US3105810A - Preventing fouling of metal conductors in a refinery process - Google Patents

Preventing fouling of metal conductors in a refinery process Download PDF

Info

Publication number
US3105810A
US3105810A US787353A US78735359A US3105810A US 3105810 A US3105810 A US 3105810A US 787353 A US787353 A US 787353A US 78735359 A US78735359 A US 78735359A US 3105810 A US3105810 A US 3105810A
Authority
US
United States
Prior art keywords
fouling
deposits
petroleum
per million
sulfonic acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US787353A
Inventor
Richard M Miller
Harold I Patzelt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ChampionX LLC
Original Assignee
Nalco Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalco Chemical Co filed Critical Nalco Chemical Co
Priority to US787353A priority Critical patent/US3105810A/en
Application granted granted Critical
Publication of US3105810A publication Critical patent/US3105810A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • C10L1/2437Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters

Definitions

  • This invention relates to improvements in the intermediate refining stages of petroleum hydrocarbons. Specifically, the invention is concerned with chemical additives for normally liquid charge stocks used to produce liquid and gaseous hydrocarbon fuels.
  • fouling One of the worst-problems encountered in the treatment of various petroleum charge stocks is the phenomenon which is now recognized and is descriptively called fouling. This phenomenon manifests itself in the form of deposits which frequently form on the metal surfaces of the processing equipment and tend to materially decrease the etficiency of the intermediate refining operations.- The direct results of fouling appear in the forms of heat transfer loss, increased pressure drops, loss in through-put and, in some instances, a specific type of corrosion product which is associated with the deposits.
  • the charge stocks which most commonly cause fouling in the intermediate refinery equipment are naphthas, gas oils, and crudes.
  • the naphthas or light distillate stocks may be considered as a light oil, at least 10% of which boils below 347 F. and at least 95% distills below 464 F.
  • the gas oils which frequently are referred to as middle distillates usually are intermediates between the so-called kerosene fractions and the light lubricating cuts. These gas oils are usually used as charges ,to cracking units where the molecules are broken down into smaller components.
  • the crude oils which most commonly cause the problem of fouling are virgin products charged to the first refining stage operations and contain all of the petroleum fractions normally removed in the refining processes.
  • crude stocks are intended to cover the so-called residual or pot'fractions which remain after the volatile components and solvent extractable components of the crudes have been removed.
  • the types of mechanical equipment most commonly affected are furnaces, heat ex- In these types of equipment, the charge stock is usually caused to flow through various types of heat processing equipment such as pipes, heat exchangers, furnaces, etccwhich, for purposes of simplification, are referred to herein as conductors.
  • the deposits forming on the metal surfaces thus described are varied in composition and may be either organic, inorganic, or mixed organic and inorganic, with the latter type deposit being the most common type found in intermediate refining processes.
  • the organic deposits are primarily polymerization products and are usually black, gummy masses which may be converted to coke-like masses at elevated temperatures.
  • the inorganic portions of the deposits will frequently contain such components as silica, iron oxide, sulfur trioxide, iron sulfide, calcium oxide, magnesium oxide, inorganic chloride salts, sodium oxide, alumina, sodium sulfate, copper oxides, and copper salts.
  • the source of the inorganic components of the deposits is difficult to locate in any one given refining operation, but frequently they may be ascribed as coming from such sources as ash components of the crude oils, corrosion products from the metal surfaces'the charge stocks contact, and contaminants resulting from the contact with the various metallic catalytic reagents used to process the stock.
  • the invention in its simplest form comprises a petroleum refining process for the production of liquid and formation of deposits on the surfaces of the metalcon ductor. To prevent the formation of these deposits or fouling, the process is performed in the presence of a chemical additive which is admixed with the charge stock.
  • the chemicals capable of preventing the fouling are oil soluble, alkaryl sulfur-containing compounds, which contain a sulfonic acid radical.
  • Compounds falling under this general category are the well-known petroleum sulfonic acids and alkyl benzene sulfonic acids and their salts of the general formula:
  • R is an alkyl radical from 8 to 22 carbon atoms in chain length and x is an integer from 1 to 3.
  • M will be explained more fully hereinafter.
  • the oil soluble petroleum sulfonic acid may be said to be those sulfonic acids having a molecular weight of at least 350-375.
  • the molecular weight of the sulfonated treating agent is in excess of 415, and may even exceed 1,000.
  • Included in the grouping of petroleum sulfonates are the well-known alkyl substituted sulfonated naphthalenes.
  • the reagents in the form of their salts, which salts may be derived from a rather large number of anionic components.
