative to each other and that a constant D.C. reference potential is actually applied to the steel strip. After leaving the copper plate tank 51, the headers move on to the water spray 52 to remove any copper salt which may remain from the copper plating operation. The headers are then fed to the gold flash plating tank 53 and electrical current is provided in the same manner as in the copper plate tank.
  • rollers V shown in detail in FIGS. 8 and 9.
  • the rollers 61 and 62 are respectively the front and rear rollers looking into the drawing in FIG. 4. It is seen that the roller 62 includes toothed portions 63, meshing with complementary openings 64 in the front roller 61 by penetration through the openings 13 of the steel tape 11 transporting the headers 16. Since the rollers 61, 62 are each mounted on a vertical axis, they serve to twist the tape and the headers to a vertical position so that the greater part of the header leads 16 and the header are plated with gold, as clearly indicated in the graphical representation of FIG. 10. By mounting the rollers F overlying the gold strike tank 53 (FIG- URE 4) and the rollers V in a precise location and controlling the depth of the gold solution, the upper limit of the gold plate on the leads is rigidly controlled.
  • the steel strip passes first under an F roller, then over a succeeding F roller, to an F roller overlying the gold plate tank 66. Since each of these F rollers are mounted upon a horizontal axis, the steel tape and the attached headers will now lie in a horizontal direction.
  • a plurality of rollers V again orient the steel strip in the vertical position so that the first gold plate applied is to the level indicated in FIG. 10.
  • auxiliary driving motors 67, driving plastic rollers 68 provide an auxiliary friction feeding device for the main drive 26 shown in FIG. 6.
  • the steel strip after leaving the gold plate tank 66, enters a gold reclaim tank 69, then into a final gold plate tank 71 (FIGURE 5).
  • the headers are held in such position by a plurality of rollers V, that only the header proper and only a very small portion of the leads 16 are plated with gold for economy purposes, as is clearly shown in FIG. 10.
  • the headers pass through a pair of gold reclaim tanks 72 and 73, through a water spray 74, deionized water spray 76, steam blast 77 for blowing off excess Water, and a hot air dry tank '78 for drying the headers, to the main drive 26.
  • the main drive 26 includes a motor 81 driving a belt 82 which, in turn, drives a pair of rubber-coated magnetic rollers 83 which grip and pull the tape completely through the electroplating apparatus except for the assistance offered by the auxiliary motors 67.
  • the steel tape with the gold-plated headers attached may now be Wound on the loading reel 27, and between each layer is concomitantly Wound the plastic tape 91 from supply reel 92 in the same manner as the tape described in FIG. 1. If desired, the headers could be cut from the steel tape instead of being wound upon the supply reel 27.
  • Each tank is suitably insulated from the other tanks and from the frame of the machine.
  • Stripping of gold from the defective headers could obviously be accomplished in the machine by reversing the potential in a gold plating tank.
  • drive means including rollers of magnetic material for pulling the tape along an extended path to the succession of solutions
  • said last-mentioned means including a first electrode submerged in said first solution, and voltage means for biasing said first electrode at a potential which is negative relative to the reference potential applied to said tape,
  • said lastmentioned means including a second electrode submerged in said second solution, and voltage means for applying an alternating potential across said tape and said second electrode,
  • said last-mentioned means including an nth electrode submerged in said nth solution, and voltage means for biasing said nth electrode at a potential which is positive relative to the reference potential applied to said tape, and
  • said last-mentioned means including at least one roller mounted along a first axis to orient said tape in one plane and further including at least two other rollers mounted along a second axis at a substantial angle to the first axis to orient said tape in a different plane.
  • said articles comprise semiconductor headers welded to said tape, wherein said tape is perforated, and wherein at least one pair of said other rollers mounted along said second axis includes a roller with teeth for engaging the perforations in said tape and a mating roller having complementary openings into which the teeth project.
  • said headers as anodes and said first electrode as a cathode to improve the cleaning action of said alkaline solution, said polarization being established by biasing said first electrode at a potential which is negative in relation to the reference potential applied to said tape,
  • said headers as a cathode and said third electrode as an anode to electrolytically deposit the desired amount of copper on said semiconductor headers, said polarization being established by biasing said third electrode at a potential which is positive in relation to the reference potential applied to said tape,
  • said headers as a cathode and said fourth electrode as an anode to electrolytically deposit the desired amount of gold on only said headers, said polarization being established by biasing said fourth electrode at a potential which is positive in relation to the reference potential applied to said tape,
  • drive means including rollers of magnetic material for pulling the tape along an extended path
  • auxiliary drive means for enabling said tape to follow a non-linear, horizontal path necessitated by abrupt changes in direction, said last-mentioned means including at each point of abrupt change a roller which makes variable, frictional contact with said carrier tape,
  • roller means for immersing said tape and transistor headers attached thereto into a first alkaline cleaning bath of said succession of baths
  • said last-mentioned means including a first electrode positioned within said first bath, and further including means for polarizing said first electrode as a cathode and said tape as an anode through the biasing of said first electrode at a potential which is negative relative to the reference potential applied to said tape,
  • rollerhmeans for removing said tape from said first bat roller means for immersing said tape and said transistor headers into a second acid cleaning bath of said succession of baths
  • said last-mentioned means including a second electrode positioned within said second bath, and further including means for applying an alternating potential across said tape and said second electrode,
  • roller means for removing said tape from said second bath
  • said last-mentioned means including at least one roller mounted along a first axis to orient said tape in one plane and further including at least two other rollers mounted along a second axis at a substantial angle to the first axis to orient said tape in a different plane, and wherein at least one pair of said other rollers mounted along said second axis includes a roller with teeth for engaging the perforations in said tape, and a mating roller having complementary openings into which the teeth project, and
  • said last-mentioned means including at least a third electrode positioned Within said third bath, and further including means for polarizing said third electrode as an anode and said tape as a cathode through the biasing of said third electrode at a potential Which is positive relative to the reference potential applied to said tape.

