US3063375A - Folding fin - Google Patents

Folding fin Download PDF

Info

Publication number
US3063375A
US3063375A US30393A US3039360A US3063375A US 3063375 A US3063375 A US 3063375A US 30393 A US30393 A US 30393A US 3039360 A US3039360 A US 3039360A US 3063375 A US3063375 A US 3063375A
Authority
US
United States
Prior art keywords
fin
booster
fins
rod
position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US30393A
Inventor
Wilbur W Hawley
Jr David J Haykin
Original Assignee
Wilbur W Hawley
Jr David J Haykin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilbur W Hawley, Jr David J Haykin filed Critical Wilbur W Hawley
Priority to US30393A priority Critical patent/US3063375A/en
Application granted granted Critical
Publication of US3063375A publication Critical patent/US3063375A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/14Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel

Description

Nov. 13, 1962 w. w. HAWLEY EI'AL 3,

FOLDING FIN Filed May 19, 1960 3 Sheets-Sheet 1 WILBUR W. HAWLEY DAVID J. HAYKIN,Jr.

ATTORNEYS Nov. 13, 1962 w. w. HAWLEY EIAL 3,063,375

VFOLDING FIN Filed May 19, 1960 3 Sheets-Sheet 2 WILBUR W. HAWLEY DAVID J. HAYKIN, Jr.

\ ATTORNEYS Nov. 13, 1962 w. w. HAWLEY ETAL 3,0 3,3 5

FOLDING FIN Filed May 19, 1960 3 Sheets-Sheet 3 WILBUR W. HAWLEY DAVID J HAYKIN, Jr

INVENTORS ATTORNEY United States Patent ()1 States of America as represented by the Secretary of the Navy Filed May 19, 1960, Ser. No. 30,393 3 Claims. (Cl. 102--50) The present invention relates to folding fins for booster rockets and the like. More particularly, it relates to a fin folding arrangement wherein the fin axis or span extends parallel to the airframe longitudinal axis in a collapsed condition and is erected principally by a rotary movement.

Prior folding fins comprise either a telescoping arrangement or a single hinge joint which may be located at the fin root or at some point along the fin span. Telescoping fins are generally unsatisfactory if subjected to extremely high aerodynamic loads such as are encountered in transonic and supersonic flight. Hinged fins do not greatly reduce the stowage space if the fin span exceeds the diameter of the missile. The present invention, however, is capable of reducing the required stowage area practically to the area of a square circumscribing the missile cross section even though the fin span may be'considerably greater than the length of one side of the circumscribing square.

Accordingly, it is an object of the present invention to provide a missile structure having collapsible wings or fins.

It is a further object to provide a missile structure in which the fins are collapsed at all times during stowing or handling and are erected only upon launching the missile.

Another object of the invention is to provide a folded fin missile structure in which a large part of the force required to erect the fin is supplied by setback upon launching the missile.

Other objects and many of the attendant advantages of this invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

FIG. 1 is a perspective view of the present invention showing its application to the booster rocket of a missilecombination, the fins being shown in fully folded positions;

FIG. 2 is a perspective view of the fin mounting portion of the booster rocket of FIG. 1 showing the fins shortly after initiation of the erecting operation;

FIG. 3 is a view similar to FIG. 2 except that the fins appear in medial positions;

FIG. 4 is similar to FIG. 3 except that the fins have progressed very nearly to their final extended positions;

FIG. 5 is a rear view of the booster with the fins shown in the positions of FIG. 4;

FIG. 6 is a perspective of the rear portion of the booster rocket showing the fins in fully erect positions;

FIG. 7 is a plan view of the rear portion of the booster showing certain elements of the fin erecting mechanism in phantom; and

FIG. 8 is a partial sectional view taken along the line 8--8 of FIG. 7.

