US3069747A - Shaped products - Google Patents

Shaped products Download PDF

Info

Publication number
US3069747A
US3069747A US71914458A US3069747A US 3069747 A US3069747 A US 3069747A US 71914458 A US71914458 A US 71914458A US 3069747 A US3069747 A US 3069747A
Authority
US
United States
Prior art keywords
yarn
sections
drawn
undrawn
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Dustin S Adams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE576349D priority Critical patent/BE576349A/xx
Priority to NL124011D priority patent/NL124011C/xx
Priority to NL236753D priority patent/NL236753A/xx
Priority to IT605163D priority patent/IT605163A/it
Priority to US71914458 priority patent/US3069747A/en
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to GB7034/59A priority patent/GB903915A/en
Priority to CH7027859A priority patent/CH374798A/en
Priority to FR788313A priority patent/FR1224341A/en
Priority to DEP1269A priority patent/DE1269765B/en
Priority to US112408A priority patent/US3069726A/en
Application granted granted Critical
Publication of US3069747A publication Critical patent/US3069747A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H5/00Drafting machines or arrangements ; Threading of roving into drafting machine
    • D01H5/18Drafting machines or arrangements without fallers or like pinned bars
    • D01H5/32Regulating or varying draft
    • D01H5/36Regulating or varying draft according to a pre-arranged pattern, e.g. to produce slubs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/04Polyester fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/09Polyolefin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the objects of this invention are achieved by providing highly drawn yarns, filaments and ribbons which have uniform denier and opaque metallic-luster sections containing small, elongated voids alternating with sections of clear, monolithic structure from cold-drawable synthetic organic polymers.
  • the process by which these yarns and filaments are produced comprises introducing into an undrawn, essentially unoriented, synthetic organic polymeric filament, e.g., having a birefringence of less than 0.01, alternating localized segments or portions with difiering strain-response to drawing tension along the length of the filament and thereafter colddrawing the filament at a temperature of not more than 80 C.
  • a preferred embodiment of the invention includes introducing segments of reduced cross-sectional area into the filament by a mechanical deformation of the filament, heating the filament to a temperature of not more than 80 C. by passing it over a hot surface and subsequently drawing the filament at its natural draw ratio.
  • the segments of reduced cross-sectional area serve as incipient draw initiation points for cold-drawing the filament as will be later described. Drawing is usually accomplished at or near room temperature.
  • segments of higher orientation are introduced into the filament by heating the filament at spaced intervals to a temperature above 80 C.
  • the filament is then drawn at a temperature of not more than 80 C. at its natural draw ratio, thereby producing, from the unoriented portions, portions of fully drawn material with metallic luster.
  • Decorative and novelty yarns are Well known in the textile art. A wide variety of pleasing variations in appearance and hand of textile fabrics have been achieved by including varying amounts of specialty yarns in the ill fabrics.
  • the yarns which have been widely used include slubby and nubby yarns, metal-laminated yarns, crinkled and twisted yarns, flat ribbons, and yarns with varying cross-sectional areas.
  • yarn is used to include filaments, ribbons and the like, .of irregular as well as round, rectangular and other regular cross-section, and relates to both monofilament and multifilament yarns.
  • the term clear will be used in .the broad sense to include translucent as well as transparent materials.
  • FIGURE 1 is a schematic drawing of a suitable form of apparatus for carrying out the process of the invention
  • FIGURE 2 is a schematic drawing of another embodiment of suitable apparatus
  • FIGURE 3 is a perspective view of a round filament .being drawn by the process of this invention.
  • FIGURE 3A is an elevational view of an undrawn portion of the filament shown in FIGURE 3.
  • FIG- URES 3B, 3C and 3D are sectional views taken along :line A-A showing the internal structure of the filament at different stages of drawing.
  • the yarn is "arranged with a sutficient number of turns about the set of feed rollers to prevent slippage of the yarn thereon.
  • a suitable pre-tension device 11 may be used to regulate the unwinding of the yarn from source 2.
  • the yarn or ribbon can desirably be removed from the supply package 2 in a twist-free manner.
  • the yarn is passed from the feed rollers 3 and 4 through a pigtail guide 5 and then through a yarn-driven rotary deforming device comprised of a notching roller 6 and a smooth back-up roller 7.
  • the notching roller consists of a smooth brass cylinder having a plurality of notches 8 disposed along the edges of its periphery, with spaced projections 9 consisting of smooth wire passing over and above its peripheral surface 10 and being secured across the surface in opposite notches.
  • the size of the projections, notching roller and back-up roller and the spacing of the projections can, of course, be v varied, depending on the thickness of the yarn and the degree of deformation desired.
  • the yarn 1 must be an undrawn synthetic organic polymeric material which can be cold-drawn and must be essentially unoriented, e.g., having a birefringence not greater than 0.01.
  • the yarn is comprised of a high molecular weight synthetic organic polymer which is capable of being formed into filaments and whencold-drawn shows by characteristic X-ray pattern molecular orientation along the fiber axis.
  • the projections 9 on the notching roller press into the undrawn yarn introducing draw initiation segments 22, as shown in FIG- URES 3 and 3A, Where each indentation occurs.
  • the deformation of the yarn by the notching roller 6 generally increases the orientation and reduces the crosssectional area.
  • pin 12 which is about one inch in diameter and which is heated to a temperature of 50 C. to 140 C.
  • Pin 12 is adjustable to position 13 so that the degree of wrap of the yarn around the pin may be varied to increase or decrease the amount of heating and the amount of tension applied to the filament. Although pin 12 may be heated above 80 C.,
  • the filament itself must be at a temperature of not more than C.
  • the yarn is passed to a set of drawing rollers 14 and 15 of comparatively large diameter, about siX inches.
  • the axes of the two rollers are positioned at a slight angle to each other in the same manner as described for the feed rollers 3 and 4.
  • the yarn is arranged with a suflicient number of turns about the drawing rollers to prevent slippage.
  • the yarn approaching the heated pin 12 consists of increments of undrawn yarn a and a, separated by notches 22.
  • Notches 22 each provide two incipient necks 26 and 26.
  • incipient necks 26 and 26 start drawing the ends of the undrawn increments adjacent to the notch as shown between the increments b and c in the figure. Because the notching operation raises the birefringence in the notch above 0.01, this segment remains clear after drawing as shown at segments 22.
  • the fully drawn yarn may be passed through a heat-stabilization step to a reciprocating traverse guide 16, and finally wound on a bobbin 17 which may be rotated by drive roller 18.
  • segmented roller 19 and an additional set of drawing rollers 20 and 21 are substituted for the rotary stressing device shown in FIGURE 1.
  • Segmented roller 19 is comprised of a heat-conducting core 27, alternately spaced heat-conducting segments 28, and substantially non-conducting segments 29.
  • the conducting material may be steel, brass, stainless steel, nickel, etc., and the non-conducting material, mica, polytetrafluoroethylene resin, phenol-formaldehyde resin, nylon resin, etc. (Fluted rolls may be used in the same manner.)
  • the segments are heated to a temperature from about C. to 125 C.
  • the yarn As each segment contacts the surface of the yarn, the yarn is heated to a temperature from about 82 C. to C., at which temperature it will draw by conventional drawing processes, giving clear oriented sections from the segments which were heated.
  • the drawing rollers 20 and 21 are rotated at a speed such as to produce a tension in the yarn sufiicient to highly draw the heated sections at the natural draw ratio, usually about 3X to 5X.
  • the unheated sections are not drawn.
  • the ratio of roller speeds is set to conform to the natural draw ratio of the undrawn segments under conditions for producing lustrous, void-filled material as already described.
  • the sharp shoulders separating drawn and undrawn segments provide areas of draw initiation because of stress concentration, and the unoriented sections draw at a draw ratio from about 5X to 7X to a metallic luster as previously described.
  • any mechanical treatment which raises the orientation of the yarn e.g., above a birefringence of 0.01, is suitable for practicing the invention.