Description

March :3, 1964 J. L. CHAPMAN, JR., ETAL METHOD AND APPARATUS FOR FEEDING ARTICLES FiledNov. 24, 1961 6 Sheets-Sheet 1 5 F2 LUE'PE'l-P y- March 3, 1964 J. CHAPMAN, JR., ETAL 3,123,543
METHOD AND APPARATUS FOR FEEDING ARTICLES Filed Nov. 24. 1961 6 Sheets-Sheet 2 March 3, 1964 J. CHAPMAN, JR., ETAL 3,123,543
METHOD AND APPARATUS FOR FEEDING ARTICLES Filed Nov. 24, 1961 6 Sheets-Sheet 3 ZWEN EA;
- I i: F77" U A E March 3, 1964 J. CHAPMAN, JR., ETAL 3,123,543
METHOD AND APPARATUS FOR FEEDING ARTICLES Filed NOV. 24, 1961 6 Sheets-Sheet 4 J. L. CHAPMAN, JR., ETAL 3,123,543
METHOD AND APPARATUS FOR FEEDgNG ARTICLES Max-c113, 1964 6 Sheets-Sheet 5 Filed Nov. 24, 1961 March 3, 1964 J. L. CHAPMAN, JR., ETAL 3,123,543
METHOD AND APPARATUS FOR FEEDING ARTICLES Filed Nov. 24, 1961 6 Sheets-Sheet 6 J. L. EHHP/WHN (JR).
5'. P. LIDEPE'RJ LIZ IL qg mr a. 7 .12. JT'T'U/FNEIH United States Patent 3,123,543 METHOD AND APPARATUS FOR FEEDING ARTICLES John L. Chapman, In, Catonsville, Md., and Robert P.
Loeper, Reading, Pa., assignors to Western Electric Company, Incorporated, a corporation of New York Filed Nov. 24, 1961, Ser. No. 154,744 5 Claims. (Cl. 204-28) This invention relates to work feeding methods and apparatus and especially to the attachment of piece parts to a flexible strip to facilitate their processing.
The header used in the manufacture of certain transistors comprises a small metallic cup-shaped member wherein the outer surface of the closed end serves as a platform on which the semiconductor Wafer is mounted. Customarily, the emitter, base, and collector leads, sealed in the interior of the header by glass, extend through openings in the platform. The open end of the header includes a flange. When assemblage of the header is completed, a can having a flange is placed over the header so that the flanges meet and are welded together. Following the glassing operation, it is required that the header be goldplated prior to bonding the semiconductor wafer thereto to assure a high standard of electrical performance and reliability. Prior art techniques utilizes a batch-type method of plating, employing plating barrels. Such procedures do not lend themselves to automation wherein it is desirable that articles pass in succession through various work stations. Further, the batch method often resulted in the entangling of the header leads and the use of excess amounts of gold. Rack plating methods are conducive to greater control, but again have the drawback of incompatibility with modern automation techniques for high-scale, eflicient production.
In accordance with the present invention, a solution of the problem is attained by the use of a flexible steel tape to which the headers are attached to facilitate their transport through various plating baths and other work locations at different angular positions, the tape provid ing a direct electrical path to the headers as needed, at least in certain of the plating tanks.
An object of the invention is a method and apparatus for feeding piece parts attached to a flexible strip to a series of work locations.
A more specific object of the invention is a method and apparatus for plating objects by attaching piece parts to a flexible strip and feeding the strip and the piece parts attached thereto at different angular positions as required throughout the plating processes.
Another object of the invention is a method and apparatus for gold plating transistor headers wherein the headers are attached to a flexible steel tape by means of the header leads, the tape then being fed to a series of work positions. The tape itself provides an electrical path to the headers where electrolytic processing is required.
In carrying out the invention, a supply of articles attached to a flexible metal strip is fed to the input of a processing apparatus and the strip and the articles are oriented to different positions as required for feeding and processing at work locations throughout the apparatus, means being provided to feed the strip completely through the apparatus. The strip may serve as an electrical path to the articles where electrical processing is required.
A feature of the arrangement is the provision of a series of rollers for guiding a flexible tape with parts attached to different angular positions.
The invention will hereinafter be described in greater detail with a reference to the drawing, wherein:
FIG. 1 is a schematic of apparatus used in attaching transistor headers to a flexible steel tape;
FIGS. 2 through 6, when laid end to end as show in FIG. 7, schematically represent a complete cleaning and plating arrangement for transistor headers;
FIG. 8 represents a front elevational view of a set of rollers for twisting the tape to an upright or vertical position;
FIG. 9 is a side view of the rollers partly in section;
FIG. 10 is a graphical representation of the levels of the solution for the gold plating steps.
The apparatus shown in FIG. 1 for attaching the transistor headers 10 to the flexible steel tape 11, is the subject matter of a co-pending application, R. P. Loeper, Serial No. 154,733, filed November 24, 1961. In accordance with that application, the steel tape 11 is fed from a supply reel, not shown, to a perforating station 12 to perforate feed holes 13 in the tape, and then to a welding station 14 Where the leads 16 of the header are attached to the steel tape by means of a pair of electrodes 17-18. Successive headers have their leads bent in opposite directions by means of bending apparatus 19 in order to assure adequate spacing between adjacent headers during the plating operation. The tape is then wound on a supply reel 21 driven by a suitable motor (not shown) and simultaneously a plastic tape 20 is unwound from the supply reel 22 onto the supply reel 21 to provide spacing between the convoluted layers of transistor headers.