  • the amine salts may be used, as Well as the alkaline earth metal salts.
  • the charge stock is a gas oil which is to be catalytically converted'using a silica-alumina type catalyst such as, for instance, a fluidized catalyst used in a moving bed process
  • a silica-alumina type catalyst such as, for instance, a fluidized catalyst used in a moving bed process
  • alkali metals tend to contaminate the catalyst; hence are not too well suited for this type of operation.
  • the constituent M may then be considered as being either hydrogen, alkali, alkaline earth, or an organic amine grouping.
  • Table IA lists several commercial stabilizers and anti-oxidants which will be compared to the compositions of the invention in the examples.
  • Ethylene diamine salt of Composition I 490 Etihylezne diamine polydodecyl benzene sul- 520 one e.
  • Triethyl amine salt of Composition I 500 Ammonium salt 01
  • Composition III 450 Ammonium dinonyl naphthalene sulfonate 417
  • the compositions are used at dosage ranges from as little as one part per million to dosages ranging as high as 300 to 500 parts per million.
  • the optimum treatment level which will work is dependent upon the type of charge stock, the type of intermediate refining operation to which the stock is subjected, and the temperature at which the particular process is performed. As a general rule, the dosage range for crudes will be between 5 parts per million and 300 parts per million.
  • the dosage range will be between 10 parts per million and 200 parts per million, with a preferred treating range being at between 5 and parts per million.
  • the dosage may vary from 5 parts per million to 300 parts per million, with optimum dosage levels being between 5 and 100 parts per million.
  • the additive remains preferentially with the liquid phase of the charge stock during the various refining stages.
  • the additive does not carry over to any appreciable extent into the finished product, but will remain behind with the residual and non-converted components of the liquid or deposit itself on the surface of the reactor.
  • the additive Will be carried over into the finished fuel product, but this is the only case wherein the additive will be found to any appreciable extent in a finished hydrocarbon product.
  • the additives may be added to the charge stock at any point in the process to be protected and will carry along with the production until such a point in the refining operation where the product is converted into a different chemical component or species.
  • the additive may be added just prior to the heat exchanger section of the operation and will afford protection to both the exchanger surface and other surfaces of the distillation or fractionation unit.
  • the charge stock has been rendered non-fouling as to the metal surfaces; hence, deposit build-up does not occur.
  • the process may, therefore, be considered as preventative rather than corrective in its operation.
  • the additives will remove existing fouling, but in most instances, the function of the additives is to prevent fouling rather than remove existing deposits.
  • E 5 442 566-566 203-203 0 E 5 440 570-570 196-196 0 E 5 440 543-550 244-229 6 E 5 436 561-561 206-206 0 ess consists of a variable injection pump, a recycle loop in which an electrically heated heat exchanger tube is incorporated, and a variable recycle pump in the loop.
  • the heat exchanger tube consists of an insulated resistance wire coil wound around a thick wall tube.
  • the fluid being tested flows through the tube.
  • the oil temperature at the outlet of the exchanger tube and the wall temperature of the tube are recorded continuously.
  • the fouling of the tube is determined by the change in heat transfer coefficient during the test after equilibrium has been attained. This coefficient is determined from the following equation:
  • the deposits when 2 present are usually light fluids which are readily removed using conventional cleaning techniques. In all cases the depositsare materially lessened over the blanks.
  • charge stock is a petroleum hydrocarbon liquid from the group consisting of crude oils, gas oils, and naphthas.
  • alkaryl sulfur compound is an alkali metal salt of an oil-soluble petroleum sulfonic acid.
  • alkaryl sulfurcontaining compound is an alkali metal dodecyl benzene sulfonic acid containing from 1 to 3 dodecyl radicals.
  • Process for preventing fouling of a metal conductor through which is passing material from the group consisting of naphthas, gas oils and crude oils which are normally susceptible to the formation of fouling deposits when passed through such met-a1 conductor at 200-1100 F. for conversion of said material to an upgraded refinery product which comprises adding to said material at least one part per million, based on the weight of said material, of an oil soluble alkaryl sulfur containing compound having a molecular weight of 350 to 1055 and the following chemical structure where R is an alkyl radical of from 8 to 22 carbon atoms in chain length, x is an integer from 1 to 3, and M is from 8 the group consisting of hydrogen, alkali, alkaline earth metal, and amine, the amount of said oil soluble alkaryl sulfur-containing compound being suflicient to reduce the formation of said deposits on the surface of said metal conductor in contact with said material.
  • alkaryl sulfur compound is the ethylene diarnine salt of an oil-soluble petroleum sulfonic acid.
  • alkaryl sulfurcontaining compound is the ethylene diamine salt of a dodecyl benzene sulfonic acid which contains from 1 to 3 dodecyl groups per molecule.

