US3087065A - Light communication system - Google Patents

Light communication system Download PDF

Info

Publication number
US3087065A
US3087065A US763671A US76367158A US3087065A US 3087065 A US3087065 A US 3087065A US 763671 A US763671 A US 763671A US 76367158 A US76367158 A US 76367158A US 3087065 A US3087065 A US 3087065A
Authority
US
United States
Prior art keywords
lamp
light
pulsating
communication system
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US763671A
Inventor
Edward C Mutschler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engelhard Hanovia Inc
Original Assignee
Engelhard Hanovia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engelhard Hanovia Inc filed Critical Engelhard Hanovia Inc
Priority to US763671A priority Critical patent/US3087065A/en
Application granted granted Critical
Publication of US3087065A publication Critical patent/US3087065A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission

Definitions

  • FIG. 2 Jz'nusn'a'gi Maggipput (.5000 CR5) FIG. 2
  • oscillating, modulated light beams for communication systems in which an electrically energized source of light, such as a high pressure arc lamp, is supplied from a current source, whereby the voltage applied to the terminals oscillates in continuous sinusoidal waves.
  • an electrically energized source of light such as a high pressure arc lamp
  • the supply current circuit is energized and de-energized in the rhythm of the signals to be transmitted which constitutes the most elementary method of modulation, since the useful amplitude switches between only two values: the eak value and zero.
  • the sinusoidal shape of the supplied voltage does not impair the performance of such a system, transmission of, for example, speech by modulating the carrier amplitude in the rhythm of the signal or multichannel communication cannot be effected successfully, since the light output of electrically energized light sources such as high pressure are lamps, as an example, does not follow exactly the shape of the sinusoidal voltage input but light emission continues during the voltage downswing. Due to a residual ionization of the atmosphere in the lamp, the light output declines at a rate which is slower than the voltage decline. As a result, the light output at high frequencies, required for the purpose of modulation, approaches an almost steady level which does not permit successful modulation in audio frequencies. Considering that the emission of Morse signals constitutes the most elementary method of modulation, the term modulation is used hereinafter to designate all methods of modifying a carrier wave as a function of signals, i.e. Morse signals and speech as well.
  • an improved system for emitting and receiving signals by means of oscillating, modulated light radiated from an electrically energized light source is obtained by supplying a pulsating current to the light source.
  • the wave form of pulsating currents include a distinct low-leveled period in each cycle during which the light output declines sufiiciently to permit modulation in audio frequencies and when using currents pulsating with high frequencies the system may be adapted for time sharing among several channels for multiplex communication, which was not possible heretofore with the conventional sinusoidal current supply.
  • FIGURE 1 is a diagram illustrating the light output of a high pressure are lamp as a function of a continuous wave input voltage
  • FIGURE 2 is an analogous diagram for a pulsating input voltage
  • FIGURE 3 is a diagram for an input voltage pulsating with a frequency twice as high as that of FIGURE 2 and
  • FIGURE 4 is a schematic diagram of a communication system.
  • FIGURE 1 illustrates the relationship between a voltage oscillating as a sine wave at 5000 cycles per second and applied to the terminals of a high pressure arc lamp, and the produced light output.
  • the voltage declines in agreement with the sine curve after each peak
  • the light output declines at a comparatively slow rate due to the residual ionization of the atmosphere in the lamp and increases again in the next cycle such that the peak value and the lowest value differ insufiiciently to permit successful modulation in audio frequencies.
  • the difference between the peak value and the lowest value of the light output constitutes the useful amplitude, shown in FIG. 1 for a sinusoidal voltage input.
  • FIG. 2 The relationship in the case of a pulsating voltage supply to the lamp and with the same frequency is shown in FIG. 2.
  • the voltage declines almost instantaneously from the peak value to the lowest value, which latter constitutes the quiescent uniform operating level of the lamp; the light output decreases sufliciently rapidly to attain the darkness corresponding to the quiescent level before the new cycle begins and a maximum useful amplitude capable of being modulated is the result.
