US3087233A - Pervious metal fiber material and method of making the same - Google Patents

Pervious metal fiber material and method of making the same Download PDF

Info

Publication number
US3087233A
US3087233A US69685A US6968560A US3087233A US 3087233 A US3087233 A US 3087233A US 69685 A US69685 A US 69685A US 6968560 A US6968560 A US 6968560A US 3087233 A US3087233 A US 3087233A
Authority
US
United States
Prior art keywords
metal
strands
jackets
fibers
mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US69685A
Inventor
Robert W Turnbull
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fram Corp
Original Assignee
Fram Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fram Corp filed Critical Fram Corp
Priority to US69685A priority Critical patent/US3087233A/en
Priority to GB38542/61A priority patent/GB942513A/en
Priority to DE1961F0035331 priority patent/DE1181671B/en
Application granted granted Critical
Publication of US3087233A publication Critical patent/US3087233A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/002Manufacture of articles essentially made from metallic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1137Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/927Decorative informative
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/952Producing fibers, filaments, or whiskers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4981Utilizing transitory attached element or associated separate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12153Interconnected void structure [e.g., permeable, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12424Mass of only fibers

Definitions

  • This invention relates to a pervious material formed of fine metal fibers and to the method of making the same.
  • Articles formed of metal fibers are well-known and have been used for years.
  • One example of the same is steel wool which is used for scouring purposes and as a filter.
  • the individual fibers forming such prior metal fiber articles are much larger in diameter or thickness than the very fine metal fibers contemplated by the present invention. This is because such metal fibers have been produced heretofore by a cutting or tearing operation or a drawing operation, and these operations do not produce fibers having the degree of fineness herein contemplated.
  • An important object of the present invention is to produce a metal fiber filter that is capable of removing all solids more than a few microns in size from the fluid being filtered.
  • the steel wool and other metal fiber materials available heretofore are too coarse to produce this high degree of filtration.
  • the fine metal fibers herein contemplated are produced by using fine organic carrier strands, such as natural or synthetic fibers or filaments, and depositing on these strands a thin metal jacket of iron, nickel, copper or the like by a gas plating operation that is now well-known.
  • Apparatus for gas plating glass fibers and other objects is disclosed in patents now owned or controlled by the Union Carbide Corporation.
  • the carrier strands may vary extensively in length and range from a fraction of an inch to one or more inches long. These strands are deposited in a randomly disposed mat or batt either before or after they are gas plated.
  • the individual carrier strands may have such jacket deposited thereon by running continuous organic strands through a gas plating device. However, it is preferable, in most cases, to form a mat or batt of such organic strands and then subject this mat of strands to the gas plating operation so as to deposit a thin metal jacket on each individual strand.
  • the metal jackets thus formed may be submicron or low micron in wall thickness.
  • this mat of plated strands is heated or otherwise treated so as to decompose the carrier strands without destroying the metal jackets formed on such strands. What remains after the organic carrier strands are destroyed are the thin metal jackets disposed at random to each other in the form of a relatively open mat or batt. The mat may then be compressed more or less to flatten or partly flatten these metal jackets and crowd them together to form a pervious metal material of the desired density and pore structure.
  • this fibrous mass may be desirable to sinter this fibrous mass so as to bond the metal fibers together to prevent fiber migration and form a firm metal sheet.
  • porous or pervious metal fiber mass thus produced may be used as a catalysis or self-lubricating bearing member or in other fields where this very fine pore structure is desired, but it is particularly well adapted for use as a filter to filter either liquids or gases to remove all solids over a few microns in size.
  • FIG. 1 is a perspective view of the mat or batt formed of textile fibers or strands.
  • FIG. 2 on a greatly enlarged scale shows a few of the strands of FIG. 1 after a thin metal jacket has been deposited on each strand.
  • FIG. 3 is a perspective view of a porous metal sheet formed by metal coating the strands of FIG. 1 and then decomposing these carrier strands, and compressing the remaining metal jackets.
  • FIG. 4 is a greatly enlarged perspective view of part of the porous metal sheet of .FIG. 3.
  • FIG. 5 is a further enlarged view on one of the collapsed metal jackets of FIG. 4, and
  • FIG. 6 is a perspective view of a filter disc or catalysis cut from the sheet of FIG. 3.
  • the mat or batt shown in FIG. 1 may be given any desired thickness, Width and length found desirable.