Description

Patented Oct. 1, 1963 3,105,810 PREVENTING FOULING F METAL CONDUC- TORS IN A REFINERY PROCESS Richard M. Miller, La Grange, and Harold I. Patzelt,
Chicago, Ill., assignors to Nalco Chemical (Iompany,
a corporation of Delaware No-Drawing. Filed Jan. 19, 1959, Ser- No. 787,353
r 7 Claims. (Cl. 2084S) This invention relates to improvements in the intermediate refining stages of petroleum hydrocarbons. Specifically, the invention is concerned with chemical additives for normally liquid charge stocks used to produce liquid and gaseous hydrocarbon fuels.
It is common practice to add chemical agents to finished petroleum hydrocarbon products such as gasolines,
kerosenes, 'fuel oils, finished solvents, and the like, to give these-products desirable properties and characteristics. Modern refining operations use a large'number of charge stocks which are intermediates in the production of finished petroleum products. Until recently little attention was paid to the properties of these charge stocks since they were rapidly processed through the refining equipment where they were converted to products having different physical and chemical characteristics than those of the starting material.
With the ever-increasing need for higher octane gasolines, improved aviation fuels and improved residual fuels, it has become the practice to treat the various refinery charge stocks to extract improved fuel values therefrom. These various processes, while greatly improving the fuel yield of a given charge stock,.have tended to increase refining problems which, in the past, were not critical.
One of the worst-problems encountered in the treatment of various petroleum charge stocks is the phenomenon which is now recognized and is descriptively called fouling. This phenomenon manifests itself in the form of deposits which frequently form on the metal surfaces of the processing equipment and tend to materially decrease the etficiency of the intermediate refining operations.- The direct results of fouling appear in the forms of heat transfer loss, increased pressure drops, loss in through-put and, in some instances, a specific type of corrosion product which is associated with the deposits.
The charge stocks which most commonly cause fouling in the intermediate refinery equipment are naphthas, gas oils, and crudes. The naphthas or light distillate stocks may be considered as a light oil, at least 10% of which boils below 347 F. and at least 95% distills below 464 F. The gas oils which frequently are referred to as middle distillates usually are intermediates between the so-called kerosene fractions and the light lubricating cuts. These gas oils are usually used as charges ,to cracking units where the molecules are broken down into smaller components. The crude oils which most commonly cause the problem of fouling are virgin products charged to the first refining stage operations and contain all of the petroleum fractions normally removed in the refining processes. For the purposes of this invention, crude stocks are intended to cover the so-called residual or pot'fractions which remain after the volatile components and solvent extractable components of the crudes have been removed. a
The various charge stocks mentioned above are most frequently subjected to one or more of the following general type processes to produce fuels: reforming, cracking,
7 changers, reboilers, and condensers.
alkylation, isomerization, polymerization, desulfurization, hydrogeneration, and dehydrogenation. These processes may be performed using a number of specific refining techniques which frequently employ catalytic reagents. A description of these various processes and their modifications are described in the publication, Petroleum Refiner, September 1958.
The deposits previously mentioned most frequently occur at elevated temperatures which range between 200 F. and 1100 F. The types of mechanical equipment most commonly affected are furnaces, heat ex- In these types of equipment, the charge stock is usually caused to flow through various types of heat processing equipment such as pipes, heat exchangers, furnaces, etccwhich, for purposes of simplification, are referred to herein as conductors.
The deposits forming on the metal surfaces thus described are varied in composition and may be either organic, inorganic, or mixed organic and inorganic, with the latter type deposit being the most common type found in intermediate refining processes. The organic deposits are primarily polymerization products and are usually black, gummy masses which may be converted to coke-like masses at elevated temperatures. The inorganic portions of the deposits will frequently contain such components as silica, iron oxide, sulfur trioxide, iron sulfide, calcium oxide, magnesium oxide, inorganic chloride salts, sodium oxide, alumina, sodium sulfate, copper oxides, and copper salts. The source of the inorganic components of the deposits is difficult to locate in any one given refining operation, but frequently they may be ascribed as coming from such sources as ash components of the crude oils, corrosion products from the metal surfaces'the charge stocks contact, and contaminants resulting from the contact with the various metallic catalytic reagents used to process the stock.
ing are not readily solubilized by common organic solvents. The inorganic deposits which occur as fouling products are frequently much more complex in their makeup than the conventional corrosion products; hence they are readily distinguishable on this basis.
When the fouling phenomenon first became apparent, it was believed it could be corrected by using known anti oxidants or stabilizing chemicals to mitigate the problem. The experience with these additives soon developed the fact that conventional petroleum additives were relatively ineffective. j i
It would be a valuable contribution to the art if the problems described above could be overcome byusing economical chemical additives at relatively low dosages. This invention presents such a solution to theproblem.