  • the draw initiation zones can be introduced in a longitudinal or transverse direction, or in a zig-zag or spiral fashion along the fiber axis.
  • bending, flexing, or vibration may be used to produce localized orientation or deformation.
  • Stufiing box crimpers of the type which force the yarn to fold back on itself are also suitable for this purpose. Because of the less rigid control over the folding process as compared with the opposed roller and gear device, the localized deformed segments are spaced at varying distances from one another.
  • Acoustically operated devices such as fluttering reeds over which the yarn is passed while the reed vibrates, as well as other vibrating means in the sonic and ultrasonic frequency range, may be used.
  • Eccentric wheels and other camming devices may also be used to produce 10- calized deformed segments in the undrawn yarn.
  • a heated cam, heated gear, or fluted roller may be used to soften the undrawn yarn to produce alternating regions which will respond to the tension produced in the yarn by drawing rollers and 21.
  • FIGURES 3, 3C and 3D show the transition of the clear undrawn section of yarn it which lies between lustrous sections 23 and 24 to a clear, fully drawn section 25 at the junction of the drawing necks. A slight reduction in cross-sectional area of section 25 is shown in FIGURE 3D in exaggerated form.
  • FIGURES 3B, 3C and 3D it will be noted that the lustrous sections 23 and 24 are covered with a thin, clear skin 30.
  • the combination of clear skin and void-containing structures produces the metallic luster in sections 23 and 24.
  • Example I Polyethylene terephthalate was melt-spun through a spinneret to give a ribbon which was 0.022 inch wide by 0.0034 inch thick in the undrawn state having a birefringence of 0.0003.
  • the undrawn material was then run through a notching device of the type shown in FIGURE 1 having 24 wires spaced to give indentations in the material 0.15 inch apart.
  • the stressing roller and backup roller were spaced apart so that the indentations made by the wires penetrated to approximately /3 the depth of the ribbon.
  • the cross-sectional area of the ribbon at the notches was reduced approximately 30%.
  • the ribbon was then passed over a pin heated to 88 C. and then to a set of drawing rollers positioned 24 inches away from the pin.
  • the yarn did not reach thermal equilibrium with the hot pin because of the short contact time, but the pin heated the yarn sulficiently to localize drawing.
  • the undrawn material was fed through the notching device at a speed of 39 yards per minute, and the drawn material was wound at a speed of 223 yards per minute giving a draw ratio of 5.72X.
  • the tension produced by the draw rollers caused the material to draw.
  • more than 10 increments were being drawn simultaneously.
  • the total drawing process occurred over a distance measred along the yarn of approximately 5 inches.
  • the re sulting material was a highly drawn ribbon having portions which contained a large number of tiny, elongated voids which imparted a metallic luster to the drawn material alternating with short sections of ribbon of conventional clear appearance.
  • the clear portions occurred at the sections of yarn which had been deformed by the wires on the notching roller prior to drawing and at the junction of the two drawing necks.
  • the lustrous portions were 0.885 inch long, and the clear portions were approximately 0.02 inch long.
  • the polymer structure in the clear sections was monolithic.
  • Example II In this example a metal blade was mounted so that the blade oscillated back and forth against the fiber.
  • An undrawn polyethylene terephthalate ribbon 0.02 inch wide and 0.004 inch thick having a birefringence of 0.0005 was passed over the blade while the blade was vibrated in such a fashion that each cycle the blade stuck but did not cut the ribbon.
  • the vibrating blade produced oriented segments in the undrawn material at points about 0.625 inch apart.
  • the undrawn ribbon was then passed over a heated plate which was heated to a temperature of about 60 C., and then to a set of drawings rollers where it was drawn to give sections of metallic luster about 0.23 inch long separated by sections of conventional clear appearance about 0.11 inch long.
  • drawing commenced simultaneously at both ends of the undrawn segment. Clear sections appeared at the junction of the drawing necks. When steady state conditions were reached, the ribbon was drawing at four necks simultaneously.
  • Example III Polyethylene terephthalate was melt-spun through a spinneret to give a ribbon similar to that described in Example I.
  • the undrawn ribbon had a birefringence of 0.0003.
  • the ribbon was then notched as in Example I.
  • the undrawn material was fed through the notching device at a speed of 43 yards per minute, and the drawn material was wound at a speed of 264 yards per minute, giving a draw ratio of 6.14X.
  • the undrawn material was passed over the hot pin which was heated to 88 C. with a 40 arc of contact. The tension produced by the draw rollers caused the material to start to draw at both sides of the notch as it came off the hot pin.
  • Example I V Polyethylene terephthalate was melt-spun through a spinneret to give 160 denier undrawn ribbon having a birefringence of 0.0003.
  • the undrawn ribbon was colored by dyeing the polymer prior to spinning using a hightemperature stable dye mixture to give a clear, transparent yellow color.
  • the ribbon was then run through the notching device described in FIGURE 1 at a speed of 43 yards per minute, over a pin heated to 81 C., with 140 angle of wrap around the pin, and then to a set of drawing rollers and wound up at a speed of 246 yards per minute, giving a draw ratio of 5.72X.
  • Example V The experiment of Example IV was repeated, except that the hot pin was positioned so that the undrawn ribbon was tangent to the pin and the pin was heated to 139 C.
  • the draw ratio in this case was 5.70X.
  • the goldluster ribbon was identical to that produced in Example IV.
  • the ribbon produced was then woven into a flat fabric. The appearance of the fabric was both pleasing and striking.
  • Example VI A 655 denier polyhexamethylene adipamide ribbon having a birefringence of 0.0005 was notched and drawn using the apparatus shown in FIGURE 1. The undrawn ribbon was given 2.67 notches per inch. The area surrounding the ribbon was at 29% relative humidity. The I tions, 31 necks were observed to be drawing simultaneously.
  • Example VII A 2365 denier ribbon of polyethylene terephthalate having an initial birefringence of 0.0003 was drawn, using apparatus similar to that shown in FIGURE 1.
  • a toothed gear was substituted for the notching roller shown in the figure.
  • the gear was three-quarters of an inch in diameter and had V-shaped teeth.
  • the ribbon was passed through the device at a speed of 8.2 yards per minute to give 13.3 notches per inch.
  • the ribbon was passed over a plate 8 inches long which was heated to 75 C. and then to a set of drawing rollers operating at a surface speed of 41 yards per minute. Under these conditions the ribbon drew at a draw ratio of 5.06X giving highly lustrous sections 0.38 inch long alternating with clear sections 0.02 inch and 0.005 inch long.
  • the 0.02 inch clear sections resulted from drawing the notched segments and the 0.005 inch sections remained clear at the junction of the two drawing necks.
  • Example VIII A 610 denier ribbon of 6 nylon, the polyamide produced by self-condensation of caprolactam, having an initial birefringence of 0.0004, was notched and drawn using the apparatus shown in FIGURE 1.
  • the wires on the notching roller were spaced 0.375 inch apart.
  • the ribbon was fed to the notching roller at a speed of 41 yards per minute.
  • the pin was heated to 142 C., and the drawing rollers were operated at 200 yards per minute.
  • the ambient temperature was 24 C. and the relative humidity 30%. Under these conditions the ribbon was drawn at a draw ratio of 4.76X.
  • Highly lustrous metallic-appearing sections having a large number of tiny, elongated voids, alternating with clear sections, were produced.
  • Example IX A 467 denier ribbon of an undrawn polyacetal resin having an initial birefringence of 0, was notched and drawn using the apparatus shown in FIGURE 1.
  • the wires on the notching rollers were spaced to produce prestressed areas in the ribbon which were 0.375 inch apart.
  • the yarn was fed to the notching roller at a speed of 12 yards per minute and passed over the hot pin which was held at a temperature of 141 C.
  • the drawing rollers were operated at a speed of 82 yards per minute, thus drawing the ribbon at a draw ratio of 6.83X.
  • the ribbon had a silvery appearance with lustrous sections alternating with clear sections.
  • Example X A polyethylene terephthalate ribbon having undrawn dimensions of 1.2 mm. wide and 0.115 mm. thick and an initial birefringence of 0.0006 was stressed and drawn in apparatus similar to that shown in FIGURE 2.
  • a fluted roller was substituted for the segmented roller shown in FIGURE 2.
  • the ribbon without cooling, was then passed to a pair of drawing rollers which were operated at a speed of 20.7 yards per minute.