FIG. 1 illustrates the invention as applied to a jettisonable booster rocket 10 similar to those commonly employed in launching a large variety of guided missiles. The rocket 10 is supported on a launcher rail 12 by means of shoes 13 and 13'. A missile 14 is detachably secured to the forward end of rocket 10. The missile 14 is designed for supersonic operation and hence requires a wing of only a small span to deliver the necessary control moments and lift. The booster rocket however is needed only during the subsonic and transonic portions of the missiles 3,063,375 Patented Nov.'13., 1962 ice flight. Once the missile has reached a supersonic speed the booter is jettisoned, reducing both the drag and the weight which would otherwise need to be transported by the missile. Because of the greater span, the booster fins create a more severestorage and handling problem than do the missile fins. For this reason the invention is illustrated and described as being applied only to the booster although obviously it may be applied to the missile fins if desired.

The four booster fins 15 are folded forwardly with their span axis paralleling the booster longitudinal axis and with one surface of'the fin tangent to the body of the booster 1d. The root edge 16 of each fin 15 faces aft. The launching shoe 13' is secured to the root edge of the upper fin 15 and for aerodynamic balance a similar shoe may be secured to the lower fin. A skewed actuating rod 18 extends from the interior of the rear portion of booster 10 to the fin root edge 16, to which it is rigidly secured, as by welding. The rod 18 serves both to erect the fin and to secure it either in a folded or an erected position. A simple rotary motion of the rod 18 causes the attached fin to rotate so that the forward tip 19 of the fin moves both outwardly and towards the rear while the fin root 16 rotates from a position transverse to the longitudinal axis of the booster to a position paralleling the booster longitudinal axis.

FIGS. 2, 3 and 4 illustrate the effect of rotating rod 13. In FIG. 2, at the commencement of the erection operation, the fin tip 19 is displaced aft and outwardly from the position shown in FIG. 1. FIG. 3 shows the position of the fins after motion has proceeded to a more advanced stage. Further rotation of actuating rod 13, from the position of FIG. 3, through a total of from the position of FIG. 1, produces the condition shown in FIGS. 4 and 5. The fins 15 are fully erect, but are off-set from the missile center line with the root 16 slightly elevated above the booster body. The off-set is removed, and the fins 15 are lowered into proper alignment as shown in FIG. 6, simply by retracting actuating rod 18.

The fin actuating mechanism is shown in FIGS. 7 and 8. It should be understood that a large contribution to the actuating force is supplied by the booster set-back forces, since acceleration supplied by the booster thrust is commonly in the neighborhood of 15 g. Therefore, the primary function of the actuating mechanism is to move the fins into a slightly unbalanced condition whereafter the inertia of the fins will account for the major portion of the force needed to complete the operation.

The rear portion of the booster includes a nozzle 21, best seen in FIG. 7, shrouded by the booster skin 22. The actuating mechanism is enclosed within the space provided by the constriction of the nozzle throat and includes .four actuating cylinders 23, only one of which is shown. Cylinder 23 is pivotally secured to a boss 24 cast on the outer surface of nozzle 21. The hydraulic pressure line connections to cylinder 23 are not shown but it will be understood that a suitable source of hydraulic power is made available to cylinder 2-3. The piston rod 25 of cylinder 23 is pivotally connected to a bell crank 26. The lower end of rod 18 is splined, as seen at 27 in FIG. 8, and crank 26 is provided with teeth so that rod 18 is constrained to rotate with crank 26 but is free to move axially. Rod 18 passes through a guide bushing 28 secured internally of the booster. The bushing 28 is provided with a slot 31 through which extends a guide pin 32 secured to rod 18. A compression spring 33 is fitted over the end of rod 18 and held in place by a cap 34 fixed to the end of rod 18. Spring 33 bears against crank 26 and imparts a thrust to rod 18 urging the rod to retract into the booster. Initially, rod 18 is prevented from retraction by pin 32 riding the portion of slot 31 which extends partially about the circumference of bushing 28. When the piston rod of cylinder 23 has been extended sufliciently to drive crank 26 through 120 and hence to rotate rod 18 an equal amount, pin 3-2 will have travelled to the portion of slot 31 extending along the axis of bushing 28. The thrust of spring 33, then unresisted, causes rod 18 to withdraw into the booster. The splined connection of crank 26 to rod 18 also permits this desired motion to occur without interference.