' The invention in its simplest form comprises a petroleum refining process for the production of liquid and formation of deposits on the surfaces of the metalcon ductor. To prevent the formation of these deposits or fouling, the process is performed in the presence of a chemical additive which is admixed with the charge stock. The chemicals capable of preventing the fouling are oil soluble, alkaryl sulfur-containing compounds, which contain a sulfonic acid radical. Compounds falling under this general category are the well-known petroleum sulfonic acids and alkyl benzene sulfonic acids and their salts of the general formula:
l o-si-o o In the above formula R is an alkyl radical from 8 to 22 carbon atoms in chain length and x is an integer from 1 to 3. The constituent M will be explained more fully hereinafter.
The oil soluble petroleum sulfonic acid may be said to be those sulfonic acids having a molecular weight of at least 350-375. In a preferred embodiment of the invention the molecular weight of the sulfonated treating agent is in excess of 415, and may even exceed 1,000. Included in the grouping of petroleum sulfonates are the well-known alkyl substituted sulfonated naphthalenes.
As will be shown later, when the sulfonic acid grouping in the molecule has been converted to the alkali metal salt form the sodium or potassium salts of a given acid will in most cases give results superior to those obtained when the free acid is used.
Due to the inherent corrosiveness of the free sulfonic acids, it is usually desirable from a handling standpoint to employ the reagents in the form of their salts, which salts may be derived from a rather large number of anionic components. Thus, for instance, the amine salts may be used, as Well as the alkaline earth metal salts.
In some instances, particularly where the charge stock is a gas oil which is to be catalytically converted'using a silica-alumina type catalyst such as, for instance, a fluidized catalyst used in a moving bed process, alkali metals tend to contaminate the catalyst; hence are not too well suited for this type of operation. When such conditions are present, it is then expedient to use either the ammonia or amine salts of the sulfonic acids which give satisfactory performance and do not have the disadvantages of catalyst contamination. In referring back to the formulas of the alkyl benzene sulfonic acid, the constituent M may then be considered as being either hydrogen, alkali, alkaline earth, or an organic amine grouping. For purposes of illustrating several oil-soluble alkaryl sulfur containing compounds, the Table I is presented. Table IA lists several commercial stabilizers and anti-oxidants which will be compared to the compositions of the invention in the examples.
TABLE I Composition Alkaryl S Compound Molecular Number Weight I Petroleum sullonie acid 405 IT do 400 III Sodium petroleum sulfonic acid 415-430 Sodium dinonyl naphthalene sulfonate 482 Barium dinonyl naphthalene sulionate neu- 1055 tralized to basic pH. Barium dinonyl naphthalene sulionate new 1055 tral pH. Ethylene diamine petroleum sulfonate 505 Ethylefine diamine dinonyl naphthalene sul- 980 one e. Ethylene diamine salt of Composition I 490 Etihylezne diamine polydodecyl benzene sul- 520 one e. Triethyl amine salt of Composition I 500 Ammonium salt 01 Composition III 450 Ammonium dinonyl naphthalene sulfonate 417 The compositions are used at dosage ranges from as little as one part per million to dosages ranging as high as 300 to 500 parts per million. The optimum treatment level which will work is dependent upon the type of charge stock, the type of intermediate refining operation to which the stock is subjected, and the temperature at which the particular process is performed. As a general rule, the dosage range for crudes will be between 5 parts per million and 300 parts per million. In the case of naphthas, the dosage range will be between 10 parts per million and 200 parts per million, with a preferred treating range being at between 5 and parts per million. When gas oils are treated, the dosage may vary from 5 parts per million to 300 parts per million, with optimum dosage levels being between 5 and 100 parts per million.
One of the most interesting features of the invention is that the additive remains preferentially with the liquid phase of the charge stock during the various refining stages. Thus, for instance, if a gas oil is subjected to a catalytic process, the additive does not carry over to any appreciable extent into the finished product, but will remain behind with the residual and non-converted components of the liquid or deposit itself on the surface of the reactor. In the case of residual fuels, the additive Will be carried over into the finished fuel product, but this is the only case wherein the additive will be found to any appreciable extent in a finished hydrocarbon product.
The additives may be added to the charge stock at any point in the process to be protected and will carry along with the production until such a point in the refining operation where the product is converted into a different chemical component or species.
Thus, where a crude stock is passed through heat exchangers to a thermal distillation unit to remove the lighter fractions, the additive may be added just prior to the heat exchanger section of the operation and will afford protection to both the exchanger surface and other surfaces of the distillation or fractionation unit.
By indicating that the surfaces of the various units are protected, it is meant that the charge stock has been rendered non-fouling as to the metal surfaces; hence, deposit build-up does not occur. The process may, therefore, be considered as preventative rather than corrective in its operation. In some cases, the additives will remove existing fouling, but in most instances, the function of the additives is to prevent fouling rather than remove existing deposits.
As indicated earlier, the components of the deposits will vary in their chemical constituents and frequently contain a large number of ingredients. For purposes of greater understanding, Table II below is presented to illustrate the types of deposits which the additives of the invention tend to prevent.