  • the heated sections of ribbon were drawn at the natural draw ratio, 46X, and drew giving a conventional clear-appearing product. No luster was observed. The sections which were not heated did not draw.
  • the ribbon was then passed to a second pair of drawing rollers which were operated at a surface speed of 47.3 yards per minute, drawing the undrawn material to 5.75 times its original length. It was observed that the undrawn sections of the ribbon started drawing as they left the first pair of drawing rollers and drew with a series of necks beginning with points adjacent the clear drawn sections. Sections drawn in the second step had a lustrous appearance.
  • the resulting yarn was a Very unusual and attractive material having alternating sections of metallic luster 0.63 inch long and conventional, clear-appearing sections 0.31 inch long. All of the sections of yarn were completely drawn, and there were no abrupt changes in diameter in transition points from one section to the next.
  • Example XI A multifilament bundle of 30 undrawn polyethylene terephthalate fibers, having a total undrawn denier of 2090 and an initial birefringence of 0.0005 was notched and drawn in the apparatus shown in FIGURE 1.
  • the Wires on the notching roller were spaced to give a dis tance of 0.375 inch between notches.
  • a finish applicator roller was placed between the feed rollers and the notch ing device, and a finish was applied to the yarn to consolidate the filaments, reduce static, and to increase the uniformity of heat transfer from the hot pin the yarn.
  • the finish applied was a silicone oil.
  • the feed rollers were operated at a surface speed of 18 yards per minute and the drawing rollers were operated at a speed of 106 v yards per minute, giving a draw ratio of 5.9X.
  • a oneinch diameter stainless-steel pin was used and was heated to 54 C.
  • the yarn was wrapped 80 around the pin. It was observed that as the yarn entered the notching device the bundle of filaments flattened out so that each filament was notched individually. In addition, crossover points, that is, where one filament overlapped anoiher, produced additional prestressed areas.
  • the yarn drew to a denier of 354 with each filament having short, clear drawn sections and metallic luster sections similar to those described in the preceding examples.
  • the final product was a silvery yarn having a very attractive appearance in which the short clear sections were not conspicuous due to their random location along the length of the yarn.
  • Example XII A ribbon comprised of a polymer blend of 90% polyethylene terephthalate and polymethylmethacrylate having an undrawn denier of 430 and an initial birefringence of 0.003 was notched using the apparatus described in Example VIlI so that the prestressed are-as were 0.375 inch apart.
  • the ribbon was wrapped at an angle of 90' over a pin held at a temperature of 122 C.
  • the notching roller was operated at a speed of 11 yards per minute.
  • the drawing rollers were operated at a speed of 62 yards per minute giving a draw ratio of 5.6X.
  • the ribbon had a silvery appearance with lustrous sections alternating with clear sections.
  • Example 25111 An undrawn polypropylene ribbon having an initial birefringence of 0.003 and a denier of about 600 was notched and drawn using the apparatus described in FIG- URE 1 The pin was heated to 80 C., and the ribbon was drawn at a draw ratio of approximately 5.2X. The alternating clear and lustrous-appearing ribbon was wound up on the drawing roller at a speed of about 150 yards per minute.
  • the preferred procedure includes the use of a mechanical device to introduce incipient draw initiation zones in the undrawn yarn. When this method is used, it has 10 been found that the drawing process is most readily coritrolled and excellent results are obtained.
  • the means for practicing the present invention may be selected from a wide variety of sources, the requirements for practicing the process are, as previously indicated, critical in many respects.
  • the yarn must be essentially unoriented, e.g., the birefringence of the undrawn yarn is preferably below 0.01. Any of the known techniques for low tension spinning may be used to produce the low birefringence filament.
  • a further requirement resides in the fact that the drawing conditions must be regulated as previously described so that the sections draw at their natural draw ratio.
  • the phrase natural draw ratio is meant a draw ratio at which a certain degree of permanent, nonreversible extension, which is just sufi'icient to change it from its undrawn state to a uniformly drawn and highly oriented state without straining the polymeric material so as to introduce surface cracks or failure, is given to the polymeric material.
  • any material is drawn in the conventional sense used in processing synthetic fibers one or both of two things happen.
  • the plastic flow method of drawing is used to elongate a polymeric material 10, 20, or even times its original length. However, in the plastic flow process only slight orientation of the material occurs.
  • Plastic flow drawing is normally carried out either at high temperatures or in the presence of plasticizers, or both.
  • the present invention is applicable to drawing filaments comprised of synthetic organic polymers. While the examples give an indication of some of the polymers which can be used, it is not intended that this invention be so limited.
  • synthetic organic polymers which may be used are filmand fiber-forming polyesters, polyamides, polyacetal resins, polyhydrocarbons prepared from ethylenically unsaturated monomers, polyurethanes, copolyamides and copolyesters, mixtures of polyethylene terephthalate and polymethyl methacrylate, and polyethylene terephthalate and polyethylene.
  • the high molecular weight synthetic linear organic condensation polymers are preferred because of their high strength, resistance to chemical attack, and the ease with which they can be drawn by either of the just mentioned processes.
  • polyesters comprised of such intermediates as trimethylene glycol, tetramethylene glycol, 1,6-hexane diol, 1,4cyclohexane diol, 2,2-(p-hydroxy cyclohexyl) propane, bis-(p-phenylol) methane, trans-1,4-bis-(hydroxymethyl)cyclohexane, resorcinol, and the like, may be mentioned.
  • polyamides may be prepared by the processes set forth in U.S. Patents Nos. 2,071,251, 2,071,253, 2,130,523, and 2,130,948, the polyacetal resins in US. Patent No.
  • the process of this invention may be used to produce novel yarns which may or may not contain dyes or pigments.
  • Small amounts of pigments such as titanium dioxide, barium sulfate, cadmium sulfide, lamp black, and the like may be included in the polymer.
  • suitable dyes such as amino-2-bromo-4-hydroxyanthraquinone and 1-(p-ethylolamino)-4,5-dihydroxy-8 nitroanthraquinone may be applied to the melt-spun undrawn ribbon.
  • the polymers may also contain small amounts of impurities and reaction byproducts which generally appear in continuous polymerization processes without harmful effect.
  • the products of the present invention have many uses. They may be used alone or in combination with conventional yarns to produce novel and pleasing textile fabrics. Cords, ribbons, and the like having a striking appearance may also be prepared. Papers containing staple fibers of the present invention have a highly attractive appearance and great covering power.
  • the products of this invention also have many desirable practical as well as aesthetic advantages over known novelty yarns.
  • the yarns In addition to the striking appearance which can be achieved in textile fabrics, the yarns have a high bending modulus, high strength, and low dye and stain receptivity. Furthermore, the clear portions of the yarn are monolithic in structure.
  • a particular advantage of the present invention resides in the fact that the drawing process described can be accomplished at high speeds.
  • the process is readily controllable and can be operated in a variety of diiferent ways to produce strong, resilient material of uniform denier having alternating portions of contrasting appearance.
  • Other advantages of the products and process of this invention will be apparent to those skilled in textile designing and the manufacturing of synthetic fibers.
  • a fully drawn elongated shaped article comprised of a synthetic organic polymer capable of being cold drawn, said shaped article having a plurality of clear sections of a monolithic polymeric structure along its length and a plurality of opaque, lustrous sections of the same polymer composition separating said clear sections, said opaque, lustrous sections having a thin, clear skin and a continuous internal structure containing a multiplicity of small, elongated voids.
  • a fully drawn novelty yarn of substantially uniform denier comprised of a synthetic organic polymer capable of being cold drawn, said yarn having a plurality of clear sections of a monolithic polymeric structure along its length and a plurality of opaque, lustrous sections of the same polymer composition separating said clear sections, said opaque, lustrous sections having a thin, clear skin and a continuous internal structure containing a multiplicity of small, elongated voids.