  • This mat is designated by the numeral 10 and is made up of the fine fibers, filaments or strands 11. It is important that these strands, which are frequently hereinafter called carrier strands, be formed of organic fibers or filaments that can be substantially completely decomposed by heat as hereinafter described.
  • the individual strands 11 have deposited thereon thin metal jackets 12.
  • Such jackets can be deposited on con tinuous lengths of synthetic filaments by passing these filaments through a gaseous metal coating chamber, such as disclosed in the patents above referred to, and then the coated filaments can be cut into short lengths and deposited one on top of the other at random to each other as shown in FIG. 2.
  • the mat 10 of organic randomly disposed fibers 11 as above described, and then metal coat the carrier strand 11 throughout the mat 10 by a gaseous metal depositing operation which will now be described.
  • Such coating operation serves to cover each fiber in the mat with a thin metal jacket, and these jackets may be less than one micron to a few microns in wall thickness.
  • the jackets deposited thereon will likewise be non-circular in cross section, whereas, round, extruded filament-s are the carrier strands, the metal jackets will be round in cross section.
  • the procedure for metal coating the carrier strands 11 as they lay in the mat or batt 10 consists in suspending the organic fiber mat 10, 11 in a chamber with windows transparent :to infra-red radiation, purging the chamber with an inert gas such as CO or N heating the mat to above the decomposition temperature of the plating vapor by external infra-red radiators, then admitting the plating gas mixed with a carrier gas such as N or 1-1 until such time as the desired thickness of plate has deposited on the fibers 11.
  • the plating gas may be any metal bearing gas or volatile liquid such as iron or nickel carbonyl whose decomposition temperature is below the decomposition temperature of the organic fibers. In this way a jacket 12 of the desired thickness is deposited on the carrier strands 11.
  • the mat is then heated in an inert or reducing altmosphere, such as N or H to a temperature high enough to anneal the metal and decompose the organic fibers 11. This will leave the jackets 12 as empty tubes. In the case of nickel on cellulose, this can be done between 1400 1500 R, which is Well below the melting point of nickel.
  • the mat is then cooled to room temperature and compressed to the desired thickness and density to thereby provide a pervious metal mat made up of partly or substantially flattened metal tubes. This compressed metal mat is shown in FIG. 3 and is designated by the numeral 13.
  • the mat is formed entirely of the hollow metal jackets 14. These jackets which may be from a fraction of an inch to an inch or more long are frequently herein called, metal fibers.
  • the carrier strands 11 should be fine in diameter or cross section, and the metal jackets deposited on such fibers should be very thin, say not more than a few microns thick.
  • porous discs such as shown in FIG. 6 and indicated by 15 may be cut there-from, or this pervious sheet 13 may be otherwise used. Another use of the porous metal sheet 13 would be to pleat the sheet and form this pleated material into a cylinder for use as a high temperature metal filter of very fine pore structure capable of removing all solids from a fluid more than a few microns in size.
  • the porous metal sheet 13 may be strengthened by applying to one or both faces of the sheet 13 a suitable Woven metal cloth (not shown).
  • the metal sheet 13 could be sintered :to such wire cloth in a reducing atmosphere at a time and temperature found suitable for the particular metal and fiber size involved.
  • the reinforced porous metal sheet or filter media can then be formed to any desired shape.
  • the method of making a pervious metal material which comprises forming a mass of randomly disposed long slender interlocked organic carrier strands, depositing on the individual strands a thin metal jacket, then destroying said strands in the mass Without destroying their meta-l jacket, and then compressing these randomly disposed empty metal jackets to flatten them and form a compact pervious mass of such interlocked jackets.
  • the method of making a pervious metal material which comprises forming a mass of randomly disposed long slender interlocked organic carrier strands, depositing on the individual strands a thin metal jacket, then destroying said strands in the mass without destroying their metal jacket, and then compressing these randomly disposed empty metal jackets to flatten them and sintering one to the other to form a compact pervious mass of such jackets.
  • the method of making a metal filter material which comprises forming a mass of randomly disposed long slender interlocked organic carrier strands, depositing on the individual strands a thin metal jacket, then destroying said strands in the mass without destroying their metal jackets, and then compressing these randomly disposed empty metal jackets to flatten them and form a compact pervious mass of such interlocked jackets.
  • a pervious mass of metal material comprising a plurality of randomly disposed long slender interlocked fibers consisting of hollow plated metal jackets, said jackets being in a distorted and flattened condition and sintered together at their points of contact, the wall thickness of said jackets being between one micron and a few microns.