Evaluation of the Invention The test apparatus used to evaluate refinery stream heat exchanger fouling and the effect ofthe anti-fouling proc- 6 These standards are generally true in the case of gas oils and naphthas but may be considered as toocri-tical for some crude stocks.
TABLE III 011 Wall HTO (U) at Percent Charge Cone. Duratmn Temp. Temp. Equil. End Percent Reduc- Oomp. No. Stock (p.p.m.) of Test at Equi- Equi- B.t.u./hr Reduction in (Hrs.) librium, librium Ft. F tion in U Fouling F End, F. Rate A 5 I 443 725-802 94-74. 5 20. 7 A 5 449 699-727 106-95 3 10. 2 49 A V 5 423 715-779 91-75 17.7 6 A 5 438 698-740 102-88 13.9 26 A 5 454 699-741 108-93 14 5 A 5 437 698-747 101-86 14. 6 34 A 5 456 703-756 107-90 17. 1 13 A 4. 5 411 717-808 97-75 23 A r 4. 5 428 715-731 103-97 6. 2 69 "A 4. 5 436 730-754 100-94 7. 5 67 A 5 5 485 801-872 87-72 18 A 5 473 786-800 89-86 3 83 A 5 475 790-802 90-85 5 72 A 5 470 787-815 88-81 8 56 A 5 471 787-814 89-81 9. 50 A 5 473 792-821 88-80 9 50 A' 5 480 808-819 85-83 3 A 5 509 800-805 110-109 1. 4 A 5 398 708-799 88-69 21. 5 A 5 393 708-727 87-84 4 A 5 393 667-688 87-79 8. 4 A 5. 5 529 834-856 108-104 4 A 5. 5 515 845-856 100-98 2 B 5 460 616-655 180-139 23 B 5 469 622-650 183-156 14. 7 B 6 368 532-587 142-105 2 B 6 381 535-548 153-138 B 4.5 489 754-787 84-74 12.4 398 546-670 91-51 43 0 5 393 535-564 95-88 8 3 D 8 564 637-676 273-217 25 D 8 566 663-663 277-277 E 5 431 558-613 198-137. 32 E 5 442 566-566 203-203 0 E 5 440 570-570 196-196 0 E 5 440 543-550 244-229 6 E 5 436 561-561 206-206 0 ess consists of a variable injection pump, a recycle loop in which an electrically heated heat exchanger tube is incorporated, and a variable recycle pump in the loop.
The heat exchanger tube consists of an insulated resistance wire coil wound around a thick wall tube. The fluid being tested flows through the tube. The oil temperature at the outlet of the exchanger tube and the wall temperature of the tube are recorded continuously.
The fouling of the tube is determined by the change in heat transfer coefficient during the test after equilibrium has been attained. This coefficient is determined from the following equation:
Q=UAAt where:
The results of the tests are reported in Table -III. To more completely understand the results, the following general comparisons are presented to clarify the percent reduction in fouling tabulations:
\ Percent Poor 20 Fair 20-50 Good -70 Excellent 70-100 5 Using the treatment of the invention, the deposits when 2 present are usually light fluids which are readily removed using conventional cleaning techniques. In all cases the depositsare materially lessened over the blanks.
The invention is claimed as follows:
50 1. Process for preventing fouling of a metal conductor through which is passing material from the group consisting of naphthas, gas oils and crude oils which are normally susceptible to the formation of fouling deposits when passed through such metal conductor at 200-1100" F. for conversion of said material to an upgraded refinery product, which comprises adding to said material at least one part per million, based on the Weight of said material, of an oil soluble alkaryl sulfur containing compound having a molecular weight of 350 to 1055 from the group consisting of petroleum sulfonic acids, their alkali, alkaline earth metal, and amine salts and alkyl benzene sulfonic acids and sulfonates of the formula o=s=o 0 l where R is an alkyl radical of from 8 to 22 carbon atoms in chain length, x is an integer from 1 to 3, and M is from the group consisting of hydrogen, alkali, alkaline earth metal, and amine, the amount of said oil soluble alkaryl Z sulfur-containing compound being sufficient to reduce the formation of said deposits on the surface of said metal conductor in contact with said material.
2. The process of claim 1 where the charge stock is a petroleum hydrocarbon liquid from the group consisting of crude oils, gas oils, and naphthas.
3. The process of claim 1 where the alkaryl sulfur compound is an alkali metal salt of an oil-soluble petroleum sulfonic acid.
4. The process of claim 1 where the alkaryl sulfurcontaining compound is an alkali metal dodecyl benzene sulfonic acid containing from 1 to 3 dodecyl radicals.
5. Process for preventing fouling of a metal conductor through which is passing material from the group consisting of naphthas, gas oils and crude oils which are normally susceptible to the formation of fouling deposits when passed through such met-a1 conductor at 200-1100 F. for conversion of said material to an upgraded refinery product, which comprises adding to said material at least one part per million, based on the weight of said material, of an oil soluble alkaryl sulfur containing compound having a molecular weight of 350 to 1055 and the following chemical structure where R is an alkyl radical of from 8 to 22 carbon atoms in chain length, x is an integer from 1 to 3, and M is from 8 the group consisting of hydrogen, alkali, alkaline earth metal, and amine, the amount of said oil soluble alkaryl sulfur-containing compound being suflicient to reduce the formation of said deposits on the surface of said metal conductor in contact with said material.
6. The process of claim 5 where the alkaryl sulfur compound is the ethylene diarnine salt of an oil-soluble petroleum sulfonic acid.
7. The process of claim 5 where the alkaryl sulfurcontaining compound is the ethylene diamine salt of a dodecyl benzene sulfonic acid which contains from 1 to 3 dodecyl groups per molecule.
References Cited in the file of this patent UNITED STATES PATENTS 1,233,700 Petroff July 17, 1917 1,645,679 Axtell Oct. 18, 1927 2,261,206 Archibauld Nov. 4, 1941 2,442,820 McCormick June 8, 1948 2,449,585 Camp Sept. 21, 1948 2,472,463 Brandon et al June 7, 1949 2,533,303 Watkins Dec. 12, 1950 2,626,207 Wies et al. Jan. 20, 1953 2,639,227 Glendenning et al May 19, 1953 2,845,393 Varvel July 29, 1958 2,908,624 Johnson et a1. Oct. 13, 1959 2,952,629 Schneider et al Sept. 13, 1960 FOREIGN PATENTS 951,303 France Apr. 11, 1949 OTHER REFERENCES Petroleum Refining =With Chemicals, Kalichevsky et -al., page 275, pub. Elsevier Pub. Co., New York (1956).