Description

Dec. 25, 1962 D. s. ADAMS SHAPED PRODUCTS 2 Sheets-Sheet 1 Filed March 4, 1958 FlG.1
FIGBA IN VENTOR FIG3D FIGBC 6m 1 so so Dec. 25, 1962 D. s. ADAMS SHAPED PRODUCTS 2 Sheets-Sheet 2 Filed March 4, 1958 INVENTOR DUSTIN S. ADAMS BY M ATTORNEY lic luster.
United States Patent 3,059,7 5 SHAPED PRODUCTS Dustin S. Adams, Wilmington, Dei., assignor to E. i. du Pont de Nemours and Company, Wilmington, Deb, a corporation of Delaware Filed Mar. 4, 1953, Ser. No. 719,144- 8 Claims. till. 23-82) This invention relates to new textile products. More particularly, the invention relates to new decorative yarns and filaments of synthetic organic polymers and to a process for producing the same.
It is an object of this invention to provide new decorative and novelty yarns which have heretofore been unknown. It is a further object of this invention to provide decorative and novelty yarns from synthetic organic polymers which have alternating clear and metallic-appearing sections. A still further object of this invention is to provide highly drawn yarns having a uniform denier which do not require special processing equipment. Still another object is to provide novel synthetic fibers of good physical properties with portions having an internal structure containing a large number of small, elongated voids, and other portions having a monolithic structure. Another object of this invention is to provide a high speed, commercially acceptable process whereby decorative yarns, ribbons and filaments can be prepared with sections of metallic appearance alternating with sections of clear, conventional appearance. Other objects will be apparent from the following detailed description.
The objects of this invention are achieved by providing highly drawn yarns, filaments and ribbons which have uniform denier and opaque metallic-luster sections containing small, elongated voids alternating with sections of clear, monolithic structure from cold-drawable synthetic organic polymers. In its broadest aspect the process by which these yarns and filaments are produced comprises introducing into an undrawn, essentially unoriented, synthetic organic polymeric filament, e.g., having a birefringence of less than 0.01, alternating localized segments or portions with difiering strain-response to drawing tension along the length of the filament and thereafter colddrawing the filament at a temperature of not more than 80 C. whereby alternating sections draw at their natural draw ratio producing clear, monolithic sections alternating with opaque, void-containing sections having a metal- A preferred embodiment of the invention includes introducing segments of reduced cross-sectional area into the filament by a mechanical deformation of the filament, heating the filament to a temperature of not more than 80 C. by passing it over a hot surface and subsequently drawing the filament at its natural draw ratio. The segments of reduced cross-sectional area serve as incipient draw initiation points for cold-drawing the filament as will be later described. Drawing is usually accomplished at or near room temperature. In another embodiment, segments of higher orientation are introduced into the filament by heating the filament at spaced intervals to a temperature above 80 C. but below the melting point and thereafter drawing the filament by known processes whereby the heated sections draw to .produce sections which are clear and highly oriented and the unheated sections remain undrawn. The filament is then drawn at a temperature of not more than 80 C. at its natural draw ratio, thereby producing, from the unoriented portions, portions of fully drawn material with metallic luster.
Decorative and novelty yarns are Well known in the textile art. A wide variety of pleasing variations in appearance and hand of textile fabrics have been achieved by including varying amounts of specialty yarns in the ill fabrics. The yarns which have been widely used include slubby and nubby yarns, metal-laminated yarns, crinkled and twisted yarns, flat ribbons, and yarns with varying cross-sectional areas.
While novelty and decorative yarns have been widely used, certain undesirable features have limited their applicability. in the natural occurring and synthetic slubby yarns the variations in denier or yarn thickness cause processing ditficulties which reduce productivity and require the use of complicated processing machinery. Slu'bby sections and sections with varying yarn diameter are prone to snag and catch in the textile manufacturing machinery.
The preparation of uneven denier filaments is described in the prior art. To enhance the novelty effect, the yarns are made with irregular sections having short, very thick sections or nubs scattered along the fiber axis. These filaments, although pleasing in appearance are, as previously indicated, difficult to process.
The preparation of metallic filaments and metal foil laminated filaments has also been described. With the development of base materials such as the polyesters of the type described in Whinfield et al. U.S. Patent No. 2,- 465,319, and other synthetic polymers, the metal laminated filaments have achieved increased prominence. However, such filaments are expensive to manufacture. Furthermore, because dissimilar materials are used, that is a plastic base material, a laminating adhesive and a metal foil, they obviously have restricted usage, particularly with respect to certain processing steps. New decorative and novelty yarns of this type are in great demand. Particularly desired are yarns which, while introducing this pleasing variation in the appearance of the fabric, do not require special handling techniques and special weaving and processing equipment.
Processes for producing films and filaments which have a continuous luster have been described. The copending application of Adams, Ernst and Prengle, Serial No. 719,124, now Patent No. 2,948,583, dated August 9, 1960, filed concurrently herewith, describes a process whereby polyester films and filaments can be drawn to produce a filament having a continuous metallic lusterm Under the conditions described, a highly drawn lustrous filament is produced which has a thin, clear skin and an internal structure containing small, elongated voids. Markwood U.S. 2,352,725 teaches that polyamide films can be drawn under certain critical conditions to produce a product similar to that described in the copending application of Adams, Ernst and Prengle. In addition,,Markwood teaches that sections of the lustrous filmcan be rendered transparent by the application of pressure; The process has been found, however, to be impractical from .a commercial standpoint in view of the fact that the drawing rate must be kept verylow, i.e., under 1.5 inches per second. Also, the product produced by transparentizing areas of the film has been found to be un suitable for some purposes since the voids are not cornpletely headed by the application of pressure and consequently may recur during some processing steps.
Cold drawing by the prior art processes is, as previously mentioned, limited to producing a continuous pearlescent effect in films and the like. In addition, it has been pointed out that these processes have limited commercial utility due to the fact that they are operable only at low speeds. Surprisingly, the present process may be operated at high speeds. After the filament has been subjected to the aforementioned treatment which introduces alternating segments of differential strain-response to drawing tension, a multiplicity of increments can be drawn simultaneously and consecutively to give a drawing speed being a multiple of that described in the related prior art. Furthermore, the resulting product is a new, attractive, highly drawn material of uniform denier which has sections having a metallic luster alternating :with sections of conventional clear appearance.
The invention will be more readily understood by referring to the following detailed description and the accompanying drawings. In the description, the term yarn is used to include filaments, ribbons and the like, .of irregular as well as round, rectangular and other regular cross-section, and relates to both monofilament and multifilament yarns. The term clear will be used in .the broad sense to include translucent as well as transparent materials.
FIGURE 1 is a schematic drawing of a suitable form of apparatus for carrying out the process of the invention;
FIGURE 2 is a schematic drawing of another embodiment of suitable apparatus;
FIGURE 3 is a perspective view of a round filament .being drawn by the process of this invention, and
, FIGURE 3A is an elevational view of an undrawn portion of the filament shown in FIGURE 3. FIG- URES 3B, 3C and 3D are sectional views taken along :line A-A showing the internal structure of the filament at different stages of drawing.
relatively large diameter, about six inches, and the axes of the rollers are positioned at a slight angle to each other to cause a separation of the yarn helices and an "advancement of the yarn along the rollers. The yarn is "arranged with a sutficient number of turns about the set of feed rollers to prevent slippage of the yarn thereon.
A suitable pre-tension device 11 may be used to regulate the unwinding of the yarn from source 2. The yarn or ribbon can desirably be removed from the supply package 2 in a twist-free manner.
The yarn is passed from the feed rollers 3 and 4 through a pigtail guide 5 and then through a yarn-driven rotary deforming device comprised of a notching roller 6 and a smooth back-up roller 7. The notching roller consists of a smooth brass cylinder having a plurality of notches 8 disposed along the edges of its periphery, with spaced projections 9 consisting of smooth wire passing over and above its peripheral surface 10 and being secured across the surface in opposite notches. The size of the projections, notching roller and back-up roller and the spacing of the projections can, of course, be v varied, depending on the thickness of the yarn and the degree of deformation desired.
7 The yarn 1 must be an undrawn synthetic organic polymeric material which can be cold-drawn and must be essentially unoriented, e.g., having a birefringence not greater than 0.01. Preferably, the yarn is comprised of a high molecular weight synthetic organic polymer which is capable of being formed into filaments and whencold-drawn shows by characteristic X-ray pattern molecular orientation along the fiber axis. As the yarn passes between the notching roller 6 and the back-up roller 7, it is mechanically deformed. The projections 9 on the notching roller press into the undrawn yarn introducing draw initiation segments 22, as shown in FIG- URES 3 and 3A, Where each indentation occurs. The deformation of the yarn by the notching roller 6 generally increases the orientation and reduces the crosssectional area.