Description

April 30, 1963 R. w. TURNBULL 3,087,233
PERVIOUS METAL FIBER MATERIAL AND METHOD OF MAKING THE SAME Fileql Nov. 16, 1960 /2 /4 x I I ##3# F- I G. 3
F l G. 6
INVENTOR.
ROBERT W. TURNBULL MM & L MW I ATTORNEY we. Jun- 3,087,233 PERVISUS METAL FIBER MATERIAL AND METHGD (BF MAKING THE SAME Robert W. Turnhull, Barriugton, RR, assiguor to Fram (Iorporatiou, Providence, RL, a corporation of Rhode Island Filed Nov. 16, 19 50, Ser. No. 69,685
4 Claims. (til. 29-182) This invention relates to a pervious material formed of fine metal fibers and to the method of making the same.
Articles formed of metal fibers are well-known and have been used for years. One example of the same is steel wool which is used for scouring purposes and as a filter.
The individual fibers forming such prior metal fiber articles are much larger in diameter or thickness than the very fine metal fibers contemplated by the present invention. This is because such metal fibers have been produced heretofore by a cutting or tearing operation or a drawing operation, and these operations do not produce fibers having the degree of fineness herein contemplated.
An important object of the present invention is to produce a metal fiber filter that is capable of removing all solids more than a few microns in size from the fluid being filtered. The steel wool and other metal fiber materials available heretofore are too coarse to produce this high degree of filtration.
The fine metal fibers herein contemplated are produced by using fine organic carrier strands, such as natural or synthetic fibers or filaments, and depositing on these strands a thin metal jacket of iron, nickel, copper or the like by a gas plating operation that is now well-known. Apparatus for gas plating glass fibers and other objects is disclosed in patents now owned or controlled by the Union Carbide Corporation.
The carrier strands may vary extensively in length and range from a fraction of an inch to one or more inches long. These strands are deposited in a randomly disposed mat or batt either before or after they are gas plated.
The individual carrier strands may have such jacket deposited thereon by running continuous organic strands through a gas plating device. However, it is preferable, in most cases, to form a mat or batt of such organic strands and then subject this mat of strands to the gas plating operation so as to deposit a thin metal jacket on each individual strand. The metal jackets thus formed may be submicron or low micron in wall thickness.
Next, this mat of plated strands is heated or otherwise treated so as to decompose the carrier strands without destroying the metal jackets formed on such strands. What remains after the organic carrier strands are destroyed are the thin metal jackets disposed at random to each other in the form of a relatively open mat or batt. The mat may then be compressed more or less to flatten or partly flatten these metal jackets and crowd them together to form a pervious metal material of the desired density and pore structure.
As a final step, it may be desirable to sinter this fibrous mass so as to bond the metal fibers together to prevent fiber migration and form a firm metal sheet.
The porous or pervious metal fiber mass thus produced may be used as a catalysis or self-lubricating bearing member or in other fields where this very fine pore structure is desired, but it is particularly well adapted for use as a filter to filter either liquids or gases to remove all solids over a few microns in size.
The above and other features of the present invention tates atet and method of making the material will be further understood from the following description when read in connection with the accompanying drawing, wherein:
FIG. 1 is a perspective view of the mat or batt formed of textile fibers or strands.
FIG. 2 on a greatly enlarged scale shows a few of the strands of FIG. 1 after a thin metal jacket has been deposited on each strand.
FIG. 3 is a perspective view of a porous metal sheet formed by metal coating the strands of FIG. 1 and then decomposing these carrier strands, and compressing the remaining metal jackets.
FIG. 4 is a greatly enlarged perspective view of part of the porous metal sheet of .FIG. 3.
FIG. 5 is a further enlarged view on one of the collapsed metal jackets of FIG. 4, and
FIG. 6 is a perspective view of a filter disc or catalysis cut from the sheet of FIG. 3.
The mat or batt shown in FIG. 1 may be given any desired thickness, Width and length found desirable. This mat is designated by the numeral 10 and is made up of the fine fibers, filaments or strands 11. It is important that these strands, which are frequently hereinafter called carrier strands, be formed of organic fibers or filaments that can be substantially completely decomposed by heat as hereinafter described.
Such strands 11 may be natural fibers, such as cotton or synthetic fibers, such as extruded viscose filaments. These extruded filaments should be cut or broken to relatively short lengths measuring anywhere from a fraction of an inch to an inch or more in length, so that they can be blown or otherwise deposited one on top of the other at random to each other to \form the mat =10 of the desired size and thickness. If the mat 10 is formed of cotton fibers they will tend to interlock which is desirable. If this mat is formed of synthetic fibers, such fibers should preferably be pre-crimped so that they will interlock one with the other in the mat 10. T he carrier strands 11 are preferably fine strands for a reason to be given.
The individual strands 11 have deposited thereon thin metal jackets 12. Such jackets can be deposited on con tinuous lengths of synthetic filaments by passing these filaments through a gaseous metal coating chamber, such as disclosed in the patents above referred to, and then the coated filaments can be cut into short lengths and deposited one on top of the other at random to each other as shown in FIG. 2.