Claims (1)

1. PROCESS FOR PREVENTING FOULING OF A METAL CONDUCTOR THROUGH WHICH IS PASSING MATERIAL FROM THE GROUP CONSISTING OF NAPHTHAS, GAS OILS AND CRUDE OILS WHICH ARE NORMALLY SUSCEPTIBLE TO THE FORMATION OF FOULING DEPOSITS WHEN PASSED THROUGH SUCH METAL CONDUCTOR AT 200-1100* F. FOR CONVERSION OF SAID MATERIAL TO AN UPGRADED REFINERY PRODUCT, WHICH COMPRISES ADDING TO SAID MATERIAL AT LEAST ONE PART PER MILLION, BASED ON THE WEIGHT OF SAID MATERIAL, OF AN OIL SOLUBLE ALKARYL SULFUR CONTAINING COMPOUND HAVING A MOLECULAR WEIGHT OF 350 TO 1055 FROM THE GROUP CONSISTING OF PETROLEUM SULFONIC ACIDS, THEIR ALKALI, ALKALINE EARTH METAL, AND AMINE SALTS AND ALKYL BENZENE SULFONIC ACIDS AND SULFONATES OF THE FORMULA
US787353A 1959-01-19 1959-01-19 Preventing fouling of metal conductors in a refinery process Expired - Lifetime US3105810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US787353A US3105810A (en) 1959-01-19 1959-01-19 Preventing fouling of metal conductors in a refinery process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US787353A US3105810A (en) 1959-01-19 1959-01-19 Preventing fouling of metal conductors in a refinery process

Publications (1)

Publication Number Publication Date
US3105810A true US3105810A (en) 1963-10-01

Family

ID=25141205

Family Applications (1)

Application Number Title Priority Date Filing Date
US787353A Expired - Lifetime US3105810A (en) 1959-01-19 1959-01-19 Preventing fouling of metal conductors in a refinery process

Country Status (1)

Country Link
US (1) US3105810A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193499A (en) * 1961-10-03 1965-07-06 Phillips Petroleum Co Solvent and method for removing waxy deposits
US3328284A (en) * 1965-01-06 1967-06-27 Petrolite Corp Oxyalkylate-sulfonate hydrocarbon inhibitor
US3328283A (en) * 1965-01-06 1967-06-27 Petrolite Corp Hydrocarbon inhibitors for use in oil refinery heat exchanger
US4216076A (en) * 1979-07-16 1980-08-05 Nl Industries, Inc. Antifoulant additives for hydrocarbon streams
US4222853A (en) * 1978-04-04 1980-09-16 Compagnie Francaise De Raffinage Application of sulfosuccinic ester anti-fouling agents
US4390412A (en) * 1978-11-06 1983-06-28 Union Oil Company Of California Process and compositions for reducing fouling of heat exchange surfaces
US4425223A (en) 1983-03-28 1984-01-10 Atlantic Richfield Company Method for minimizing fouling of heat exchangers
US4440625A (en) * 1981-09-24 1984-04-03 Atlantic Richfield Co. Method for minimizing fouling of heat exchanges
US4469586A (en) * 1982-09-30 1984-09-04 Chevron Research Company Heat exchanger antifoulant
US4578178A (en) * 1983-10-19 1986-03-25 Betz Laboratories, Inc. Method for controlling fouling deposit formation in a petroleum hydrocarbon or petrochemical
EP0192323A1 (en) * 1985-01-18 1986-08-27 Nippon Oil Co. Ltd. Gasoline compositions for automotive vehicles
US4642175A (en) * 1984-05-03 1987-02-10 Mobil Oil Corporation Process for upgrading heavy petroleum feedstock
US4775458A (en) * 1986-12-18 1988-10-04 Betz Laboratories, Inc. Multifunctional antifoulant compositions and methods of use thereof
US4775459A (en) * 1986-11-14 1988-10-04 Betz Laboratories, Inc. Method for controlling fouling deposit formation in petroleum hydrocarbons or petrochemicals
US4804456A (en) * 1986-12-18 1989-02-14 Betz Laboratories, Inc. Method for controlling fouling deposit formation in petroleum hydrocarbons or petrochemicals
US4889614A (en) * 1989-05-09 1989-12-26 Betz Laboratories, Inc. Methods for retarding coke formation during pyrolytic hydrocarbon processing
US4927561A (en) * 1986-12-18 1990-05-22 Betz Laboratories, Inc. Multifunctional antifoulant compositions
US4927519A (en) * 1988-04-04 1990-05-22 Betz Laboratories, Inc. Method for controlling fouling deposit formation in a liquid hydrocarbonaceous medium using multifunctional antifoulant compositions
US5314643A (en) * 1993-03-29 1994-05-24 Betz Laboratories, Inc. High temperature corrosion inhibitor
US5783109A (en) * 1994-04-29 1998-07-21 Nalco/Exxon Energy Chemicals, L.P. Dispersion of gums and iron sulfide in hydrocarbon streams with alkyl phenol-polyethylenepolyamine formaldehyde resins
US5853565A (en) * 1996-04-01 1998-12-29 Amoco Corporation Controlling thermal coking
US5925233A (en) * 1996-10-15 1999-07-20 Clariant Gmbh Use of alkanesulfonic acids as asphaltene-dispersing agents
US20050258071A1 (en) * 2004-05-14 2005-11-24 Ramesh Varadaraj Enhanced thermal upgrading of heavy oil using aromatic polysulfonic acid salts
US20100038289A1 (en) * 2008-08-15 2010-02-18 Exxonmobil Research And Engineering Company Metal sulphonate additives for fouling mitigation in petroleum refinery processes
US8734635B2 (en) 2010-07-13 2014-05-27 Baker Hughes Incorporated Method for inhibiting fouling in vapor transport system
EP3280784A4 (en) * 2015-04-08 2018-09-05 Baker Hughes Incorporated Decreasing fouling in hydrocarbon-based fluids