The yarn is then passed over pin 12 which is about one inch in diameter and which is heated to a temperature of 50 C. to 140 C. Pin 12 is adjustable to position 13 so that the degree of wrap of the yarn around the pin may be varied to increase or decrease the amount of heating and the amount of tension applied to the filament. Although pin 12 may be heated above 80 C.,
the filament itself must be at a temperature of not more than C.
From the heated pin 12 the yarn is passed to a set of drawing rollers 14 and 15 of comparatively large diameter, about siX inches. The axes of the two rollers are positioned at a slight angle to each other in the same manner as described for the feed rollers 3 and 4. The yarn is arranged with a suflicient number of turns about the drawing rollers to prevent slippage.
As shown in FIGURE 3, the yarn approaching the heated pin 12 consists of increments of undrawn yarn a and a, separated by notches 22. Notches 22 each provide two incipient necks 26 and 26. As each notch reaches the tangent line of departure from pin 12, it is subjected to a full drawing tension and, because of its reduced cross-sectional area, the stress is higher than in any undrawn segment. Therefore, incipient necks 26 and 26 start drawing the ends of the undrawn increments adjacent to the notch as shown between the increments b and c in the figure. Because the notching operation raises the birefringence in the notch above 0.01, this segment remains clear after drawing as shown at segments 22.
As soon as the necks reach the undeformed polymer, the drawing of void-filled, lustrous yarn is started as shown in the figure at segments 23 and 24. It is also apparent in FIGURE 3 that each increment b to fis in a different stage of progression from undrawn to drawn fiber depending on its relative distance from pin 12. When necks 26 and 26' reach a junction 25, their common increment g is fully drawn and will be replaced in the draw zone by the newly initiated drawing segment before increment 7 becomes fully drawn. The preheating of a short zone ahead of each neck by the very high temperature generated internally assures the continuation of each neck, once initiated. At the junction of two necks, the overlapping of two such preheated zones raises the temperature of a very short segment to a value Where clear drawing occurs, resulting in a short, highly oriented, clear zone, shown in FIGURES 3 and 3D. This type of clear section and that associated with the drawn out notches 22 are of a monolithic or solid structure, while the lustrous areas are filled with minute, elongated voids.
From drawing rollers 14 and 15 the fully drawn yarn may be passed through a heat-stabilization step to a reciprocating traverse guide 16, and finally wound on a bobbin 17 which may be rotated by drive roller 18.
A number of alternative methods and apparatus for introducing draw initiation segments, for example, points of higher orientation, may be used. In FIGURE 2 a segmented roller 19 and an additional set of drawing rollers 20 and 21 are substituted for the rotary stressing device shown in FIGURE 1. Segmented roller 19 is comprised of a heat-conducting core 27, alternately spaced heat-conducting segments 28, and substantially non-conducting segments 29. The conducting material may be steel, brass, stainless steel, nickel, etc., and the non-conducting material, mica, polytetrafluoroethylene resin, phenol-formaldehyde resin, nylon resin, etc. (Fluted rolls may be used in the same manner.) The segments are heated to a temperature from about C. to 125 C. As each segment contacts the surface of the yarn, the yarn is heated to a temperature from about 82 C. to C., at which temperature it will draw by conventional drawing processes, giving clear oriented sections from the segments which were heated. The drawing rollers 20 and 21 are rotated at a speed such as to produce a tension in the yarn sufiicient to highly draw the heated sections at the natural draw ratio, usually about 3X to 5X. The unheated sections are not drawn. The yarn, at this stage intermittently drawn and undrawn, then passes in a helical path over rollers 20 and 21 and via an arc of contact with heated pin 12 to rollers 14 and 15 which are driven at a higher surface speed than rollers 20 and 21. The ratio of roller speeds is set to conform to the natural draw ratio of the undrawn segments under conditions for producing lustrous, void-filled material as already described. As the yarn passes over heated draw pin 12 the sharp shoulders separating drawn and undrawn segments provide areas of draw initiation because of stress concentration, and the unoriented sections draw at a draw ratio from about 5X to 7X to a metallic luster as previously described.
In addition to the methods already set forth for producing localized draw initiation zones having differing responses to drawing, other methods will be obvious. Since an absence of orientation, e.g., birefringence less than 0.01, is necessary for the yarn to draw to a metallic luster, any mechanical treatment which raises the orientation of the yarn, e.g., above a birefringence of 0.01, is suitable for practicing the invention. The draw initiation zones can be introduced in a longitudinal or transverse direction, or in a zig-zag or spiral fashion along the fiber axis. In addition to direct mechanical contact with the yarn, bending, flexing, or vibration may be used to produce localized orientation or deformation.
The preferred method of producing the localized deformed segments is with the apparatus shown in FIGURE 1. Obviously, a gear can be substituted for the notching roller 6. This method is very satisfactory and permits ready control of the spacing of the stress points by merely changing gear sizes.
Stufiing box crimpers of the type which force the yarn to fold back on itself are also suitable for this purpose. Because of the less rigid control over the folding process as compared with the opposed roller and gear device, the localized deformed segments are spaced at varying distances from one another.
Acoustically operated devices, such as fluttering reeds over which the yarn is passed while the reed vibrates, as well as other vibrating means in the sonic and ultrasonic frequency range, may be used. Eccentric wheels and other camming devices may also be used to produce 10- calized deformed segments in the undrawn yarn.
In addition to the heated segmented roller 19, shown in FIGURE 2, other means for heating the yarn and subsequently stretching it to produce localized orientation, for example, a heated cam, heated gear, or fluted roller, may be used to soften the undrawn yarn to produce alternating regions which will respond to the tension produced in the yarn by drawing rollers and 21.
Referring again to FIGURES 3 and 313, it will be noted that the shoulders of the neck 26 from which the yarn draws are very sharp. It has been observed that a critical angle, measured between the tangent to the inflection point of the drawing neck and the fiber axis, of about 44, exists below which only clear drawn material is produced. At greater angles, indicating a very high shear rate, lustrous void-containing material is produced. This critical angle is readily maintained by the process of this invention. 7
FIGURES 3, 3C and 3D show the transition of the clear undrawn section of yarn it which lies between lustrous sections 23 and 24 to a clear, fully drawn section 25 at the junction of the drawing necks. A slight reduction in cross-sectional area of section 25 is shown in FIGURE 3D in exaggerated form.
In FIGURES 3B, 3C and 3D it will be noted that the lustrous sections 23 and 24 are covered with a thin, clear skin 30. The combination of clear skin and void-containing structures produces the metallic luster in sections 23 and 24.
The invention will be further illustrated but is not intended to be limited by the following examples.
Example I Polyethylene terephthalate was melt-spun through a spinneret to give a ribbon which was 0.022 inch wide by 0.0034 inch thick in the undrawn state having a birefringence of 0.0003. The undrawn material was then run through a notching device of the type shown in FIGURE 1 having 24 wires spaced to give indentations in the material 0.15 inch apart. The stressing roller and backup roller were spaced apart so that the indentations made by the wires penetrated to approximately /3 the depth of the ribbon. The cross-sectional area of the ribbon at the notches was reduced approximately 30%. The ribbon was then passed over a pin heated to 88 C. and then to a set of drawing rollers positioned 24 inches away from the pin. The yarn did not reach thermal equilibrium with the hot pin because of the short contact time, but the pin heated the yarn sulficiently to localize drawing. The undrawn material was fed through the notching device at a speed of 39 yards per minute, and the drawn material was wound at a speed of 223 yards per minute giving a draw ratio of 5.72X. As each segment of undrawn yarn passed over the hot pin, the tension produced by the draw rollers caused the material to draw. When the process reached a steady state, more than 10 increments were being drawn simultaneously. The total drawing process occurred over a distance measred along the yarn of approximately 5 inches. The re sulting material was a highly drawn ribbon having portions which contained a large number of tiny, elongated voids which imparted a metallic luster to the drawn material alternating with short sections of ribbon of conventional clear appearance. The clear portions occurred at the sections of yarn which had been deformed by the wires on the notching roller prior to drawing and at the junction of the two drawing necks. The lustrous portions were 0.885 inch long, and the clear portions were approximately 0.02 inch long. The polymer structure in the clear sections was monolithic.
Example II In this example a metal blade was mounted so that the blade oscillated back and forth against the fiber. An undrawn polyethylene terephthalate ribbon 0.02 inch wide and 0.004 inch thick having a birefringence of 0.0005 was passed over the blade while the blade was vibrated in such a fashion that each cycle the blade stuck but did not cut the ribbon. The vibrating blade produced oriented segments in the undrawn material at points about 0.625 inch apart. The undrawn ribbon was then passed over a heated plate which was heated to a temperature of about 60 C., and then to a set of drawings rollers where it was drawn to give sections of metallic luster about 0.23 inch long separated by sections of conventional clear appearance about 0.11 inch long. As in the earlier example, as each oriented. segment ran over the hot plate, drawing commenced simultaneously at both ends of the undrawn segment. Clear sections appeared at the junction of the drawing necks. When steady state conditions were reached, the ribbon was drawing at four necks simultaneously.