  • a system according to the invention for the first time permits the use of the same carrier for several channels in multiplex communication. It has been found in practice that good results are obtained when the duration of the quiescent level at least equals the half-life period of the residual light emission from the lamp, whereby the term half-life period denotes the time required for attain ment of half the initial light intensity.
  • very short pulse durations for example approximately 20 microseconds, frequencies several times the maximum practical frequency for continuous wave modulation can be used.
  • FIG. 4 A schematic block diagram of an amplitude-modulated three channel communication system according to the invention is shown in FIG. 4.
  • the signals received by the microphones 10, 12 and 14 are amplified by the audio amplifiers 16, 18 and 20, respectively, and subsequently sampled by the encoder 22 in time sequence by means of a commutator or of any other suitable device to achieve the proper synchronization, the encoder including an amplifier.
  • the circuits and the elements used therefor being well known in the art, a more detailed description thereof has been omitted.
  • the output from the above described device is subsequently impressed upon the carrier current delivered from a pulse generator 24, for example by means of a transformer 26, to cause the desired amplitude-modulation of the pulsating current, the modulated pulsating carrier current being supplied through a transformer 28 to a high pressure are lamp 30.
  • the lamp 30 is fed with a comparatively low direct current applied to the terminals 32 and 34 which determines the quiescent level indicated in the FIGURES 2 and 3.
  • the lamp is therefore running continuously on a low light level upon which the modulated carrier is super-imposed, as described above.
  • a conventional starter is connected to the terminals 36 and 40.
  • a blocking capacitor 42 and a choke 44 serve to separate the direct current from the pulsating current in the usual fashion, whereby the choke 44 can be shunted out over a switch 45 during the starting period of the lamp.
  • a reflector 48 serves to concentrate the light beam emitted by the lamp 30 into the desired direction.
  • the amplified and encoded signals can be impressed on the pulsating carrier by other means than the transformer 26, for example by capacitive coupling.
  • the microphones may be replaced by Morse keys.
  • the light source herein described as a high pressure are lamp can be replaced by any other suitable electrically energized device emitting ultraviolet, visible or infrared light.
  • the components of the receiver comprise circuits and circuit elements known in the field of electronics.
  • the incoming light beam concentrated by a reflector 59, is received in a photoelectric cell 52 or any other suitable device for transforming oscillating light into electrical energy.
  • the signals are sorted into three channels by the decoder 54, the signal sequence of each channel being supplied to one of the demodulators 56, 5S and 60 to remove the carrier. Subsequently, the signals are amplified by means of the audio amplifiers 62, 64 and 66 and transformed into acoustical signals in the loud-speakers 68, 70 and 72.
  • the extended frequency range by avoiding residual light emission makes it possible to successfully frequency-modulate the pulsating carrier current, the circuits appropriate to achieve frequency modulation and demodulation being well known in the art.
  • the invention can be applied, as well, for systems in which e.g. optical or mechanical means are used for modulating the light output of a source energized by a pulse generator.
  • the improvement in light communication achieved by using pulsating currents in accordance with the invention include a lower average wattage as compared to conventional systems using a sinusoidal carrier and, consequently, an improved signal-to-noise ratio is obtained, since the low quiescent level in pulsating systerns results in an increased useful amplitude of light intensity.
  • an electrically energized high pressure are lamp having a residual light emission, means for operating the lamp at a uniform quiescent low light output-low voltage level, means for supplying a periodically pulsating carrier current to said lamp, the duration of the quiescent voltage level in each supplied pulse cycle being at least equal to the duration of the residual light emission, and means for modulating the supplied carrier current.
  • an electrically energized high pressure are lamp having a residual light emission, direct current means for operating the lamp at a quiescent low light output-low voltage level, means for supplying a periodically pulsating carrier current to said lamp, the duration of the quiescent voltage level in each supplied pulse cycle being at least equal to the duration of the residual light emission, and means for multichannel modulating the supplied carrier current.