The supply reel 21 is placed in a suitable mount so that the steel tape with the transistor headers attached thereto may be unwound and fed to the plating apparatus. At the same time, the plastic tape 20 is indicated in FIG. 2 is rewound on a reel 22 driven by a suitable motor (not shown). Obviously, if desired, the steel tape with headers attached could be fed directly from the welding and perforating apparatus to the plating apparatus. I
In order to facilitate a description of the invention, the following designations are used to identify rollers used repetitively in the process. Rollers F are flanged, stainless steel rollers having a tapered surface of slightly increasing diameter 23 toward the flanged portion 24 to retain the steel tape in position. Rollers P are plastic rollers slightly larger in Width than the width of the tape. Rollers C are plain-surfaced, stainless steel rollers. In commencing a plating operation, a plain steel tape 11 with no headers attached may be threaded about the rollers through the various work locations to the main drive 26 shown in FIG. 6 and anchored to a takeup reel 27 driven through a clutch-type drive by a motor (not shown). Then, as depicted in FIGURE 2, the leading end of tape 11 with the headers 10 attached thereto is fed over a roller F to a welding station 28 and attached, by means of electrodes 25 and 30, to the trailing end of the plain steel tape llwhich Was threaded through the machine. For this purpose, a clamp 29 is provided to temporarily hold the trailing end of the plain tape 11 while it is being joined to the tape 11 with the transistors 10 attached. In order not to delay operation by shutting down the machine, a suitably mounted drop roller 31 engages a slack portion of the tape extending between a roller F and one of a pair of tooth rollers T of stainless steel. Suflicient slack is provided in the tape to allow eight minutes of feed before the drop roller reaches its uppermost position. This affords ample time for the welding operation. It is to be understood, of course,
: that once a reel of tape with transistor headers attached thereto has been processed, the end of the processed tape will be attached to the leading end of a tape having transistor headers attached for processing.
The actual processing of the transistor headers begins in the alkaline clean tank 34 where any oil or grease on the transistor header is removed by use of a polarized alkaline cleaning solution. The electrical circuit for this cleaning operation is provided from positive voltage over lead 33 in parallel to the rollers F immediately adjacent opposite ends of the tank 34 and to the steel tape and headers, and from negative source over lead 36 to a cathode 35 in the cleaning solution. Customarily, one of the header leads, such as the collector lead, is bonded to the header platform. While this is done primarily for transistor circuit purposes, it assures electrical continuity during the plating process. Any alkaline solution remaining on the tape and headers is removed at the water spray tank 37 following which the headers move on to an acid cleaning solution in tank 38 containing an equal mixture of hydrochloric acid and water by volume, the tank being held at a suitable temperature. In each tank, the liquid will be held at temperatures conventionally used in plating processes. Electrical current for the acid cleaning procedure is provided from an A.C. source over leads 39 and 46 in the same manner as described in connection with the alkaline cleaning tank 34.
The headers next move through a water rinse tank 47 and past a water spray tank 48, to remove the acid, to a cyanide dip tank 49 to prepare the headers to receive the copper plate undercoating in the tank 51. It should be observed that up to this point the tape, along with the headers, has been fed in a horizontal position. The steel strip now is negative with respect to the anode 50 and becomes in fact a cathode; whereas in the alkaline tank, the steel strip functions as the anode. In this connection, it will be understood that the potentials in each tank are relative to each other and that a constant D.C. reference potential is actually applied to the steel strip. After leaving the copper plate tank 51, the headers move on to the water spray 52 to remove any copper salt which may remain from the copper plating operation. The headers are then fed to the gold flash plating tank 53 and electrical current is provided in the same manner as in the copper plate tank.
It will be observed that in the gold strike tank 53 there is a pair of rollers V shown in detail in FIGS. 8 and 9. The rollers 61 and 62 are respectively the front and rear rollers looking into the drawing in FIG. 4. It is seen that the roller 62 includes toothed portions 63, meshing with complementary openings 64 in the front roller 61 by penetration through the openings 13 of the steel tape 11 transporting the headers 16. Since the rollers 61, 62 are each mounted on a vertical axis, they serve to twist the tape and the headers to a vertical position so that the greater part of the header leads 16 and the header are plated with gold, as clearly indicated in the graphical representation of FIG. 10. By mounting the rollers F overlying the gold strike tank 53 (FIG- URE 4) and the rollers V in a precise location and controlling the depth of the gold solution, the upper limit of the gold plate on the leads is rigidly controlled.
As the headers leave the tank 53, the steel strip passes first under an F roller, then over a succeeding F roller, to an F roller overlying the gold plate tank 66. Since each of these F rollers are mounted upon a horizontal axis, the steel tape and the attached headers will now lie in a horizontal direction. In the gold plate tank 66, a plurality of rollers V again orient the steel strip in the vertical position so that the first gold plate applied is to the level indicated in FIG. 10.