FIGS. 7 and 8 illustrate the relative positions of the elements of the actuating mechanism when the fins are in the folded condition of FIG. 1. The fins are retained in this folded position so long as the piston rod 25 does not move. When it is desired to erect the fins pressurized fluid is brought to act upon the piston rod, causing it to move from its initial position. During the erection operation shown progressively in FIGS. 2, 3 and 4, the piston rod 25 extends, crank 26 rotates and pin 32 travels the length of the circumferential portion of slot 31. At this stage, the fins are in the position of FIGS. 4 and 5. Finally, pin 32, having arrived at the axially extending portion of slot 31, allows spring 33 to retract rod 18 and move the fins from the position of FIGS. 4 and to the position of FIG. 6. A recessed portion 35 of the booster receives the launching shoe 13' as the fin is drawn into its final erect position and thus fairs the booster surface for the reduction of drag.

As best seen in FIG. 7, a portion 36 of the root of fin is cut away so that the leading edge of the fin will not strike the booster body when the fins are approximately in the position of FIG. 3. An island 41, best seen in FIGS. 3 and 4 and shaped similarly to the cut-away portion 36, is built up from the booster body to provide a smooth fairing of the fin into the booster body. The island structures 41 may be provided with a suitable mechanism for latching the erected fins in place, although the restraint provided by the actuating mechanism is sufiicient for many applications.

Obviously, many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.

What is claimed is:

1. A collapsible wing arrangement for aerial vehicles, including a vehicle body of generally cylindrical form, a planiform airfoil having a root edge and a tip edge opposite said root edge, said airfoil being normally carried edgewise to the airstream with said root edge secured to said body, a shaft rigidly secured to said root edge oblique to the plane of said airfoil and extending into said vehicle body oblique to a plane perpendicular to the longitudinal axis thereof, said shaft being mounted within said body for rotational and axial shifting movement and being so disposed relative to said two planes that rotation thereof will move said airfoil from a collapsed position, wherein the plane of said airfoil is tangent to the vehicle body with said tip ahead of said root edge along the line of travel of the vehicle, to a position wherein the airfoil is edgewise to the airstream with the root edge thereof spaced from said body and with the plane thereof laterally offset from and parallel to a plane including the longitudinal axis of said body, means for rotating said shaft, and means for axially retracting said shaft into said body to thereby shift the plane of said airfoil into said last mentioned plane.

2. A collapsible wing arrangement as recited in claim 1, wherein said means for rotating said shaft includes a bell crank connected to said shaft and a hydraulic piston connected between said bell crank and said vehicle body, said bell crank being so connected with said shaft that the latter is constrained to rotate with said crank but is free to shift axially, and wherein said last mentioned means includes a cap afiixed to the free end of said shaft and a resilient means compressed between said cap and said bell crank.

3. A folded fin configuration for booster rockets and the like, comprising a rocket body, a stabilizing airfoil generally planiform and normally carried edgewise to the airstream with its root end secured to said body, a rotatable shaft extending from the interior of said body askew to a plane perpendicular to the longitudinal axis thereof and oblique to the plane of said airfoil, said shaft being rigidly secured to the root end of said airfoil for rotating said airfoil from a first position, wherein said airfoil is carried tangent to said body and extends longitudinally therewith, to a second position, wherein said airfoil is presented edgewise to the direction of the airstream with the root end thereof adjacent said body, means for rotating said shaft, and means for retracting said shaft to translate the position of said #airfoil into a plane containing the longitudinal axis of said body.

References Cited in the file of this patent UNITED STATES PATENTS 1,166,879 Alard Jan. 4, 1916 2,427,217 Lebherz et al. Sept. 9, 1947 2,940,688 Bland June 14, 1960

US30393A 1960-05-19 1960-05-19 Folding fin Expired - Lifetime US3063375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US30393A US3063375A (en) 1960-05-19 1960-05-19 Folding fin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US30393A US3063375A (en) 1960-05-19 1960-05-19 Folding fin

Publications (1)

Publication Number Publication Date
US3063375A true US3063375A (en) 1962-11-13

Family

ID=21854004

Family Applications (1)