Description

#5 5-608 AU 233 EX I 2 I? 51% Kg 3 who ROSS REFERENCE EXAMINER P" 1963 E. c. MUTSCHLER 3, 87,065 LIGHT COMMUNICATION SYSTEM 7 4 fig 7 Filed Sept. 26, 1958 2 Sheets-Sheet 1 FIG.,!
Jz'nusn'a'gi Maggipput (.5000 CR5) FIG. 2
Mme/1 L level -Tzmefillsatzny Valzme 1701/2 (5,000 /./?.5)
Useful flmplztuae e -72me- Ligggcgm Faber/n0 l o/zaae III 7m (10,000 AP.
INVENTOR.
EDWARD c. MUTSCHLER BY Kai lbw w) 5 NJ ATTOR Y5 April 23, 1963 Filed Sept. 26, 1958 E. C- MUTSCHLER LIGHT COMMUNICATION SYSTEM 2 Sheets-Sheet 2 United States Patent Ofifice 3,087,055 Patented Apr. 23, 1963 3,087,065 LIGHT COMMUNECATION SYSTEM Edward C. Mutschler, Mapiewood, N.J., assignor to Engelhard Hanovia, Inc., a corporation of New Jersey Filed Sept. 26, 1958, Ser. No. 763,671 2 Claims. (Cl. 250-199) This invention is concerned with communication systems by means of light and, more particularly, deals with such systems in which an oscillating beam of light is used as the modulated carrier for signal transmission, similar to the carrier wave in wireless telegraphy or broadcasting systems.
It is known to use oscillating, modulated light beams for communication systems in which an electrically energized source of light, such as a high pressure arc lamp, is supplied from a current source, whereby the voltage applied to the terminals oscillates in continuous sinusoidal waves. When transmitting solely Morse signals, the supply current circuit is energized and de-energized in the rhythm of the signals to be transmitted which constitutes the most elementary method of modulation, since the useful amplitude switches between only two values: the eak value and zero. Whereas in this case the sinusoidal shape of the supplied voltage does not impair the performance of such a system, transmission of, for example, speech by modulating the carrier amplitude in the rhythm of the signal or multichannel communication cannot be effected successfully, since the light output of electrically energized light sources such as high pressure are lamps, as an example, does not follow exactly the shape of the sinusoidal voltage input but light emission continues during the voltage downswing. Due to a residual ionization of the atmosphere in the lamp, the light output declines at a rate which is slower than the voltage decline. As a result, the light output at high frequencies, required for the purpose of modulation, approaches an almost steady level which does not permit successful modulation in audio frequencies. Considering that the emission of Morse signals constitutes the most elementary method of modulation, the term modulation is used hereinafter to designate all methods of modifying a carrier wave as a function of signals, i.e. Morse signals and speech as well.
In accordance with the invention and in order to avoid the mentioned shortcomings, an improved system for emitting and receiving signals by means of oscillating, modulated light radiated from an electrically energized light source is obtained by supplying a pulsating current to the light source. The wave form of pulsating currents include a distinct low-leveled period in each cycle during which the light output declines sufiiciently to permit modulation in audio frequencies and when using currents pulsating with high frequencies the system may be adapted for time sharing among several channels for multiplex communication, which was not possible heretofore with the conventional sinusoidal current supply.
The invention will be further illustrated by reference to the accompanying drawing in which FIGURE 1 is a diagram illustrating the light output of a high pressure are lamp as a function of a continuous wave input voltage,
FIGURE 2 is an analogous diagram for a pulsating input voltage,
FIGURE 3 is a diagram for an input voltage pulsating with a frequency twice as high as that of FIGURE 2 and FIGURE 4 is a schematic diagram of a communication system.
FIGURE 1 illustrates the relationship between a voltage oscillating as a sine wave at 5000 cycles per second and applied to the terminals of a high pressure arc lamp, and the produced light output. Whereas the voltage declines in agreement with the sine curve after each peak, the light output declines at a comparatively slow rate due to the residual ionization of the atmosphere in the lamp and increases again in the next cycle such that the peak value and the lowest value differ insufiiciently to permit successful modulation in audio frequencies. The difference between the peak value and the lowest value of the light output constitutes the useful amplitude, shown in FIG. 1 for a sinusoidal voltage input.
The relationship in the case of a pulsating voltage supply to the lamp and with the same frequency is shown in FIG. 2. The voltage declines almost instantaneously from the peak value to the lowest value, which latter constitutes the quiescent uniform operating level of the lamp; the light output decreases sufliciently rapidly to attain the darkness corresponding to the quiescent level before the new cycle begins and a maximum useful amplitude capable of being modulated is the result.
Since in each cycle attainment of the minimum lightoutput as produced by the quiescent level is achieved even when operating the lamp with a voltage pulsating with the frequency of 10,000 pulses per second, as shown in FIG. 3, a system according to the invention for the first time permits the use of the same carrier for several channels in multiplex communication. It has been found in practice that good results are obtained when the duration of the quiescent level at least equals the half-life period of the residual light emission from the lamp, whereby the term half-life period denotes the time required for attain ment of half the initial light intensity. However, when using very short pulse durations, for example approximately 20 microseconds, frequencies several times the maximum practical frequency for continuous wave modulation can be used.