While the apparatus is shown arranged along one single line, in actual practice the tanks and the various components of the apparatus are arranged to form a substantially U-shape. Thus, at the points marked C in FIGS. 4 and 5, corners of the apparatus are defined. At these points, auxiliary driving motors 67, driving plastic rollers 68, provide an auxiliary friction feeding device for the main drive 26 shown in FIG. 6. In this type of drive, the tighter the steel tape becomes, indieating a strain on the main drive, the greater is the effectiveness of the friction drive. In other words, when the main drive needs more assistance, the friction drives come more into play. The steel strip, after leaving the gold plate tank 66, enters a gold reclaim tank 69, then into a final gold plate tank 71 (FIGURE 5). In the latter tank, the headers are held in such position by a plurality of rollers V, that only the header proper and only a very small portion of the leads 16 are plated with gold for economy purposes, as is clearly shown in FIG. 10.
Next, the headers pass through a pair of gold reclaim tanks 72 and 73, through a water spray 74, deionized water spray 76, steam blast 77 for blowing off excess Water, and a hot air dry tank '78 for drying the headers, to the main drive 26.
The main drive 26 includes a motor 81 driving a belt 82 which, in turn, drives a pair of rubber-coated magnetic rollers 83 which grip and pull the tape completely through the electroplating apparatus except for the assistance offered by the auxiliary motors 67. The steel tape with the gold-plated headers attached may now be Wound on the loading reel 27, and between each layer is concomitantly Wound the plastic tape 91 from supply reel 92 in the same manner as the tape described in FIG. 1. If desired, the headers could be cut from the steel tape instead of being wound upon the supply reel 27.
Each tank is suitably insulated from the other tanks and from the frame of the machine.
Stripping of gold from the defective headers could obviously be accomplished in the machine by reversing the potential in a gold plating tank.
While the invention has been described in connection with the gold plating of transistor headers, it should be apparent to those in the material feeding art that the principles of the present invention could obviously be extended with equal effectiveness to the feeding of parts generally.
What is claimed is:
1. In an automatic process for cleaning and plating articles attached .to and carried by a flexible conductive tape to a succession of various types of confined cleaning and plating solutions, the steps of:
applyng a first reference potential to :said articles through said tape, polarizing said articles as anodes While immersed in a first cleaning solution of said succession of solutions, said polarization being established by the provision of a first electrode submerged in said first solution and biased at a potential which is negative relative to the reference potential applied to said tape,
polarizing said articles alternating as anodes and cathodes while immersed a second cleaning solution of said succession of solutions, said polarization being established by the provision of a second electrode submerged in said second solution and having an alternating potential applied across said tape and said second electrode,
polarizing said articles as cathodes while immersed in an nth plating solution of said succession of solutions, said polarization being established by the provision of at least a third electrode submerged in said nth solution and biased at a potential which is positive relative to the reference potential applied to said tape, and
orienting said tape at a predetermined angular position while said articles are biased as cathodes in the region of at least one of said solutions such that only said articles are immersed therein.
2. In an apparatus for transporting articles attached to and carried by an electrically conductive, flexible carrier tape guided by rollers to a succession of various types of confined cleaning and plating solutions,
means for supporting a reel of said tape at the input of the apparatus,
drive means including rollers of magnetic material for pulling the tape along an extended path to the succession of solutions, A
means for applying a reference potential to said tape,
means for polarizing said articles as anodes while immersed in a first cleaning solution of said succession of solutions, said last-mentioned means including a first electrode submerged in said first solution, and voltage means for biasing said first electrode at a potential which is negative relative to the reference potential applied to said tape,
means for polarizing said articles alternately as anodes and cathodes while immersed in a second cleaning solution of said succession of solutions, said lastmentioned means including a second electrode submerged in said second solution, and voltage means for applying an alternating potential across said tape and said second electrode,
means for polarizing said articles as cathodes while immersed in an nth plating solution of said succession of solutions, said last-mentioned means including an nth electrode submerged in said nth solution, and voltage means for biasing said nth electrode at a potential which is positive relative to the reference potential applied to said tape, and
means \for orienting said tape at a predetermined angular position while said articles are biased as cathodes in the region of at least one of the succession of solutions such that only said articles are immersed therein, said last-mentioned means including at least one roller mounted along a first axis to orient said tape in one plane and further including at least two other rollers mounted along a second axis at a substantial angle to the first axis to orient said tape in a different plane.