However, it is preferable to form the mat 10 of organic randomly disposed fibers 11 as above described, and then metal coat the carrier strand 11 throughout the mat 10 by a gaseous metal depositing operation which will now be described. Such coating operation serves to cover each fiber in the mat with a thin metal jacket, and these jackets may be less than one micron to a few microns in wall thickness. -If cotton fibers that are non-circular in cross section are used as the carrier strands, the jackets deposited thereon will likewise be non-circular in cross section, whereas, round, extruded filament-s are the carrier strands, the metal jackets will be round in cross section.
The procedure for metal coating the carrier strands 11 as they lay in the mat or batt 10 consists in suspending the organic fiber mat 10, 11 in a chamber with windows transparent :to infra-red radiation, purging the chamber with an inert gas such as CO or N heating the mat to above the decomposition temperature of the plating vapor by external infra-red radiators, then admitting the plating gas mixed with a carrier gas such as N or 1-1 until such time as the desired thickness of plate has deposited on the fibers 11. The plating gas may be any metal bearing gas or volatile liquid such as iron or nickel carbonyl whose decomposition temperature is below the decomposition temperature of the organic fibers. In this way a jacket 12 of the desired thickness is deposited on the carrier strands 11.
The mat is then heated in an inert or reducing altmosphere, such as N or H to a temperature high enough to anneal the metal and decompose the organic fibers 11. This will leave the jackets 12 as empty tubes. In the case of nickel on cellulose, this can be done between 1400 1500 R, which is Well below the melting point of nickel. The mat is then cooled to room temperature and compressed to the desired thickness and density to thereby provide a pervious metal mat made up of partly or substantially flattened metal tubes. This compressed metal mat is shown in FIG. 3 and is designated by the numeral 13. The mat is formed entirely of the hollow metal jackets 14. These jackets which may be from a fraction of an inch to an inch or more long are frequently herein called, metal fibers.
Since the primary purpose of the present invention is to provide a porous metal material having exceptionally fine pore structure, the carrier strands 11 should be fine in diameter or cross section, and the metal jackets deposited on such fibers should be very thin, say not more than a few microns thick.
After the pervious metal sheet 13 formed of the more or less flattened metal jackets 14 is produced as just de scribed, and the fibers are sintered one to the other to retain them in place, porous discs such as shown in FIG. 6 and indicated by 15 may be cut there-from, or this pervious sheet 13 may be otherwise used. Another use of the porous metal sheet 13 would be to pleat the sheet and form this pleated material into a cylinder for use as a high temperature metal filter of very fine pore structure capable of removing all solids from a fluid more than a few microns in size.
If desired, the porous metal sheet 13 may be strengthened by applying to one or both faces of the sheet 13 a suitable Woven metal cloth (not shown). The metal sheet 13 could be sintered :to such wire cloth in a reducing atmosphere at a time and temperature found suitable for the particular metal and fiber size involved. The reinforced porous metal sheet or filter media can then be formed to any desired shape.
It will be seen from the foregoing that by forming a pervious metal material as herein contemplated, so that the same is made up of very fine metal jackets, a metal sheet having extremely fine pore structure is provided.
Having thus described my invention, what I claim and desire to protect by Letters Patent is:
1. The method of making a pervious metal material, which comprises forming a mass of randomly disposed long slender interlocked organic carrier strands, depositing on the individual strands a thin metal jacket, then destroying said strands in the mass Without destroying their meta-l jacket, and then compressing these randomly disposed empty metal jackets to flatten them and form a compact pervious mass of such interlocked jackets.
2. The method of making a pervious metal material, which comprises forming a mass of randomly disposed long slender interlocked organic carrier strands, depositing on the individual strands a thin metal jacket, then destroying said strands in the mass without destroying their metal jacket, and then compressing these randomly disposed empty metal jackets to flatten them and sintering one to the other to form a compact pervious mass of such jackets.
3. The method of making a metal filter material which comprises forming a mass of randomly disposed long slender interlocked organic carrier strands, depositing on the individual strands a thin metal jacket, then destroying said strands in the mass without destroying their metal jackets, and then compressing these randomly disposed empty metal jackets to flatten them and form a compact pervious mass of such interlocked jackets.
4. A pervious mass of metal material comprising a plurality of randomly disposed long slender interlocked fibers consisting of hollow plated metal jackets, said jackets being in a distorted and flattened condition and sintered together at their points of contact, the wall thickness of said jackets being between one micron and a few microns.
References Cited in the file of this patent UNITED STATES PATENTS 2,464,517 Kurtz Mar. 15, 1949 2,616,165 Brennan Nov. 4, 1952 2,619,438 Varian Nov. 25, 1952 2,709,651 Gurnick May 3 1, 1955