A schematic block diagram of an amplitude-modulated three channel communication system according to the invention is shown in FIG. 4. The signals received by the microphones 10, 12 and 14 are amplified by the audio amplifiers 16, 18 and 20, respectively, and subsequently sampled by the encoder 22 in time sequence by means of a commutator or of any other suitable device to achieve the proper synchronization, the encoder including an amplifier. The circuits and the elements used therefor being well known in the art, a more detailed description thereof has been omitted.
The output from the above described device is subsequently impressed upon the carrier current delivered from a pulse generator 24, for example by means of a transformer 26, to cause the desired amplitude-modulation of the pulsating current, the modulated pulsating carrier current being supplied through a transformer 28 to a high pressure are lamp 30.
Additionally, the lamp 30 is fed with a comparatively low direct current applied to the terminals 32 and 34 which determines the quiescent level indicated in the FIGURES 2 and 3. The lamp is therefore running continuously on a low light level upon which the modulated carrier is super-imposed, as described above. In order to provide the voltage for the initial ionization of the atmosphere in the lamp, a conventional starter is connected to the terminals 36 and 40. A blocking capacitor 42 and a choke 44 serve to separate the direct current from the pulsating current in the usual fashion, whereby the choke 44 can be shunted out over a switch 45 during the starting period of the lamp. A reflector 48 serves to concentrate the light beam emitted by the lamp 30 into the desired direction.
It will be apparent that the emitter so described and shown in FIG. 4 is illustrated only schematically since the circuits and elements thereof are well known in the art. The amplified and encoded signals can be impressed on the pulsating carrier by other means than the transformer 26, for example by capacitive coupling. When transmission of Morse signals is desired, the microphones may be replaced by Morse keys. The light source herein described as a high pressure are lamp can be replaced by any other suitable electrically energized device emitting ultraviolet, visible or infrared light.
Likewise, the components of the receiver comprise circuits and circuit elements known in the field of electronics. as shown in FIG. 4, the incoming light beam, concentrated by a reflector 59, is received in a photoelectric cell 52 or any other suitable device for transforming oscillating light into electrical energy. The signals are sorted into three channels by the decoder 54, the signal sequence of each channel being supplied to one of the demodulators 56, 5S and 60 to remove the carrier. Subsequently, the signals are amplified by means of the audio amplifiers 62, 64 and 66 and transformed into acoustical signals in the loud-speakers 68, 70 and 72.
Whereas the invention has been illustrated herein in connection with an amplitude-modulated carrier, the extended frequency range by avoiding residual light emission makes it possible to successfully frequency-modulate the pulsating carrier current, the circuits appropriate to achieve frequency modulation and demodulation being well known in the art. The invention can be applied, as well, for systems in which e.g. optical or mechanical means are used for modulating the light output of a source energized by a pulse generator.
Furthermore, the improvement in light communication achieved by using pulsating currents in accordance with the invention include a lower average wattage as compared to conventional systems using a sinusoidal carrier and, consequently, an improved signal-to-noise ratio is obtained, since the low quiescent level in pulsating systerns results in an increased useful amplitude of light intensity.
It will be obvious to those skilled in the art that many modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
What is claimed is:
1. In a light communication system, an electrically energized high pressure are lamp having a residual light emission, means for operating the lamp at a uniform quiescent low light output-low voltage level, means for supplying a periodically pulsating carrier current to said lamp, the duration of the quiescent voltage level in each supplied pulse cycle being at least equal to the duration of the residual light emission, and means for modulating the supplied carrier current.
2. In a light communication system, an electrically energized high pressure are lamp having a residual light emission, direct current means for operating the lamp at a quiescent low light output-low voltage level, means for supplying a periodically pulsating carrier current to said lamp, the duration of the quiescent voltage level in each supplied pulse cycle being at least equal to the duration of the residual light emission, and means for multichannel modulating the supplied carrier current.
References Cited in the file of this patent UNITED STATES PATENTS 2,032,588 Miller Mar. 3, 1936 2,100,348 Nicolson Nov. 30, 1937 2,538,062 Touvet Jan. 16, 1951 2,652,519 Grifiin Sept. 15, 1953 2,689,949 Kalbach et al. Sept. 21, 1954 2,917,717 Thorsen Dec. 15, 1959 2,921,184 Fruengel Ian. 12, 1960 FOREIGN PATENTS 396,073 Great Britain July 28, 1933 918,865 France Nov, 12, 1946