Example III Polyethylene terephthalate was melt-spun through a spinneret to give a ribbon similar to that described in Example I. The undrawn ribbon had a birefringence of 0.0003. The ribbon was then notched as in Example I. The undrawn material was fed through the notching device at a speed of 43 yards per minute, and the drawn material was wound at a speed of 264 yards per minute, giving a draw ratio of 6.14X. The undrawn material was passed over the hot pin which was heated to 88 C. with a 40 arc of contact. The tension produced by the draw rollers caused the material to start to draw at both sides of the notch as it came off the hot pin. The drawing conditions described gave a material which contained a large number of tiny, elongated voids which imparted a metallic luster to the drawn material. These lustrous sections alternated with sections of conventional appearance which coincided with the sections of yarn which had been deformed by the notching roller prior to drawing. Additional, very short, clear sections occurred at formed was 7.2 yards per minute at each neck.
Example I V Polyethylene terephthalate was melt-spun through a spinneret to give 160 denier undrawn ribbon having a birefringence of 0.0003. The undrawn ribbon was colored by dyeing the polymer prior to spinning using a hightemperature stable dye mixture to give a clear, transparent yellow color. The ribbon was then run through the notching device described in FIGURE 1 at a speed of 43 yards per minute, over a pin heated to 81 C., with 140 angle of wrap around the pin, and then to a set of drawing rollers and wound up at a speed of 246 yards per minute, giving a draw ratio of 5.72X. As the undrawn material passed over the hot pin, the tension exerted by the drawing rollers caused the material to draw at each stress point as it came off the hot pin. The drawing process gave a material which had a metallic, lustrous, gold-like appearance. The metaillic gold-appearing sections alternated with sections of translucent yellow color which coincided with the sections of yarn which had been deformed by the notching roller prior to drawing. Additional translucent yellow sections occurred at the junction of two drawing necks. The final product was a ribbon 1/200 inch wide and had a denier of only 28.
Example V The experiment of Example IV was repeated, except that the hot pin was positioned so that the undrawn ribbon was tangent to the pin and the pin was heated to 139 C. The draw ratio in this case was 5.70X. The goldluster ribbon was identical to that produced in Example IV. The ribbon produced was then woven into a flat fabric. The appearance of the fabric was both pleasing and striking.
Example VI A 655 denier polyhexamethylene adipamide ribbon having a birefringence of 0.0005 was notched and drawn using the apparatus shown in FIGURE 1. The undrawn ribbon was given 2.67 notches per inch. The area surrounding the ribbon was at 29% relative humidity. The I tions, 31 necks were observed to be drawing simultaneously.
Example VII A 2365 denier ribbon of polyethylene terephthalate having an initial birefringence of 0.0003 was drawn, using apparatus similar to that shown in FIGURE 1. A toothed gear was substituted for the notching roller shown in the figure. The gear was three-quarters of an inch in diameter and had V-shaped teeth. The ribbon was passed through the device at a speed of 8.2 yards per minute to give 13.3 notches per inch. Following his operation, the ribbon was passed over a plate 8 inches long which was heated to 75 C. and then to a set of drawing rollers operating at a surface speed of 41 yards per minute. Under these conditions the ribbon drew at a draw ratio of 5.06X giving highly lustrous sections 0.38 inch long alternating with clear sections 0.02 inch and 0.005 inch long. The 0.02 inch clear sections resulted from drawing the notched segments and the 0.005 inch sections remained clear at the junction of the two drawing necks.
3 Example VIII A 610 denier ribbon of 6 nylon, the polyamide produced by self-condensation of caprolactam, having an initial birefringence of 0.0004, Was notched and drawn using the apparatus shown in FIGURE 1. The wires on the notching roller were spaced 0.375 inch apart. The ribbon was fed to the notching roller at a speed of 41 yards per minute. The pin was heated to 142 C., and the drawing rollers were operated at 200 yards per minute. The ambient temperature was 24 C. and the relative humidity 30%. Under these conditions the ribbon was drawn at a draw ratio of 4.76X. Highly lustrous metallic-appearing sections having a large number of tiny, elongated voids, alternating with clear sections, were produced.
Example IX A 467 denier ribbon of an undrawn polyacetal resin having an initial birefringence of 0, was notched and drawn using the apparatus shown in FIGURE 1. The wires on the notching rollers were spaced to produce prestressed areas in the ribbon which were 0.375 inch apart. The yarn was fed to the notching roller at a speed of 12 yards per minute and passed over the hot pin which was held at a temperature of 141 C. The drawing rollers were operated at a speed of 82 yards per minute, thus drawing the ribbon at a draw ratio of 6.83X. The ribbon had a silvery appearance with lustrous sections alternating with clear sections.
Example X A polyethylene terephthalate ribbon having undrawn dimensions of 1.2 mm. wide and 0.115 mm. thick and an initial birefringence of 0.0006 was stressed and drawn in apparatus similar to that shown in FIGURE 2. A fluted roller was substituted for the segmented roller shown in FIGURE 2. As the undrawn ribbon was passed in contact with the flutes of the roller, which were heated to a temperature of about C., a section 0.125 inch long was heated. The ribbon, without cooling, was then passed to a pair of drawing rollers which were operated at a speed of 20.7 yards per minute. The heated sections of ribbon were drawn at the natural draw ratio, 46X, and drew giving a conventional clear-appearing product. No luster was observed. The sections which were not heated did not draw.
Following the clear drawing step, the ribbon was then passed to a second pair of drawing rollers which were operated at a surface speed of 47.3 yards per minute, drawing the undrawn material to 5.75 times its original length. It was observed that the undrawn sections of the ribbon started drawing as they left the first pair of drawing rollers and drew with a series of necks beginning with points adjacent the clear drawn sections. Sections drawn in the second step had a lustrous appearance. The resulting yarn was a Very unusual and attractive material having alternating sections of metallic luster 0.63 inch long and conventional, clear-appearing sections 0.31 inch long. All of the sections of yarn were completely drawn, and there were no abrupt changes in diameter in transition points from one section to the next.
Example XI A multifilament bundle of 30 undrawn polyethylene terephthalate fibers, having a total undrawn denier of 2090 and an initial birefringence of 0.0005 was notched and drawn in the apparatus shown in FIGURE 1. The Wires on the notching roller were spaced to give a dis tance of 0.375 inch between notches. A finish applicator roller was placed between the feed rollers and the notch ing device, and a finish was applied to the yarn to consolidate the filaments, reduce static, and to increase the uniformity of heat transfer from the hot pin the yarn. The finish applied was a silicone oil. The feed rollers were operated at a surface speed of 18 yards per minute and the drawing rollers were operated at a speed of 106 v yards per minute, giving a draw ratio of 5.9X. A oneinch diameter stainless-steel pin was used and was heated to 54 C. The yarn was wrapped 80 around the pin. It was observed that as the yarn entered the notching device the bundle of filaments flattened out so that each filament was notched individually. In addition, crossover points, that is, where one filament overlapped anoiher, produced additional prestressed areas. The yarn drew to a denier of 354 with each filament having short, clear drawn sections and metallic luster sections similar to those described in the preceding examples. The final product was a silvery yarn having a very attractive appearance in which the short clear sections were not conspicuous due to their random location along the length of the yarn.
Example XII A ribbon comprised of a polymer blend of 90% polyethylene terephthalate and polymethylmethacrylate having an undrawn denier of 430 and an initial birefringence of 0.003 was notched using the apparatus described in Example VIlI so that the prestressed are-as were 0.375 inch apart. The ribbon was wrapped at an angle of 90' over a pin held at a temperature of 122 C. The notching roller was operated at a speed of 11 yards per minute. The drawing rollers were operated at a speed of 62 yards per minute giving a draw ratio of 5.6X. The ribbon had a silvery appearance with lustrous sections alternating with clear sections.
Example 25111 An undrawn polypropylene ribbon having an initial birefringence of 0.003 and a denier of about 600 was notched and drawn using the apparatus described in FIG- URE 1 The pin was heated to 80 C., and the ribbon was drawn at a draw ratio of approximately 5.2X. The alternating clear and lustrous-appearing ribbon was wound up on the drawing roller at a speed of about 150 yards per minute.
While the above examples illustrate desirable and preferred methods, other methods for drawing and stressing the yarn may be used. Also, films, particularly in narrow width, may be substituted for the ribbons and filaments described. The following list gives an indication of the alternate procedures which can be employed in introducing incipient draw regions in portions of the yarn:
(a) Snub bing the undrawn yarn with a variable tension snubbing device near the draw zone to cause rapid fluctuations of tension,
(b) Feeding the undrawn ribbon between timing belt sprocket and a timing belt,
(c) Variable snubbingof the undrawn fiber between a heating plate and a reciprocating pad,
(d) Use of eccentric rotating pins to vary yarn tension and/ or to feed undrawn sections to different sections of a heating surface,
(e) Use of an air jet to crease or fold undrawn fibers,
(1) Use of wire grids or other spaced heating or cooling means,
(g) Use of infrared radiation and a rotating shutter to interrupt the incident thermal radiation,