Application Number Title Priority Date Filing Date
US30393A Expired - Lifetime US3063375A (en) 1960-05-19 1960-05-19 Folding fin

Country Status (1)

Country Link
US (1) US3063375A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3115059A (en) * 1961-06-14 1963-12-24 Jr George E Moul Retractable launching shoes
US3127838A (en) * 1960-10-12 1964-04-07 Bombrini Parodi Delfino Spa Retractable blade tail unit for projectiles
US3153980A (en) * 1961-08-07 1964-10-27 Kongelbeck Sverre Retractable missile shoes
US3195406A (en) * 1962-10-23 1965-07-20 Value Engineering Company Rotating missile launching shoe
US3782668A (en) * 1970-09-25 1974-01-01 Us Army Ramp forward of control fin
US3921498A (en) * 1974-05-24 1975-11-25 Us Navy Fin clip and connector mount
US4072107A (en) * 1967-06-07 1978-02-07 The United States Of America As Represented By The Secretary Of The Army Missile control means
FR2448707A1 (en) * 1979-02-08 1980-09-05 British Aerospace Ensemble folding fins for flying craft
DE2935044A1 (en) * 1979-08-30 1981-03-19 Ver Flugtechnische Werke Unmanned, from a transportbehaelter to be started flugkoerper
WO1981000908A1 (en) * 1979-09-27 1981-04-02 K Andersson Projectile,adapted to be given a rotation on firing,which makes the projectile spin-stabilized
US4295617A (en) * 1979-10-02 1981-10-20 The United States Of America As Represented By The Secretary Of The Army Selectable drag brakes for rocket range control
US4323208A (en) * 1980-02-01 1982-04-06 British Aerospace Folding fins
US4480806A (en) * 1982-11-08 1984-11-06 Stencel Aero Engineering Corporation Ejection seat stabilization apparatus
US4664339A (en) * 1984-10-11 1987-05-12 The Boeing Company Missile appendage deployment mechanism
US4667899A (en) * 1984-11-28 1987-05-26 General Dynamics, Pomona Division Double swing wing self-erecting missile wing structure
US4691880A (en) * 1985-11-14 1987-09-08 Grumman Aerospace Corporation Torsion spring powered missile wing deployment system
US4717093A (en) * 1985-08-12 1988-01-05 Grumman Aerospace Corporation Penguin missile folding wing configuration
WO1988005898A1 (en) * 1987-02-02 1988-08-11 Eskam, Armin Finned projectile or missile
US4826105A (en) * 1988-02-08 1989-05-02 Rockwell International Corporation Missile fin unfolding device
US4869442A (en) * 1988-09-02 1989-09-26 Aerojet-General Corporation Self-deploying airfoil
US4884766A (en) * 1988-05-25 1989-12-05 The United States Of America As Represented By The Secretary Of The Air Force Automatic fin deployment mechanism
GB2238856A (en) * 1989-12-08 1991-06-12 Thomson Brandt Armements Deployable shaped wing for a flying projectile
US5108051A (en) * 1987-11-26 1992-04-28 L'etat Francais Represente Par Le Delegue General Pour L'armement Deployment mechanism of a projectile fin
US5154370A (en) * 1991-07-15 1992-10-13 The United States Of America As Represented By The Secretary Of The Air Force High lift/low drag wing and missile airframe
US5188557A (en) * 1992-01-13 1993-02-23 Brown Randall L Toy rocket apparatus
US5192037A (en) * 1991-08-23 1993-03-09 Mcdonnell Douglas Corporation Double-pivoting deployment system for aerosurfaces
US5326049A (en) * 1992-04-30 1994-07-05 State Of Israel - Ministry Of Defense Rafael-Armament Development Authority Device including a body having folded appendage to be deployed upon acceleration
WO1995031689A1 (en) * 1994-05-13 1995-11-23 Hughes Aircraft Company Missile with deployable control fins
US5582364A (en) * 1991-11-07 1996-12-10 Hughes Missile Systems Company Flyable folding fin
US20050082420A1 (en) * 2003-10-06 2005-04-21 Giat Industries Deployment device for a fin
US20060163423A1 (en) * 2005-01-26 2006-07-27 Parine John C Single-axis fin deployment system
US20060255205A1 (en) * 2004-12-23 2006-11-16 Lfk-Lenkflugkoerpersysteme Gmbh Small remotely controllable aircraft
US7185846B1 (en) * 2006-03-06 2007-03-06 The United States Of America As Represented By The Secretary Of The Army Asymmetrical control surface system for tube-launched air vehicles
US20100314488A1 (en) * 2008-02-26 2010-12-16 Arie Ashkenazi Foldable and deployable panel
US20110127384A1 (en) * 2008-12-01 2011-06-02 Sergey Nikolaevich Afanasyev Flying vehicle
CN102363444A (en) * 2011-09-09 2012-02-29 江西洪都航空工业集团有限责任公司 Transverse folding mechanism for empennage
US20120199698A1 (en) * 2009-03-05 2012-08-09 Cranfield Aerospace Ltd Unmanned air vehicle (uav), control system and method
US8816261B1 (en) * 2011-06-29 2014-08-26 Raytheon Company Bang-bang control using tangentially mounted surfaces
CN104085526A (en) * 2014-06-25 2014-10-08 西北工业大学 Integrated structure for connecting, fixing, locking and unlocking wing body of patrolling aircraft
US8933383B2 (en) * 2010-09-01 2015-01-13 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for correcting the trajectory of a fin-stabilized, ballistic projectile using canards
RU2546740C1 (en) * 2014-03-20 2015-04-10 Открытое акционерное общество "Государственное машиностроительное конструкторское бюро "Вымпел" имени И.И. Торопова" Controlled missile
USD776571S1 (en) * 2014-06-10 2017-01-17 University Of Kansas Aerial vehicle
WO2017037698A1 (en) * 2015-09-06 2017-03-09 Uvision Air Ltd Foldable wings for an unmanned air vehicle
US9601040B2 (en) 2014-06-24 2017-03-21 University Of Kansas Flat-stock aerial vehicles and methods of use
RU2661490C1 (en) * 2017-05-10 2018-07-17 Николай Евгеньевич Староверов Air-fired missile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1166879A (en) * 1914-01-27 1916-01-04 Louis Alard Apparatus for modifying the trajectory of a projectile.
US2427217A (en) * 1943-09-23 1947-09-09 Harry J Lebherz Rocket fin assembly
US2940688A (en) * 1956-08-27 1960-06-14 Edward F Bland Roadable aircraft and sailboat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1166879A (en) * 1914-01-27 1916-01-04 Louis Alard Apparatus for modifying the trajectory of a projectile.
US2427217A (en) * 1943-09-23 1947-09-09 Harry J Lebherz Rocket fin assembly
US2940688A (en) * 1956-08-27 1960-06-14 Edward F Bland Roadable aircraft and sailboat