3. In an apparatus in accordance with claim 2, wherein said articles comprise semiconductor headers welded to said tape, wherein said tape is perforated, and wherein at least one pair of said other rollers mounted along said second axis includes a roller with teeth for engaging the perforations in said tape and a mating roller having complementary openings into which the teeth project.
4. In an automatic process for gold plating semiconductor headers and the like attached to a flexible, conductive carrier tape, the steps of:
applying a reference potential to the headers through said tape,
immersing said tape with the headers attached thereto into an alkaline cleaning solution, providing a first electrode submerged in said alkaline solution, and
polarizing said headers as anodes and said first electrode as a cathode to improve the cleaning action of said alkaline solution, said polarization being established by biasing said first electrode at a potential which is negative in relation to the reference potential applied to said tape,
removing said tape from said alkaline solution,
immersing said tape into an acid cleaning solution,
providing a second electrode submerged in said acid solution, and
applying an alternating potential across said tape and said second electrode to improve the cleaning action of said acid solution,
removing said tape from said acid solution,
immersing said tape into a copper plating solution,
providing at least a third electrode submerged in said copper plating solution, and
polarizing said headers as a cathode and said third electrode as an anode to electrolytically deposit the desired amount of copper on said semiconductor headers, said polarization being established by biasing said third electrode at a potential which is positive in relation to the reference potential applied to said tape,
removing said tape from said copper plating solution,
immersing only said headers in a gold plating solution by orienting the planar sunfaces of said tape to a vertical position while in the region of said gold plating solution,
providing at least a fourth electrode submerged in said gold plating solution, and
polarizing said headers as a cathode and said fourth electrode as an anode to electrolytically deposit the desired amount of gold on only said headers, said polarization being established by biasing said fourth electrode at a potential which is positive in relation to the reference potential applied to said tape,
removing said headers from said gold plating solution by reorienting the planar surfaces of said tape to a horizontal position,
immersing said tape in a gold reclamation solution to recover any excess gold adhering to said headers, and
removing said tape from said gold reclamation solution.
5. In an apparatus for transporting transistor headers and the like attached to an electrically conductive, flexible carrier tape having perforations therein to a succession of various cleaning and plating baths,
means for supporting a reel of said tape at the input of the apparatus,
drive means including rollers of magnetic material for pulling the tape along an extended path,
auxiliary drive means for enabling said tape to follow a non-linear, horizontal path necessitated by abrupt changes in direction, said last-mentioned means including at each point of abrupt change a roller which makes variable, frictional contact with said carrier tape,
means for applying a reference potential to said tape,
roller means for immersing said tape and transistor headers attached thereto into a first alkaline cleaning bath of said succession of baths,
means for improving the cleaning action of the alkaline solution in said first bath, said last-mentioned means including a first electrode positioned within said first bath, and further including means for polarizing said first electrode as a cathode and said tape as an anode through the biasing of said first electrode at a potential which is negative relative to the reference potential applied to said tape,
rollerhmeans for removing said tape from said first bat roller means for immersing said tape and said transistor headers into a second acid cleaning bath of said succession of baths,
means for improving the cleaning action of the acid solution in said second bath, said last-mentioned means including a second electrode positioned within said second bath, and further including means for applying an alternating potential across said tape and said second electrode,
roller means for removing said tape from said second bath,
means for immersing only said transistor headers in a third gold plating bath of said succession by varying the angular position of a section of said tape and one or more transistor headers while in the region of said third bath, said last-mentioned means including at least one roller mounted along a first axis to orient said tape in one plane and further including at least two other rollers mounted along a second axis at a substantial angle to the first axis to orient said tape in a different plane, and wherein at least one pair of said other rollers mounted along said second axis includes a roller with teeth for engaging the perforations in said tape, and a mating roller having complementary openings into which the teeth project, and
means for electrolytically depositing the desired amount of gold on said transistor headers while immersed in the gold plating bath, said last-mentioned means including at least a third electrode positioned Within said third bath, and further including means for polarizing said third electrode as an anode and said tape as a cathode through the biasing of said third electrode at a potential Which is positive relative to the reference potential applied to said tape.
References Cited in the file of this patent UNITED STATES PATENTS 1,068,410 Chubb July 29, 1913 Richardson Feb. 4, 1930 Yeager Mar. 6-, 1934 Kronsbein July 14, 1936 Klein 1 May 30, 1950 Kushner Apr. 15, 1952 Greenbergeu' Dec. 15, 1953 Russell Dec. 10, 1957 Smith Dec. 3 1, 1957 Sharpless Aug. 8, 196 1 OTHER REFERENCES Gray, A. 6.: Modern Electroplating, Wiley and Sons, New York, 1953, pages 26061.