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1233700A (en) * 1915-09-10 1917-07-17 Twitchell Process Company Process of treating mineral oils.
US1645679A (en) * 1926-12-27 1927-10-18 Axtell Res Lab Inc Petroleum-refining process and reagent for the removal of sulphur
US2261206A (en) * 1939-12-30 1941-11-04 Standard Oil Dev Co White oil refining
US2442820A (en) * 1946-06-08 1948-06-08 Atlantic Refining Co Treatment of hydrocarbon oils
US2449585A (en) * 1946-08-19 1948-09-21 Standard Oil Dev Co Suppression of corrosion in ferrous alloy vessels in the treatment of hydrocarbons
US2472463A (en) * 1945-05-05 1949-06-07 Standard Oil Dev Co The distillation of a mixture of hydrocarbons
FR951303A (en) * 1945-05-12 1949-10-21 Standard Oil Dev Co Hydrocarbon treatment process
US2533303A (en) * 1947-10-09 1950-12-12 Sinclair Refining Co Prevention of rust
US2626207A (en) * 1948-09-17 1953-01-20 Shell Dev Fuel oil composition
US2639227A (en) * 1950-09-02 1953-05-19 Shell Dev Anticlogging fuel oil compositions
US2845393A (en) * 1956-07-20 1958-07-29 Phillips Petroleum Co Corrosion-inhibiting composition containing cetyl dimethyl amine petroleum sulfonates and method
US2908624A (en) * 1955-12-02 1959-10-13 Nat Aluminate Corp Process of inhibiting deposition of organic substances in heat exchangers and the like operating at elevated temperatures
US2952629A (en) * 1957-05-27 1960-09-13 Sun Oil Co Decolorizing petroleum with aromatic sulfonic acids

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1233700A (en) * 1915-09-10 1917-07-17 Twitchell Process Company Process of treating mineral oils.
US1645679A (en) * 1926-12-27 1927-10-18 Axtell Res Lab Inc Petroleum-refining process and reagent for the removal of sulphur
US2261206A (en) * 1939-12-30 1941-11-04 Standard Oil Dev Co White oil refining
US2472463A (en) * 1945-05-05 1949-06-07 Standard Oil Dev Co The distillation of a mixture of hydrocarbons
FR951303A (en) * 1945-05-12 1949-10-21 Standard Oil Dev Co Hydrocarbon treatment process
US2442820A (en) * 1946-06-08 1948-06-08 Atlantic Refining Co Treatment of hydrocarbon oils
US2449585A (en) * 1946-08-19 1948-09-21 Standard Oil Dev Co Suppression of corrosion in ferrous alloy vessels in the treatment of hydrocarbons
US2533303A (en) * 1947-10-09 1950-12-12 Sinclair Refining Co Prevention of rust
US2626207A (en) * 1948-09-17 1953-01-20 Shell Dev Fuel oil composition
US2639227A (en) * 1950-09-02 1953-05-19 Shell Dev Anticlogging fuel oil compositions
US2908624A (en) * 1955-12-02 1959-10-13 Nat Aluminate Corp Process of inhibiting deposition of organic substances in heat exchangers and the like operating at elevated temperatures
US2845393A (en) * 1956-07-20 1958-07-29 Phillips Petroleum Co Corrosion-inhibiting composition containing cetyl dimethyl amine petroleum sulfonates and method
US2952629A (en) * 1957-05-27 1960-09-13 Sun Oil Co Decolorizing petroleum with aromatic sulfonic acids