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127838A (en) * 1960-10-12 1964-04-07 Bombrini Parodi Delfino Spa Retractable blade tail unit for projectiles
US3115059A (en) * 1961-06-14 1963-12-24 Jr George E Moul Retractable launching shoes
US3153980A (en) * 1961-08-07 1964-10-27 Kongelbeck Sverre Retractable missile shoes
US3195406A (en) * 1962-10-23 1965-07-20 Value Engineering Company Rotating missile launching shoe
US4072107A (en) * 1967-06-07 1978-02-07 The United States Of America As Represented By The Secretary Of The Army Missile control means
US3782668A (en) * 1970-09-25 1974-01-01 Us Army Ramp forward of control fin
US3921498A (en) * 1974-05-24 1975-11-25 Us Navy Fin clip and connector mount
FR2448707A1 (en) * 1979-02-08 1980-09-05 British Aerospace Ensemble folding fins for flying craft
DE2935044A1 (en) * 1979-08-30 1981-03-19 Ver Flugtechnische Werke Unmanned, from a transportbehaelter to be started flugkoerper
US4410151A (en) * 1979-08-30 1983-10-18 Vereinigte Flugtechnische Werke-Fokker Gmbh Unmanned craft
WO1981000908A1 (en) * 1979-09-27 1981-04-02 K Andersson Projectile,adapted to be given a rotation on firing,which makes the projectile spin-stabilized
US4546940A (en) * 1979-09-27 1985-10-15 Kurt Andersson Projectile, adapted to be given a rotation on firing, which makes the projectile spin-stabilized
US4295617A (en) * 1979-10-02 1981-10-20 The United States Of America As Represented By The Secretary Of The Army Selectable drag brakes for rocket range control
US4323208A (en) * 1980-02-01 1982-04-06 British Aerospace Folding fins
US4480806A (en) * 1982-11-08 1984-11-06 Stencel Aero Engineering Corporation Ejection seat stabilization apparatus
US4664339A (en) * 1984-10-11 1987-05-12 The Boeing Company Missile appendage deployment mechanism
US4667899A (en) * 1984-11-28 1987-05-26 General Dynamics, Pomona Division Double swing wing self-erecting missile wing structure
US4717093A (en) * 1985-08-12 1988-01-05 Grumman Aerospace Corporation Penguin missile folding wing configuration
US4691880A (en) * 1985-11-14 1987-09-08 Grumman Aerospace Corporation Torsion spring powered missile wing deployment system
WO1988005898A1 (en) * 1987-02-02 1988-08-11 Eskam, Armin Finned projectile or missile
US5108051A (en) * 1987-11-26 1992-04-28 L'etat Francais Represente Par Le Delegue General Pour L'armement Deployment mechanism of a projectile fin
US4826105A (en) * 1988-02-08 1989-05-02 Rockwell International Corporation Missile fin unfolding device
US4884766A (en) * 1988-05-25 1989-12-05 The United States Of America As Represented By The Secretary Of The Air Force Automatic fin deployment mechanism
US4869442A (en) * 1988-09-02 1989-09-26 Aerojet-General Corporation Self-deploying airfoil
GB2238856A (en) * 1989-12-08 1991-06-12 Thomson Brandt Armements Deployable shaped wing for a flying projectile
FR2655720A1 (en) * 1989-12-08 1991-06-14 Thomson Brandt Armements Galbee deployable wing for aircraft.
GB2238856B (en) * 1989-12-08 1993-12-15 Thomson Brandt Armements Deployable shaped wing for a flying projectile
US5154370A (en) * 1991-07-15 1992-10-13 The United States Of America As Represented By The Secretary Of The Air Force High lift/low drag wing and missile airframe
US5192037A (en) * 1991-08-23 1993-03-09 Mcdonnell Douglas Corporation Double-pivoting deployment system for aerosurfaces