Claims (1)

1. IN A LIGHT COMMUNICATION SYSTEM, AN ELECTRICALLY ENERGIZED HIGH PRESSURE ARC LAMP HAVING A RESIDUAL LIGHT EMISSION, MEANS FOR OPERATING THE LAMP AT A UNIFORM QUIESCENT LOW LIGHT OUTPUT-LOW VOLTAGE LEVEL MEANS FOR SUPPLYING A PERIODICALLY PULSATING CARRIER CURRENT TO SAID LAMP, THE DURATION OF THE QUIESCENT VOLTAGE LEVEL IN EACH SUPPLIED PULSE CYCLE BEING AT LEAST EQUAL TO THE DURATION OF THE RESIDUAL LIGHT EMISSION, AND MEANS FOR MODULATING THE SUPPLIED CARRIER CURRENT.
US763671A 1958-09-26 1958-09-26 Light communication system Expired - Lifetime US3087065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US763671A US3087065A (en) 1958-09-26 1958-09-26 Light communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US763671A US3087065A (en) 1958-09-26 1958-09-26 Light communication system

Publications (1)

Publication Number Publication Date
US3087065A true US3087065A (en) 1963-04-23

Family

ID=25068481

Family Applications (1)

Application Number Title Priority Date Filing Date
US763671A Expired - Lifetime US3087065A (en) 1958-09-26 1958-09-26 Light communication system

Country Status (1)

Country Link
US (1) US3087065A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284633A (en) * 1963-12-24 1966-11-08 Rca Corp Signal transmission and reception system comprising frequency modulated light beam
US3403293A (en) * 1966-07-29 1968-09-24 Philco Ford Corp Starter circuit for three-electrode gaseous discharge device
US3449630A (en) * 1965-12-20 1969-06-10 Xerox Corp Modulation of arc lamp
US3488586A (en) * 1965-06-02 1970-01-06 Gen Electric Frequency modulated light coupled data link
US4768186A (en) * 1986-02-11 1988-08-30 Pirelli Cable Corporation Multiplex transmission of analog signals by fiber optic channel
US5008879A (en) * 1988-11-14 1991-04-16 Datapoint Corporation LAN with interoperative multiple operational capabilities
US5034967A (en) * 1988-11-14 1991-07-23 Datapoint Corporation Metastable-free digital synchronizer with low phase error
US5048014A (en) * 1988-12-30 1991-09-10 Datapoint Corporation Dynamic network reconfiguration technique for directed-token expanded-address LAN
US5050189A (en) * 1988-11-14 1991-09-17 Datapoint Corporation Multibit amplitude and phase modulation transceiver for LAN