Claims (1)

1. THE METHOD OF MAKING A PERVIOUS METAL MATERIAL, WHICH COMPRISES FORMING A MASS OF RANDOMLY DISPOSED LONG SLENDER INTERLOCKED ORGANIC CARRIER STRANDS, DEPOSITING ON THE INDIVIDUAL STRANDS A THIN METAL JACKET, THEN
US69685A 1960-11-16 1960-11-16 Pervious metal fiber material and method of making the same Expired - Lifetime US3087233A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US69685A US3087233A (en) 1960-11-16 1960-11-16 Pervious metal fiber material and method of making the same
GB38542/61A GB942513A (en) 1960-11-16 1961-10-27 Pervious metal fiber material and method of making the same
DE1961F0035331 DE1181671B (en) 1960-11-16 1961-11-10 Permeable, essentially compact metal material for filtering purposes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US69685A US3087233A (en) 1960-11-16 1960-11-16 Pervious metal fiber material and method of making the same

Publications (1)

Publication Number Publication Date
US3087233A true US3087233A (en) 1963-04-30

Family

ID=22090580

Family Applications (1)

Application Number Title Priority Date Filing Date
US69685A Expired - Lifetime US3087233A (en) 1960-11-16 1960-11-16 Pervious metal fiber material and method of making the same

Country Status (3)