Claims (1)

1. IN AN AUTOMATIC PROCESS FOR CLEANING AND PLATING ARTICLES ATTACHED TO AND CARRIED BY A FLEXIBLE CONDUCTIVE TAPE TO A SUCCESSION OF VARIOUS TYPES OF CONFINED CLEANING AND PLATING SOLUTIONS, THE STEPS OF: APPLYING A FIRST REFERENCE POTENTIAL TO SAID ARTICLES THROUGH SAID TAPE, POLARIZING SAID ARTICLES AS ANODES WHLE IMMERSED IN A FIRST CLEANING SOLUTION OF SAID SUCCESSION OF SOLUTIONS, SAID POLARIZATION BEING ESTABLISHED BY THE PROVISION OF A FIRST ELECTRODE SUBMERGED IN SAID FIRST SOLUTION AND BIASED AT A POTENTIAL WHICH IS NEGATIVE RELATIVE TO THE REFERENCE POTENTIAL APPLIED TO SAID TAPE, POLARIZING SAID ARTICLES ALTERNATING AS ANODES AND CATHODES WHILE IMMERSED IN A SECOND CLEANING SOLUTION OF SAID SUCCESSION OF SOLUTIONS, SAID POLARIZATION BEING ESTABLISHED BY THE PROVISION OF A SECOND ELECTRODE SUBMERGED IN SAID SECOND SOLUTION AND HAVING AN ALTERNATING POTENTIAL APPLIED ACROSS SAID TAPE AND SAID SECOND ELECTRODE, POLARIZING SAID ARTICLES AS CATHODES WHILE IMMERSED IN AN NTH PLATING SOLUTION OF SAID SUCCESSION OF SOLUTIONS, SAID POLARIZATION BEING ESTABLISHED BY THE PROVISION OF AT LEAST A THIRD ELECTRODE SUBMERGED IN SAID NTH SOLUTION AND BIASED AT A POTENTIAL WHICH IS POSITIVE RELATIVE TO THE REFERENCE POTENTIAL APPLIED TO SAID TAPE, AND ORIENTING SAID TAPE AT A PREDETERMINED ANGULAR POSITION WHILE SAID ARTILCES ARE BIASED AS CATHODES IN THE REGION OF AT LEAST ONE OF SAID SOLUTIONS SUCH THAT ONLY SAID ARTILCES ARE IMMERSED THEREIN.
US3123543D 1961-11-24 Method and apparatus for feeding articles Expired - Lifetime US3123543A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15474461A 1961-11-24 1961-11-24