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193499A (en) * 1961-10-03 1965-07-06 Phillips Petroleum Co Solvent and method for removing waxy deposits
US3328284A (en) * 1965-01-06 1967-06-27 Petrolite Corp Oxyalkylate-sulfonate hydrocarbon inhibitor
US3328283A (en) * 1965-01-06 1967-06-27 Petrolite Corp Hydrocarbon inhibitors for use in oil refinery heat exchanger
US4222853A (en) * 1978-04-04 1980-09-16 Compagnie Francaise De Raffinage Application of sulfosuccinic ester anti-fouling agents
US4390412A (en) * 1978-11-06 1983-06-28 Union Oil Company Of California Process and compositions for reducing fouling of heat exchange surfaces
US4216076A (en) * 1979-07-16 1980-08-05 Nl Industries, Inc. Antifoulant additives for hydrocarbon streams
US4440625A (en) * 1981-09-24 1984-04-03 Atlantic Richfield Co. Method for minimizing fouling of heat exchanges
US4469586A (en) * 1982-09-30 1984-09-04 Chevron Research Company Heat exchanger antifoulant
US4425223A (en) 1983-03-28 1984-01-10 Atlantic Richfield Company Method for minimizing fouling of heat exchangers
US4578178A (en) * 1983-10-19 1986-03-25 Betz Laboratories, Inc. Method for controlling fouling deposit formation in a petroleum hydrocarbon or petrochemical
US4642175A (en) * 1984-05-03 1987-02-10 Mobil Oil Corporation Process for upgrading heavy petroleum feedstock
EP0192323A1 (en) * 1985-01-18 1986-08-27 Nippon Oil Co. Ltd. Gasoline compositions for automotive vehicles
US4775459A (en) * 1986-11-14 1988-10-04 Betz Laboratories, Inc. Method for controlling fouling deposit formation in petroleum hydrocarbons or petrochemicals
US4804456A (en) * 1986-12-18 1989-02-14 Betz Laboratories, Inc. Method for controlling fouling deposit formation in petroleum hydrocarbons or petrochemicals
US4775458A (en) * 1986-12-18 1988-10-04 Betz Laboratories, Inc. Multifunctional antifoulant compositions and methods of use thereof
US4927561A (en) * 1986-12-18 1990-05-22 Betz Laboratories, Inc. Multifunctional antifoulant compositions
US4927519A (en) * 1988-04-04 1990-05-22 Betz Laboratories, Inc. Method for controlling fouling deposit formation in a liquid hydrocarbonaceous medium using multifunctional antifoulant compositions
US4889614A (en) * 1989-05-09 1989-12-26 Betz Laboratories, Inc. Methods for retarding coke formation during pyrolytic hydrocarbon processing
US5314643A (en) * 1993-03-29 1994-05-24 Betz Laboratories, Inc. High temperature corrosion inhibitor
US5783109A (en) * 1994-04-29 1998-07-21 Nalco/Exxon Energy Chemicals, L.P. Dispersion of gums and iron sulfide in hydrocarbon streams with alkyl phenol-polyethylenepolyamine formaldehyde resins
US5853565A (en) * 1996-04-01 1998-12-29 Amoco Corporation Controlling thermal coking
US5925233A (en) * 1996-10-15 1999-07-20 Clariant Gmbh Use of alkanesulfonic acids as asphaltene-dispersing agents
US20050258071A1 (en) * 2004-05-14 2005-11-24 Ramesh Varadaraj Enhanced thermal upgrading of heavy oil using aromatic polysulfonic acid salts
US20050258070A1 (en) * 2004-05-14 2005-11-24 Ramesh Varadaraj Fouling inhibition of thermal treatment of heavy oils
US7594989B2 (en) * 2004-05-14 2009-09-29 Exxonmobile Research And Engineering Company Enhanced thermal upgrading of heavy oil using aromatic polysulfonic acid salts
US7704376B2 (en) * 2004-05-14 2010-04-27 Exxonmobil Research And Engineering Company Fouling inhibition of thermal treatment of heavy oils
US20100038289A1 (en) * 2008-08-15 2010-02-18 Exxonmobil Research And Engineering Company Metal sulphonate additives for fouling mitigation in petroleum refinery processes
WO2010019543A2 (en) * 2008-08-15 2010-02-18 Exxonmobil Research And Engineering Company Metal sulphonate additives for fouling mitigation in petroleum refinery processes
WO2010019543A3 (en) * 2008-08-15 2011-04-21 Exxonmobil Research And Engineering Company Metal sulphonate additives for fouling mitigation in petroleum refinery processes
US8734635B2 (en) 2010-07-13 2014-05-27 Baker Hughes Incorporated Method for inhibiting fouling in vapor transport system
EP3280784A4 (en) * 2015-04-08 2018-09-05 Baker Hughes Incorporated Decreasing fouling in hydrocarbon-based fluids

Similar Documents

Publication Publication Date Title
US3105810A (en) Preventing fouling of metal conductors in a refinery process
US4619756A (en) Method to inhibit deposit formation
US5282957A (en) Methods for inhibiting polymerization of hydrocarbons utilizing a hydroxyalkylhydroxylamine
US4744881A (en) Antioxidant material and its use
US3261774A (en) Reducing fouling in refining of petroleum products
GB2150150A (en) Process for the thermal treatment of hydrocarbon charges in the presence of additives which reduce coke formation
US2258279A (en) Process for extraction
US2771348A (en) Stabilized cracked petroleum fractions
US2006756A (en) Liquid fuel composition
US2701187A (en) Color stabilization in fuel oils
US2281894A (en) Lubricating oil composition
US2761815A (en) Preparation of specialty naphthas from high sulfur crudes
US2706149A (en) Fuel oil treated with zinc
US2370533A (en) Cracking and reforming of hydrocarbons
US3506712A (en) Quaternary amine salts useful as fuel stabilizers
US2000410A (en) Treatment of hydrocarbon oils
US3492219A (en) Reducing fouling in refining of petroleum products by salicylidene additive
US3247094A (en) Inhibiting corrosion of metal conductors
US2276158A (en) Suppression of metal catalysis
US3504055A (en) Neutral primary tertiaralkyl amine salts of tripolyphosphoric acid and phosphoric acid alkyl esters
US3051648A (en) Stability of hydrocarbon distillate
US2892769A (en) Automatic burner fuels and process of making them
US2877172A (en) Combined thermal reforming, catalytic cracking and hydrofining process to improve engine cleanliness
US2918361A (en) Stabilization of hydrocarbons
US2769762A (en) Production of naphthas of improved characteristics by treating with bauxite