Country Link
US (1) US3087233A (en)
DE (1) DE1181671B (en)
GB (1) GB942513A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278279A (en) * 1962-10-25 1966-10-11 Wmf Wuerttemberg Metallwaren Uniformly porous product consisting basically of metal fibers and process of making it
US3287169A (en) * 1965-04-09 1966-11-22 Baldwin Lima Hamilton Corp Fuel cell having a hollow foraminous electrode
US3399979A (en) * 1963-11-01 1968-09-03 Union Carbide Corp Process for producing metal nitride fibers, textiles and shapes
US3403008A (en) * 1966-12-19 1968-09-24 Union Carbide Corp Process for producing metal carbide fibers, textiles and shapes
US3406025A (en) * 1966-12-19 1968-10-15 Union Carbide Corp Process for producing metal fibers, textiles and shapes
US3437783A (en) * 1966-07-26 1969-04-08 Jerome H Lemelson Matte structure and method of producing same
DE1296756B (en) * 1965-11-20 1969-06-04 Siemens Ag Method of making composite from higher melting metal particles and a lower melting component
US3469297A (en) * 1966-04-20 1969-09-30 Brunswick Corp Porous metal structure
US3489534A (en) * 1967-01-03 1970-01-13 Gen Electric Lightweight metallic structure
US3505038A (en) * 1964-08-24 1970-04-07 Brunswick Corp Metal fibril compacts
US3506885A (en) * 1965-07-12 1970-04-14 Brunswick Corp Electric device having passage structure electrode
US3783590A (en) * 1970-07-09 1974-01-08 A Allen Filter-silencer for pneumatic devices
US3783969A (en) * 1968-05-27 1974-01-08 Pall Corp Acoustic insulation comprising anisometric compressed and bonded multilayer knitted wire mesh composites
US3833791A (en) * 1964-07-28 1974-09-03 Schladitz Whiskers Ag Resistance type fluid heating apparatus
USRE28470E (en) * 1966-04-20 1975-07-08 Porous metal structure
US3964902A (en) * 1974-02-27 1976-06-22 The United States Of America As Represented By The United States National Aeronautics And Space Administration Method of forming a wick for a heat pipe
US3973059A (en) * 1969-09-29 1976-08-03 Brunswick Corporation Method of making metal flocked fabric
US4170629A (en) * 1975-09-15 1979-10-09 Betz Erwin C Method of converting hydrocarbon waste gas streams using a non-uniform crimped metal ribbon packed catalyst bed
FR2618694A1 (en) * 1987-07-29 1989-02-03 Mitsubishi Chem Ind DESAERATOR FOR PARTICULATE MATERIALS
WO1989007502A1 (en) * 1988-02-11 1989-08-24 Jenkin William C Pyrolysis of metal carbonyl
EP0402738A2 (en) * 1989-06-16 1990-12-19 Inco Limited Nickel foam
US5064459A (en) * 1989-08-11 1991-11-12 Bayern-Chemie Gesellschaft Fur Flugchemische Antriebe Mbh Filter arrangement for airbag gas generators
US5124198A (en) * 1989-01-23 1992-06-23 Minnesota Mining And Manufacturing Company Metal fiber mat/polymer composite
US5179061A (en) * 1990-07-19 1993-01-12 Haerle Hans A Filter or catalyst body
US5204067A (en) * 1991-07-11 1993-04-20 Schwaebische Huettenwerke Gmbh Filter
US5211918A (en) * 1987-12-22 1993-05-18 Schwabische Huttenwerke Catalytic converter for exhaust gases
US5215724A (en) * 1990-09-20 1993-06-01 Schwabische Huttenwerke Gmbh Sintered composite filter
US5226210A (en) * 1989-01-23 1993-07-13 Minnesota Mining And Manufacturing Company Method of forming metal fiber mat/polymer composite
US5240485A (en) * 1990-07-05 1993-08-31 Haerle Hans A Exhaust gas filter
US5266279A (en) * 1991-03-28 1993-11-30 Schwaebische Huettenwerke Gmbh Filter or catalyst body
US5335492A (en) * 1991-03-21 1994-08-09 Schwaebische Huettenwerke Gmbh Exhaust gas filter and/or a catalytic converter
US5425236A (en) * 1991-11-12 1995-06-20 Schwaebische Huettenwerke Gmbh Catalyzer arrangement for the exhaust gases of an internal combustion engine
US5505757A (en) * 1993-08-20 1996-04-09 Sumitomo Electric Industries, Ltd. Corrosion-resistant metal filters
US5868810A (en) * 1996-09-10 1999-02-09 Schwarzkopf Technologies Corporation Filtering cartridge
US6298538B1 (en) * 1996-02-23 2001-10-09 Global Material Technologies, Inc. Nonwoven metal fabric and method of making same
US20030135971A1 (en) * 1997-11-12 2003-07-24 Michael Liberman Bundle draw based processing of nanofibers and method of making
US20050223688A1 (en) * 2001-12-07 2005-10-13 N.V. Bekaret S.A. Filter medium
US20050254985A1 (en) * 2004-04-14 2005-11-17 Akihiko Chiba Method for manufacturing biomedical porous article
US20060277881A1 (en) * 2003-05-23 2006-12-14 N.V. Bekaert S.A. Diesel soot particulate filter medium
US7445646B1 (en) * 2004-08-06 2008-11-04 Pacesetter, Inc. Method of producing an anode for an electrolytic capacitor
US7544288B1 (en) * 2008-05-16 2009-06-09 Michael Cook Gutter filtering device
US20100196218A1 (en) * 2007-07-16 2010-08-05 Inge Schildermans Filter medium
CN105817618A (en) * 2016-03-28 2016-08-03 佳木斯大学 Sintering method of porous metal fiber materials with controllable penetrability and porosity
US10767696B2 (en) 2017-12-29 2020-09-08 Saint-Gobain Performance Plastics Pampus Gmbh Bearing component and method of making and using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437457A (en) * 1965-04-13 1969-04-08 Huyck Corp Reinforced metal fiber composites
CN1048892A (en) * 1989-05-24 1991-01-30 奥本大学 Blend fiber composite structure and method for making thereof and purposes
US5102745A (en) * 1989-11-13 1992-04-07 Auburn University Mixed fiber composite structures
US5525423A (en) * 1994-06-06 1996-06-11 Memtec America Corporation Method of making multiple diameter metallic tow material
US5584109A (en) * 1994-06-22 1996-12-17 Memtec America Corp. Method of making a battery plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464517A (en) * 1943-05-13 1949-03-15 Callite Tungsten Corp Method of making porous metallic bodies
US2616165A (en) * 1947-01-18 1952-11-04 Everett D Mccurdy Electrode for electrolytic devices and methods of making same
US2619438A (en) * 1945-04-16 1952-11-25 Sperry Corp Method of making a grid structure
US2709651A (en) * 1952-05-02 1955-05-31 Thompson Prod Inc Method of controlling the density of sintered compacts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE515852C (en) * 1925-10-04 1931-01-14 Christian Huelsmeyer Filters for mechanical and chemical cleaning of liquids
US1774232A (en) * 1928-03-19 1930-08-26 Metal Textile Corp Filter medium and body formed therefrom
US2834730A (en) * 1956-01-18 1958-05-13 Johnson & Johnson Filter media
US2945591A (en) * 1956-09-20 1960-07-19 Pall Corp Filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464517A (en) * 1943-05-13 1949-03-15 Callite Tungsten Corp Method of making porous metallic bodies
US2619438A (en) * 1945-04-16 1952-11-25 Sperry Corp Method of making a grid structure
US2616165A (en) * 1947-01-18 1952-11-04 Everett D Mccurdy Electrode for electrolytic devices and methods of making same
US2709651A (en) * 1952-05-02 1955-05-31 Thompson Prod Inc Method of controlling the density of sintered compacts