Publications (1)

Publication Number Publication Date
US3123543A true US3123543A (en) 1964-03-03

Family

ID=22552596

Family Applications (1)

Application Number Title Priority Date Filing Date
US3123543D Expired - Lifetime US3123543A (en) 1961-11-24 Method and apparatus for feeding articles

Country Status (1)

Country Link
US (1) US3123543A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271287A (en) * 1961-11-28 1966-09-06 Alusuisse Apparatus for annealing and electrolytically treating metallic strip
US3391073A (en) * 1964-08-24 1968-07-02 Aluminum Coil Anodizing Corp Anodizing apparatus
US3436322A (en) * 1965-08-19 1969-04-01 Louise L Good Plating apparatus and process
US3462350A (en) * 1966-12-01 1969-08-19 Sylvania Electric Prod Localized flow plating
US3878062A (en) * 1973-06-28 1975-04-15 Gte Sylvania Inc Electroplating apparatus and method
US3897323A (en) * 1974-08-05 1975-07-29 Motorola Inc Apparatus for selective plating
US3904489A (en) * 1973-07-13 1975-09-09 Auric Corp Apparatus and method for continuous selective electroplating
US4045321A (en) * 1975-10-17 1977-08-30 National Semiconductor Corporation Method and apparatus for plating the posts of a semiconductor chip header
US4663014A (en) * 1986-01-02 1987-05-05 I. Jay Bassett Electrodeposition coating apparatus
US4755273A (en) * 1986-01-02 1988-07-05 Bassett I Jay Cover for coating tanks
US20140027294A1 (en) * 2012-07-24 2014-01-30 Uchicago Argonne, Llc Nanowire and Microwire Fabrication Technique and Product
RU2742318C2 (en) * 2016-06-22 2021-02-04 Корнинг Инкорпорейтед Apparatus for holding and transporting glass articles

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US799402A (en) * 1904-04-30 1905-09-12 Louis Potthoff Electroplating apparatus.
US901399A (en) * 1907-06-07 1908-10-20 Hanson & Van Winkle Company Electroplating apparatus.
US1068410A (en) * 1907-06-25 1913-07-29 Westinghouse Electric & Mfg Co Process of and apparatus for coating electric conductors.
US1745912A (en) * 1923-05-03 1930-02-04 Westinghouse Lamp Co Chromium-coated wire and method of manufacture
US1950096A (en) * 1929-06-18 1934-03-06 Jeffrey Mfg Co Method and apparatus for coating articles
US2047418A (en) * 1934-05-28 1936-07-14 Charles Fredrick Neale Electroplating of metallic articles
US2509304A (en) * 1944-02-24 1950-05-30 Nat Steel Corp Method and apparatus for electrolytic coating of strip material
US2592810A (en) * 1945-03-20 1952-04-15 Joseph B Kushner Method of electrolytically processing metallic articles
US2662271A (en) * 1948-03-27 1953-12-15 United Eng Foundry Co Method of joining sections of strip for a uniform-speed continuousfeed strip-treating line
US2816066A (en) * 1956-05-14 1957-12-10 Western Electric Co Methods of plating articles
US2818381A (en) * 1955-04-18 1957-12-31 Sylvania Electric Prod Coating filamentary material
US2995475A (en) * 1958-11-04 1961-08-08 Bell Telephone Labor Inc Fabrication of semiconductor devices