(h) Creation during the spinning process of short range denier fluctuations by uneven quenching techniques,
(i) Employing the notching roll during melt-spinning of the yarn,
(j) Applying warm fluid jets or droplets intermittently to the yarn as it enters the drawing zone,
(k) Applying plasticizers intermittently or randomly to the yarn (both chemical plasticizers and physical plasticization, e.g., thermal treatment, are operative), and
(l) Crystallizing the yarn intermittently by physical or chemical treatment prior to drawing.
The preferred procedure includes the use of a mechanical device to introduce incipient draw initiation zones in the undrawn yarn. When this method is used, it has 10 been found that the drawing process is most readily coritrolled and excellent results are obtained.
Although the means for practicing the present invention may be selected from a wide variety of sources, the requirements for practicing the process are, as previously indicated, critical in many respects. The yarn must be essentially unoriented, e.g., the birefringence of the undrawn yarn is preferably below 0.01. Any of the known techniques for low tension spinning may be used to produce the low birefringence filament. A further requirement resides in the fact that the drawing conditions must be regulated as previously described so that the sections draw at their natural draw ratio.
By the phrase natural draw ratio is meant a draw ratio at which a certain degree of permanent, nonreversible extension, which is just sufi'icient to change it from its undrawn state to a uniformly drawn and highly oriented state without straining the polymeric material so as to introduce surface cracks or failure, is given to the polymeric material. In general, when any material is drawn in the conventional sense used in processing synthetic fibers one or both of two things happen. There can be plastic flow and there can be orientation of the material. The plastic flow method of drawing is used to elongate a polymeric material 10, 20, or even times its original length. However, in the plastic flow process only slight orientation of the material occurs. Plastic flow drawing is normally carried out either at high temperatures or in the presence of plasticizers, or both. There is no natural draw ratio for plastic flow elongation. When a synthetic polymer is not in a plastic fiowable condition it will, under normal conditions, tend to draw at its natural draw ratio and in the process become highly oriented If, for example, an undrawn filament can be drawn to five times its original length to produce a highly oriented, uniformly drawn material, it is not possible, in general, to draw it completely at either four or six times its original length under the same conditions. If one attempts to draw to six times, the filament will break. If one chooses a lower value, for example, four times, one will find that some sections of the yarn will draw at the natural draw ratio while other sections will not draw at all.
As has already been indicated, the present invention is applicable to drawing filaments comprised of synthetic organic polymers. While the examples give an indication of some of the polymers which can be used, it is not intended that this invention be so limited. Among the synthetic organic polymers which may be used are filmand fiber-forming polyesters, polyamides, polyacetal resins, polyhydrocarbons prepared from ethylenically unsaturated monomers, polyurethanes, copolyamides and copolyesters, mixtures of polyethylene terephthalate and polymethyl methacrylate, and polyethylene terephthalate and polyethylene. Although any material which can be drawn by a process to give a void-containing lustrous appearance and can also be drawn by a process which gives a clear, monolithic structure may be used, the high molecular weight synthetic linear organic condensation polymers are preferred because of their high strength, resistance to chemical attack, and the ease with which they can be drawn by either of the just mentioned processes.
The processes for preparing synthetic linear polymers are well known. The preparation of polyesters is described in the aforementioned United States patent to Whinfield et al., No. 2,465,319. In addition, polyesters comprised of such intermediates as trimethylene glycol, tetramethylene glycol, 1,6-hexane diol, 1,4cyclohexane diol, 2,2-(p-hydroxy cyclohexyl) propane, bis-(p-phenylol) methane, trans-1,4-bis-(hydroxymethyl)cyclohexane, resorcinol, and the like, may be mentioned. In addition to terephthalic acid, isophthalic acid, adipic acid, sebacic acid, bibenzoic acid, and the like, are included. Polyamides may be prepared by the processes set forth in U.S. Patents Nos. 2,071,251, 2,071,253, 2,130,523, and 2,130,948, the polyacetal resins in US. Patent No.
1 1 2,768,994, the polyurethanes in U.S. Patent No. 2,731,446, and the polypropylene in U.S. application Serial No. 677,203.
The process of this invention may be used to produce novel yarns which may or may not contain dyes or pigments. Small amounts of pigments such as titanium dioxide, barium sulfate, cadmium sulfide, lamp black, and the like may be included in the polymer. Alternatively, suitable dyes such as amino-2-bromo-4-hydroxyanthraquinone and 1-(p-ethylolamino)-4,5-dihydroxy-8 nitroanthraquinone may be applied to the melt-spun undrawn ribbon. of course, it is also possible to color the products of this invention by including a dyestufi such as one of those described in U.S. 2,571,319 in the melt prior to spinning.
In practicing this invention the polymers may also contain small amounts of impurities and reaction byproducts which generally appear in continuous polymerization processes without harmful effect.
It has been found that the process is most readily controllable when the filamentary material has been allowed to age at room temperature for a period from twentyfour to forty-eight hours. However, material aged from one to two hours at 60 C. to 120 C. performs quite satisfactorily.
The products of the present invention have many uses. They may be used alone or in combination with conventional yarns to produce novel and pleasing textile fabrics. Cords, ribbons, and the like having a striking appearance may also be prepared. Papers containing staple fibers of the present invention have a highly attractive appearance and great covering power.
The products of this invention also have many desirable practical as well as aesthetic advantages over known novelty yarns. In addition to the striking appearance which can be achieved in textile fabrics, the yarns have a high bending modulus, high strength, and low dye and stain receptivity. Furthermore, the clear portions of the yarn are monolithic in structure.
A particular advantage of the present invention resides in the fact that the drawing process described can be accomplished at high speeds. In addition, the process is readily controllable and can be operated in a variety of diiferent ways to produce strong, resilient material of uniform denier having alternating portions of contrasting appearance. Other advantages of the products and process of this invention will be apparent to those skilled in textile designing and the manufacturing of synthetic fibers.
It will be apparent that many widely different embodiments of this invention may be made without departing from the spirit and scope thereof and, therefore, it is not intended to be limited except as indicated in the appended claims.
I claim: r
1. A fully drawn elongated shaped article comprised of a synthetic organic polymer capable of being cold drawn, said shaped article having a plurality of clear sections of a monolithic polymeric structure along its length and a plurality of opaque, lustrous sections of the same polymer composition separating said clear sections, said opaque, lustrous sections having a thin, clear skin and a continuous internal structure containing a multiplicity of small, elongated voids.
2. The product set forth in claim 1 in which said polymer is a polyester.
3. The product set forth in claim 1 in which said shaped article is dyed before being cold drawn.
4. The product set forth in claim 1 in which said shaped article is in the form of a filament.
5. The product set forth in claim 1 in which said shaped article is in the form of a film.
6. A fully drawn novelty yarn of substantially uniform denier comprised of a synthetic organic polymer capable of being cold drawn, said yarn having a plurality of clear sections of a monolithic polymeric structure along its length and a plurality of opaque, lustrous sections of the same polymer composition separating said clear sections, said opaque, lustrous sections having a thin, clear skin and a continuous internal structure containing a multiplicity of small, elongated voids.
7. The product set forth in claim 6 in which said yarn is comprised of a plurality of filaments.
8. The product set forth in claim 6 in which said yarn is a polyester yarn.
References Cited in the file of this patent UNITED STATES PATENTS 1,898,085 Dreyfus et al. Feb. 21, 1933 2,044,135 Taylor June 16, 1936 2,071,251 Carothers Feb. 16, 1937 2,264,415 Taylor et al. Dec. 2, 1941 2,278,888 Lewis Apr. 7, 1942 2,289,232 Babcock July 7, 1942 2,296,394 Meloon Sept. 22, 1942 2,352,725 Markwood July 4, 1944 2,370,112 Truitt Feb. 20, 1945 2,399,259 Taylor Apr. 30, 1946 2,559,080 MacAllistcr July 3, 1951 2,637,893 Shaw May 12, 1953 2,861,319 Breen Nov. 25, 1958 2,917,779 Kurze et al. Dec. 22, 1959 OTHER REFERENCES A Multiple Necking Effect in Nylon, Journal of the Textile Institute, Transactions by Woods, pp. T629 to T-631, vol. 46, September 1955.
US71914458 1958-03-04 1958-03-04 Shaped products Expired - Lifetime US3069747A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
NL236753D NL236753A (en) 1958-03-04
IT605163D IT605163A (en) 1958-03-04
BE576349D BE576349A (en) 1958-03-04
NL124011D NL124011C (en) 1958-03-04
US71914458 US3069747A (en) 1958-03-04 1958-03-04 Shaped products
GB7034/59A GB903915A (en) 1958-03-04 1959-02-27 Improved synthetic organic fibres and films and process for the production thereof
CH7027859A CH374798A (en) 1958-03-04 1959-03-03 Process for the production of shaped articles and shaped articles produced by this method
FR788313A FR1224341A (en) 1958-03-04 1959-03-04 Glossy shaped articles and their manufacturing process
DEP1269A DE1269765B (en) 1958-03-04 1959-03-04 Process for the production of threads or films with gloss effects from synthetic organic material
US112408A US3069726A (en) 1958-03-04 1961-05-24 Process for preparing articles having sections with metallic luster alternating with sections which are clear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71914458 US3069747A (en) 1958-03-04 1958-03-04 Shaped products