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB396073A (en) * 1930-12-27 1933-07-28 Odhams Press Ltd System of optical telephony
US2032588A (en) * 1931-09-12 1936-03-03 Jr Herman Potts Miller Communication and detection system
US2100348A (en) * 1934-04-13 1937-11-30 Communications Patents Inc Light beam transmission system
FR918865A (en) * 1945-06-19 1947-02-20 Lightning signal transmission method
US2538062A (en) * 1940-03-22 1951-01-16 Touvet Guy Light communication system
US2652519A (en) * 1945-04-20 1953-09-15 Dana A Griffin Gaseous discharge tube circuit
US2689949A (en) * 1952-05-15 1954-09-21 Atomic Energy Commission Telementering system
US2917717A (en) * 1955-02-04 1959-12-15 Ericsson Telefon Ab L M Modulator for amplitude modulating a pulse train
US2921184A (en) * 1950-02-09 1960-01-12 Fruengel Frank System for signaling by light impulses

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB396073A (en) * 1930-12-27 1933-07-28 Odhams Press Ltd System of optical telephony
US2032588A (en) * 1931-09-12 1936-03-03 Jr Herman Potts Miller Communication and detection system
US2100348A (en) * 1934-04-13 1937-11-30 Communications Patents Inc Light beam transmission system
US2538062A (en) * 1940-03-22 1951-01-16 Touvet Guy Light communication system
US2652519A (en) * 1945-04-20 1953-09-15 Dana A Griffin Gaseous discharge tube circuit
FR918865A (en) * 1945-06-19 1947-02-20 Lightning signal transmission method
US2921184A (en) * 1950-02-09 1960-01-12 Fruengel Frank System for signaling by light impulses
US2689949A (en) * 1952-05-15 1954-09-21 Atomic Energy Commission Telementering system
US2917717A (en) * 1955-02-04 1959-12-15 Ericsson Telefon Ab L M Modulator for amplitude modulating a pulse train

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284633A (en) * 1963-12-24 1966-11-08 Rca Corp Signal transmission and reception system comprising frequency modulated light beam
US3488586A (en) * 1965-06-02 1970-01-06 Gen Electric Frequency modulated light coupled data link
US3449630A (en) * 1965-12-20 1969-06-10 Xerox Corp Modulation of arc lamp
US3403293A (en) * 1966-07-29 1968-09-24 Philco Ford Corp Starter circuit for three-electrode gaseous discharge device
US4768186A (en) * 1986-02-11 1988-08-30 Pirelli Cable Corporation Multiplex transmission of analog signals by fiber optic channel
US5008879A (en) * 1988-11-14 1991-04-16 Datapoint Corporation LAN with interoperative multiple operational capabilities
US5034967A (en) * 1988-11-14 1991-07-23 Datapoint Corporation Metastable-free digital synchronizer with low phase error
US5050189A (en) * 1988-11-14 1991-09-17 Datapoint Corporation Multibit amplitude and phase modulation transceiver for LAN
US5048014A (en) * 1988-12-30 1991-09-10 Datapoint Corporation Dynamic network reconfiguration technique for directed-token expanded-address LAN

Similar Documents

Publication Publication Date Title
US2506672A (en) Signal transmission system
US2379899A (en) Radio communication system
US3087065A (en) Light communication system
JPS6115624B2 (en)
US3156826A (en) Light communication system employing superimposed currents applied to a high intensity light source
US2419568A (en) Transmission system
US5027434A (en) Apparatus for bidirectional transmission of optical signals
GB967152A (en) Compandor
SU613732A3 (en) Modulator device
US3284633A (en) Signal transmission and reception system comprising frequency modulated light beam
GB603614A (en) Improvements in or relating to receiver systems for multi-channel electric pulse communication systems
US2280303A (en) Electron multiplier system
US3050630A (en) Communication system employing a high intensity arc modulated light source
US4214126A (en) Cadence suppression system
US2721899A (en) Pulse communication system
US2457559A (en) Repeater for pulse communication system
SE337049B (en)
US2028866A (en) Ultra short wave communication system
US2924652A (en) Remote guidance radio link
GB628683A (en) Electric multi-channel two-way pulse communication system
GB595138A (en) Improvements in television systems
US1738495A (en) Vacuum-tube system
GB632901A (en) Receiving arrangements for multichannel electric pulse communication systems
GB1060173A (en) Frequency diversity transmitting system
US2028805A (en) Multiplex transmission