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278279A (en) * 1962-10-25 1966-10-11 Wmf Wuerttemberg Metallwaren Uniformly porous product consisting basically of metal fibers and process of making it
US3399979A (en) * 1963-11-01 1968-09-03 Union Carbide Corp Process for producing metal nitride fibers, textiles and shapes
US3833791A (en) * 1964-07-28 1974-09-03 Schladitz Whiskers Ag Resistance type fluid heating apparatus
US3505038A (en) * 1964-08-24 1970-04-07 Brunswick Corp Metal fibril compacts
US3287169A (en) * 1965-04-09 1966-11-22 Baldwin Lima Hamilton Corp Fuel cell having a hollow foraminous electrode
US3506885A (en) * 1965-07-12 1970-04-14 Brunswick Corp Electric device having passage structure electrode
DE1296756B (en) * 1965-11-20 1969-06-04 Siemens Ag Method of making composite from higher melting metal particles and a lower melting component
USRE28470E (en) * 1966-04-20 1975-07-08 Porous metal structure
US3469297A (en) * 1966-04-20 1969-09-30 Brunswick Corp Porous metal structure
US3437783A (en) * 1966-07-26 1969-04-08 Jerome H Lemelson Matte structure and method of producing same
US3403008A (en) * 1966-12-19 1968-09-24 Union Carbide Corp Process for producing metal carbide fibers, textiles and shapes
US3406025A (en) * 1966-12-19 1968-10-15 Union Carbide Corp Process for producing metal fibers, textiles and shapes
US3489534A (en) * 1967-01-03 1970-01-13 Gen Electric Lightweight metallic structure
US3783969A (en) * 1968-05-27 1974-01-08 Pall Corp Acoustic insulation comprising anisometric compressed and bonded multilayer knitted wire mesh composites
US3973059A (en) * 1969-09-29 1976-08-03 Brunswick Corporation Method of making metal flocked fabric
US3783590A (en) * 1970-07-09 1974-01-08 A Allen Filter-silencer for pneumatic devices
US3964902A (en) * 1974-02-27 1976-06-22 The United States Of America As Represented By The United States National Aeronautics And Space Administration Method of forming a wick for a heat pipe
US4170629A (en) * 1975-09-15 1979-10-09 Betz Erwin C Method of converting hydrocarbon waste gas streams using a non-uniform crimped metal ribbon packed catalyst bed
FR2618694A1 (en) * 1987-07-29 1989-02-03 Mitsubishi Chem Ind DESAERATOR FOR PARTICULATE MATERIALS
US4904285A (en) * 1987-07-29 1990-02-27 Mitsubishi Kasei Corporation Deaerator for particulates
US5211918A (en) * 1987-12-22 1993-05-18 Schwabische Huttenwerke Catalytic converter for exhaust gases
WO1989007502A1 (en) * 1988-02-11 1989-08-24 Jenkin William C Pyrolysis of metal carbonyl
US5130204A (en) * 1988-02-11 1992-07-14 Jenkin William C Randomly dispersed metal fiber mat
US5124198A (en) * 1989-01-23 1992-06-23 Minnesota Mining And Manufacturing Company Metal fiber mat/polymer composite
US5226210A (en) * 1989-01-23 1993-07-13 Minnesota Mining And Manufacturing Company Method of forming metal fiber mat/polymer composite
EP0402738A3 (en) * 1989-06-16 1993-03-17 Inco Limited Nickel foam
EP0402738A2 (en) * 1989-06-16 1990-12-19 Inco Limited Nickel foam
US5064459A (en) * 1989-08-11 1991-11-12 Bayern-Chemie Gesellschaft Fur Flugchemische Antriebe Mbh Filter arrangement for airbag gas generators
US5240485A (en) * 1990-07-05 1993-08-31 Haerle Hans A Exhaust gas filter
US5179061A (en) * 1990-07-19 1993-01-12 Haerle Hans A Filter or catalyst body
US5215724A (en) * 1990-09-20 1993-06-01 Schwabische Huttenwerke Gmbh Sintered composite filter
US5335492A (en) * 1991-03-21 1994-08-09 Schwaebische Huettenwerke Gmbh Exhaust gas filter and/or a catalytic converter
US5266279A (en) * 1991-03-28 1993-11-30 Schwaebische Huettenwerke Gmbh Filter or catalyst body
US5204067A (en) * 1991-07-11 1993-04-20 Schwaebische Huettenwerke Gmbh Filter
US5425236A (en) * 1991-11-12 1995-06-20 Schwaebische Huettenwerke Gmbh Catalyzer arrangement for the exhaust gases of an internal combustion engine
US5505757A (en) * 1993-08-20 1996-04-09 Sumitomo Electric Industries, Ltd. Corrosion-resistant metal filters
US6298538B1 (en) * 1996-02-23 2001-10-09 Global Material Technologies, Inc. Nonwoven metal fabric and method of making same
US5868810A (en) * 1996-09-10 1999-02-09 Schwarzkopf Technologies Corporation Filtering cartridge
US20030135971A1 (en) * 1997-11-12 2003-07-24 Michael Liberman Bundle draw based processing of nanofibers and method of making
US7311751B2 (en) * 2001-12-07 2007-12-25 Nv Bekaert Sa Filter medium
US20050223688A1 (en) * 2001-12-07 2005-10-13 N.V. Bekaret S.A. Filter medium
US7846230B2 (en) 2003-05-23 2010-12-07 Nv Bekaert Sa Diesel soot particulate filter medium
US20060277881A1 (en) * 2003-05-23 2006-12-14 N.V. Bekaert S.A. Diesel soot particulate filter medium
US7625519B2 (en) * 2004-04-14 2009-12-01 Akihiko Chiba Method for manufacturing biomedical porous article
US20050254985A1 (en) * 2004-04-14 2005-11-17 Akihiko Chiba Method for manufacturing biomedical porous article
US7445646B1 (en) * 2004-08-06 2008-11-04 Pacesetter, Inc. Method of producing an anode for an electrolytic capacitor
US20100196218A1 (en) * 2007-07-16 2010-08-05 Inge Schildermans Filter medium
US8449642B2 (en) * 2007-07-16 2013-05-28 Nv Bekaert Sa Filter medium
US7544288B1 (en) * 2008-05-16 2009-06-09 Michael Cook Gutter filtering device
CN105817618A (en) * 2016-03-28 2016-08-03 佳木斯大学 Sintering method of porous metal fiber materials with controllable penetrability and porosity
US10767696B2 (en) 2017-12-29 2020-09-08 Saint-Gobain Performance Plastics Pampus Gmbh Bearing component and method of making and using the same