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US799402A (en) * 1904-04-30 1905-09-12 Louis Potthoff Electroplating apparatus.
US901399A (en) * 1907-06-07 1908-10-20 Hanson & Van Winkle Company Electroplating apparatus.
US1068410A (en) * 1907-06-25 1913-07-29 Westinghouse Electric & Mfg Co Process of and apparatus for coating electric conductors.
US1745912A (en) * 1923-05-03 1930-02-04 Westinghouse Lamp Co Chromium-coated wire and method of manufacture
US1950096A (en) * 1929-06-18 1934-03-06 Jeffrey Mfg Co Method and apparatus for coating articles
US2047418A (en) * 1934-05-28 1936-07-14 Charles Fredrick Neale Electroplating of metallic articles
US2509304A (en) * 1944-02-24 1950-05-30 Nat Steel Corp Method and apparatus for electrolytic coating of strip material
US2592810A (en) * 1945-03-20 1952-04-15 Joseph B Kushner Method of electrolytically processing metallic articles
US2662271A (en) * 1948-03-27 1953-12-15 United Eng Foundry Co Method of joining sections of strip for a uniform-speed continuousfeed strip-treating line
US2818381A (en) * 1955-04-18 1957-12-31 Sylvania Electric Prod Coating filamentary material
US2816066A (en) * 1956-05-14 1957-12-10 Western Electric Co Methods of plating articles
US2995475A (en) * 1958-11-04 1961-08-08 Bell Telephone Labor Inc Fabrication of semiconductor devices

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271287A (en) * 1961-11-28 1966-09-06 Alusuisse Apparatus for annealing and electrolytically treating metallic strip
US3391073A (en) * 1964-08-24 1968-07-02 Aluminum Coil Anodizing Corp Anodizing apparatus
US3436322A (en) * 1965-08-19 1969-04-01 Louise L Good Plating apparatus and process
US3462350A (en) * 1966-12-01 1969-08-19 Sylvania Electric Prod Localized flow plating
US3878062A (en) * 1973-06-28 1975-04-15 Gte Sylvania Inc Electroplating apparatus and method
US3904489A (en) * 1973-07-13 1975-09-09 Auric Corp Apparatus and method for continuous selective electroplating
US3897323A (en) * 1974-08-05 1975-07-29 Motorola Inc Apparatus for selective plating
US4045321A (en) * 1975-10-17 1977-08-30 National Semiconductor Corporation Method and apparatus for plating the posts of a semiconductor chip header
US4663014A (en) * 1986-01-02 1987-05-05 I. Jay Bassett Electrodeposition coating apparatus
US4755273A (en) * 1986-01-02 1988-07-05 Bassett I Jay Cover for coating tanks
US20140027294A1 (en) * 2012-07-24 2014-01-30 Uchicago Argonne, Llc Nanowire and Microwire Fabrication Technique and Product
US9903033B2 (en) * 2012-07-24 2018-02-27 Uchicago Argonne Llc Nanowire and microwire fabrication technique and product
US10900137B2 (en) 2012-07-24 2021-01-26 Uchicago Argonne, Llc Nanowire and micro wire fabrication technique and product
RU2742318C2 (en) * 2016-06-22 2021-02-04 Корнинг Инкорпорейтед Apparatus for holding and transporting glass articles
US11535554B2 (en) 2016-06-22 2022-12-27 Corning Incorporated Apparatuses for holding and conveying glass articles

Similar Documents

Publication Publication Date Title
US3123543A (en) Method and apparatus for feeding articles
US2429222A (en) Method of making contact wires
US6309517B1 (en) Apparatus for inline plating
JP4445859B2 (en) Apparatus and method for electrolytic treatment of a workpiece having at least a conductive surface
US2750332A (en) Method and apparatus for electrodeposition of a layer of uniform thickness on a conductive surface
US3567596A (en) Electrolytically copper plating an aluminum wire
US2694040A (en) Methods of selectively plating p-type material of a semiconductor containing a p-n junction
GB720336A (en) Process and apparatus for simultaneously drawing and plating wire
KR960002417B1 (en) Anodizing apparatus and an anodizing method
CN114250501A (en) Equipment and method capable of continuously carrying out electroplating and chemical plating
US4508611A (en) Apparatus for electroplating and chemically treating the contact elements of encapsulated electronic components and like devices
US3362893A (en) Method and apparatus for the high speed production of magnetic films
US2803216A (en) Apparatus for printed-circuit solder coating
US4042480A (en) Apparatus for selectively applying a metal coating to the metallic parts of elements which pass through an insulator
US4007097A (en) Process for selectively applying a metal coating to the metallic parts of elements which pass through an insulator
US3274092A (en) Apparatus for electroplating narrow strips
US1425184A (en) Production of thin metal sheets or foils
US3275542A (en) Apparatus for electroplating leads of small electronic components
KR102333203B1 (en) Manufacturing apparatus for metal sheet
CN212077188U (en) Electroplating hanger rotating equipment
JP6115309B2 (en) Chemical processing equipment
GB1300304A (en) Electroplated solder
US1574823A (en) Method of and apparatus for treating metal
JPS6333599A (en) Plating device for strip thin sheet
JPH07292498A (en) Automatic plating device