US5582364A (en) * 1991-11-07 1996-12-10 Hughes Missile Systems Company Flyable folding fin
US5188557A (en) * 1992-01-13 1993-02-23 Brown Randall L Toy rocket apparatus
US5326049A (en) * 1992-04-30 1994-07-05 State Of Israel - Ministry Of Defense Rafael-Armament Development Authority Device including a body having folded appendage to be deployed upon acceleration
WO1995031689A1 (en) * 1994-05-13 1995-11-23 Hughes Aircraft Company Missile with deployable control fins
US5480111A (en) * 1994-05-13 1996-01-02 Hughes Missile Systems Company Missile with deployable control fins
US20050082420A1 (en) * 2003-10-06 2005-04-21 Giat Industries Deployment device for a fin
US7059561B2 (en) * 2003-10-06 2006-06-13 Giat Industries Deployment device for a fin
US20060255205A1 (en) * 2004-12-23 2006-11-16 Lfk-Lenkflugkoerpersysteme Gmbh Small remotely controllable aircraft
US20060163423A1 (en) * 2005-01-26 2006-07-27 Parine John C Single-axis fin deployment system
WO2006081226A1 (en) * 2005-01-26 2006-08-03 Raytheon Company Single-axis fin deployment system
US7642492B2 (en) * 2005-01-26 2010-01-05 Raytheon Company Single-axis fin deployment system
US7185846B1 (en) * 2006-03-06 2007-03-06 The United States Of America As Represented By The Secretary Of The Army Asymmetrical control surface system for tube-launched air vehicles
US20100314488A1 (en) * 2008-02-26 2010-12-16 Arie Ashkenazi Foldable and deployable panel
US8378278B2 (en) * 2008-02-26 2013-02-19 Elbit Systems Ltd. Foldable and deployable panel
US8324545B2 (en) * 2008-02-26 2012-12-04 Elbit Systems Ltd. Foldable and deployable panel
US20120036779A1 (en) * 2008-02-26 2012-02-16 Elbit Systems Ltd. Foldable and deployable panel
US20110127384A1 (en) * 2008-12-01 2011-06-02 Sergey Nikolaevich Afanasyev Flying vehicle
US8590831B2 (en) * 2008-12-01 2013-11-26 Sergey Nikolaevich Afanasyev Flying vehicle
US20120199698A1 (en) * 2009-03-05 2012-08-09 Cranfield Aerospace Ltd Unmanned air vehicle (uav), control system and method
US8933383B2 (en) * 2010-09-01 2015-01-13 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for correcting the trajectory of a fin-stabilized, ballistic projectile using canards
US8816261B1 (en) * 2011-06-29 2014-08-26 Raytheon Company Bang-bang control using tangentially mounted surfaces
CN102363444A (en) * 2011-09-09 2012-02-29 江西洪都航空工业集团有限责任公司 Transverse folding mechanism for empennage
RU2546740C1 (en) * 2014-03-20 2015-04-10 Открытое акционерное общество "Государственное машиностроительное конструкторское бюро "Вымпел" имени И.И. Торопова" Controlled missile
US9878257B2 (en) 2014-06-10 2018-01-30 University Of Kansas Aerial vehicles and methods of use
USD776571S1 (en) * 2014-06-10 2017-01-17 University Of Kansas Aerial vehicle
US9601040B2 (en) 2014-06-24 2017-03-21 University Of Kansas Flat-stock aerial vehicles and methods of use
CN104085526B (en) * 2014-06-25 2016-03-30 西北工业大学 One implementation loitering wings connected to the body, fixed, locked, unlocked integrated structure
CN104085526A (en) * 2014-06-25 2014-10-08 西北工业大学 Integrated structure for connecting, fixing, locking and unlocking wing body of patrolling aircraft
WO2017037698A1 (en) * 2015-09-06 2017-03-09 Uvision Air Ltd Foldable wings for an unmanned air vehicle
RU2661490C1 (en) * 2017-05-10 2018-07-17 Николай Евгеньевич Староверов Air-fired missile