Publications (1)

Publication Number Publication Date
US3069747A true US3069747A (en) 1962-12-25

Family

ID=24888906

Family Applications (1)

Application Number Title Priority Date Filing Date
US71914458 Expired - Lifetime US3069747A (en) 1958-03-04 1958-03-04 Shaped products

Country Status (1)

Country Link
US (1) US3069747A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3329557A (en) * 1955-04-06 1967-07-04 Du Pont Static resistant filament and process therefor
US3917185A (en) * 1972-11-24 1975-11-04 Sonoco Products Co Business machine core
US4055702A (en) * 1974-03-29 1977-10-25 M & T Chemicals Inc. Additive-containing fibers
US4198459A (en) * 1976-12-03 1980-04-15 Brumlik George C Filaments with evolved structure and process of making some
US4201813A (en) * 1976-01-14 1980-05-06 Brumlik George C Cellular linear filaments with transverse partitions
FR2452896A1 (en) * 1979-04-05 1980-10-31 Yoshida Kogyo Kk VELVET-TYPE CLOSURE TAPE
US4340631A (en) * 1979-12-06 1982-07-20 Toray Industries, Inc. Thick-and-thin fibers and products therefrom
US4389364A (en) * 1979-12-06 1983-06-21 Toray Industries, Inc. Method of making thick-and-thin fibers

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1898085A (en) * 1928-09-13 1933-02-21 Celanese Corp Production of artificial filaments, yarns, or threads
US2044135A (en) * 1928-11-21 1936-06-16 Celanese Corp Production of artificial textile materials
US2071251A (en) * 1931-07-03 1937-02-16 Du Pont Fiber and method of producing it
US2264415A (en) * 1937-03-19 1941-12-02 Celanese Corp Manufacture of artificial filaments, yarns, and similar materials
US2278888A (en) * 1938-11-02 1942-04-07 Du Pont Artificial structure and process for producing same
US2289232A (en) * 1939-07-14 1942-07-07 Du Pont Method and apparatus for producing filamentary structures
US2296394A (en) * 1940-11-22 1942-09-22 Du Pont Manufacture of novelty artificial yarn
US2352725A (en) * 1941-11-04 1944-07-04 Du Pont Shaped product
US2370112A (en) * 1942-03-04 1945-02-20 American Viscose Corp Textile material
US2399259A (en) * 1943-05-29 1946-04-30 American Viscose Corp Method of making hollow filaments and product thereof
US2559080A (en) * 1948-04-10 1951-07-03 John L Macallister Fishing leader
US2637893A (en) * 1949-03-12 1953-05-12 Shaw Gilbert Artificial filament
US2861319A (en) * 1956-12-21 1958-11-25 Du Pont Intermittent core filaments
US2917779A (en) * 1955-05-13 1959-12-22 Hoechst Ag Process for preparing improved thin shaped structures, such as filaments or foils, from linear polyesters

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1898085A (en) * 1928-09-13 1933-02-21 Celanese Corp Production of artificial filaments, yarns, or threads
US2044135A (en) * 1928-11-21 1936-06-16 Celanese Corp Production of artificial textile materials
US2071251A (en) * 1931-07-03 1937-02-16 Du Pont Fiber and method of producing it
US2264415A (en) * 1937-03-19 1941-12-02 Celanese Corp Manufacture of artificial filaments, yarns, and similar materials
US2278888A (en) * 1938-11-02 1942-04-07 Du Pont Artificial structure and process for producing same
US2289232A (en) * 1939-07-14 1942-07-07 Du Pont Method and apparatus for producing filamentary structures
US2296394A (en) * 1940-11-22 1942-09-22 Du Pont Manufacture of novelty artificial yarn
US2352725A (en) * 1941-11-04 1944-07-04 Du Pont Shaped product
US2370112A (en) * 1942-03-04 1945-02-20 American Viscose Corp Textile material
US2399259A (en) * 1943-05-29 1946-04-30 American Viscose Corp Method of making hollow filaments and product thereof
US2559080A (en) * 1948-04-10 1951-07-03 John L Macallister Fishing leader
US2637893A (en) * 1949-03-12 1953-05-12 Shaw Gilbert Artificial filament
US2917779A (en) * 1955-05-13 1959-12-22 Hoechst Ag Process for preparing improved thin shaped structures, such as filaments or foils, from linear polyesters
US2861319A (en) * 1956-12-21 1958-11-25 Du Pont Intermittent core filaments

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3329557A (en) * 1955-04-06 1967-07-04 Du Pont Static resistant filament and process therefor
US3917185A (en) * 1972-11-24 1975-11-04 Sonoco Products Co Business machine core
US4055702A (en) * 1974-03-29 1977-10-25 M & T Chemicals Inc. Additive-containing fibers
US4201813A (en) * 1976-01-14 1980-05-06 Brumlik George C Cellular linear filaments with transverse partitions
US4198459A (en) * 1976-12-03 1980-04-15 Brumlik George C Filaments with evolved structure and process of making some
FR2452896A1 (en) * 1979-04-05 1980-10-31 Yoshida Kogyo Kk VELVET-TYPE CLOSURE TAPE
US4340631A (en) * 1979-12-06 1982-07-20 Toray Industries, Inc. Thick-and-thin fibers and products therefrom
US4389364A (en) * 1979-12-06 1983-06-21 Toray Industries, Inc. Method of making thick-and-thin fibers

Similar Documents

Publication Publication Date Title
US3069726A (en) Process for preparing articles having sections with metallic luster alternating with sections which are clear
US2278888A (en) Artificial structure and process for producing same
US3024517A (en) Method of treating filament yarn
US3492389A (en) Technique for producing synthetic bulk yarns
US4051287A (en) Raised woven or knitted fabric and process for producing the same
US3470685A (en) Synthetic textile yarn
US3398220A (en) Process for converting a web of synthetic material into bulk yarns
US2919534A (en) Improved textile materials and methods and apparatus for preparing the same
US3691748A (en) Textured polyethylene terephthalate yarns
US3500626A (en) Process for treatment of molecularly oriented crystalline organic polymeric material
US3724198A (en) Method for preparing spun yarns
US3069747A (en) Shaped products
US2931090A (en) Textile apparatus
US3137911A (en) Apparatus for treating filament yarn
US3365874A (en) Treatment of synthetic filaments
US3376698A (en) Production of stretch or bulked textile yarns
US3435603A (en) Process and apparatus for producing torque in synthetic filaments,fibers and yarns
US3263298A (en) Production of intermittently textured yarn
US2974392A (en) Apparatus for crimping yarn
US3470594A (en) Method of making synthetic textile yarn
US3092890A (en) Textured multilobal filament yarn
US3739053A (en) Method for fibrillating stretched film
US3577724A (en) Method of fibrillating and twisting oriented film
US3506535A (en) Method of fibrillation and product
US3024516A (en) Apparatus for treating filament yarn