Also Published As

Publication number Publication date
GB942513A (en) 1963-11-20
DE1181671B (en) 1964-11-19

Similar Documents

Publication Publication Date Title
US3087233A (en) Pervious metal fiber material and method of making the same
US3780872A (en) Filters comprising anisometric compressed and bonded multilayer knitted wire mesh composites
US3828934A (en) Media for wound filter elements
US4070519A (en) High temperature filter fabrics
US4048075A (en) Filter cartridge
US4548628A (en) Filter medium and process for preparing same
US3437457A (en) Reinforced metal fiber composites
EP0055112B1 (en) Felt-like layered composite of ptfe and glass paper
US3731815A (en) Filter and method of manufacture
DE69937730T2 (en) METAL FILTER
GB2160895A (en) Production of porous sintered metal filters
US4064214A (en) Process for making polytetrafluoroethylene yarn
US3795288A (en) Gas conduit with acoustic insulation comprising anisometric compressed and bonded multilayer knitted wire mesh composites
CA1278533C (en) Polyimide composite filter fabrics
DE2735187A1 (en) POLYTETRAFLUORAETHYLENE FABRIC AND METHOD FOR MANUFACTURING IT
DE3623786A1 (en) METHOD FOR PRODUCING SOOT FILTERS
DE2024547A1 (en)
KR970001434B1 (en) Filter element and assembly
US3986851A (en) Filter of polytetrafluoroethylene fibers
US4031283A (en) Polytetrafluoroethylene felt
US4122015A (en) Fortified metal filter and its preparative procedure
DE1924836A1 (en) Metal fibre filter element
EP0529111B1 (en) Filter element
US3053762A (en) Filter material
US3648846A (en) Process for making fluid filters having improved properties