Similar Documents

Publication Publication Date Title
US4247062A (en) High efficiency vertical tail assembly combined with a variable wing geometry
US5582364A (en) Flyable folding fin
US3716209A (en) Fluid dynamic lift generating or control force generating structures
US3807662A (en) Anti-torque, propulsion, and directional control system
US6193187B1 (en) Payload carry and launch system
US2620622A (en) Reverse thrust arrangement for braking jet-propelled aircraft
US6073880A (en) Integrated missile fin deployment system
US4214721A (en) Aircraft collapsible fuel tank
US7841559B1 (en) Aerial vehicle with variable aspect ratio deployable wings
US3390853A (en) Variable geometry re-entry vehicle
US3653611A (en) Slotted delta wing aircraft
US3666210A (en) Variable aerodynamic structure
US3297094A (en) Aircraft propelling assembly
US5139215A (en) Guided missiles
US4471923A (en) Unmanned aircraft
CA1146409A (en) Double fabric, retractable, self-erecting wing for missile
US2470120A (en) Method of bombing from fast moving planes
US6260797B1 (en) Transformable gun launched aero vehicle
US6923404B1 (en) Apparatus and methods for variable sweep body conformal wing with application to projectiles, missiles, and unmanned air vehicles
US6186443B1 (en) Airborne vehicle having deployable wing and control surface
US2616509A (en) Pneumatic airfoil
US3643599A (en) Retractable stabilizer fins and drag brakes for missiles
JP2669783B2 (en) Flexible band wing that times were dynamically attached
US4364531A (en) Attachable airfoil with movable control surface
US3677503A (en) Reaction--impulse--counterrotating--airfoil