US3004810A - Variable clearance volume air compressor - Google Patents

Variable clearance volume air compressor Download PDF

Info

Publication number
US3004810A
US3004810A US761106A US76110658A US3004810A US 3004810 A US3004810 A US 3004810A US 761106 A US761106 A US 761106A US 76110658 A US76110658 A US 76110658A US 3004810 A US3004810 A US 3004810A
Authority
US
United States
Prior art keywords
piston
compressor
pressure
clearance volume
wrist pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US761106A
Inventor
Jack B King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Priority to US761106A priority Critical patent/US3004810A/en
Application granted granted Critical
Publication of US3004810A publication Critical patent/US3004810A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/16Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by adjusting the capacity of dead spaces of working chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/06Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means including spring- or weight-loaded lost-motion devices

Definitions

  • This invention relates to air compressors and more parstem ticularly, although not exclusively, to compressors of the type commonly referred to as balanced head compressors.
  • the term balanced head is intended to designate a continuous operation compressor wherein the compression pressure generated thereby is equal to the desired maximum pressure to be confined in the air storage tank supplied by the compressor.
  • the singular advantage of such compressors is simplicity of valve construction, no provisions being required to disable compressor operation when maximum storage tank pressure has been achieved.
  • Another object is to provide a balanced head compressor having improved recovery rate.
  • a further object is to provide an improved balanced head compressor which operates at high compression pressure when the compressor outlet pressure is low and at reduced compression pressure when the outlet pressure is high.
  • Still a further object is to provide a balanced head compressor which is adapted to provide a relatively low clearance volume when the system pressure is low and progressively increasing clearance volume as maximum system pressure is achieved.
  • a still further object is to provide a variable clearance volume air compressor including a piston and connecting rod structure having resilient biasing means disposed therebetween calibrated to exert a spring force equal to the desired maximum compressor outlet pressure.
  • FIG. 1 is a front elevational view, partly in section and with parts broken away, illustrating a compressor structure incorporating the invention
  • FIG. 2 is a side elevational view of the structure shown in FIG.1;'and
  • FIG. 3 is an enlarged fragmentary view, partly in section and with parts broken away, illustrating the relative relationship of certain of the parts under dissimilar conditions of operation.
  • crankcase portion 6 is formed with a laterally facing opening 8 over which is disposed a crankshaft support 10.
  • crankshaft 12 Rotatably supported in housing 10 is a crankshaft 12, the
  • Cylinder portion 4 is formed with a vertical cylindrical bore 18 having a sleeve 20 press fitted therein. Disposed over the upper open end of cylinder portion 4 is an exhaust valve plate 22 having an exhaust port 24 extending therethrough. A reed type exhaust valve 26 overlies port 24 and is connected to the upper surface of plate 22 by bolt 28. Vertically adjacent plate 22 is a cylinder head 30 which is secured to plate 22 and cylindrical portion l by means of machine bolts 32.
  • Piston 34 Slidably disposed in sleeve 20 is a piston 34 which is operatively connected to crank pin 16 by means of a connecting rod assembly 36 and wrist pin 38.
  • Piston 34 has an intake passage 40 formed in its top wall 42.
  • a reed type intake valve 44 overlies passage 40 and is secured to wall 42 by bolt 46.
  • a compression type coil spring 60 surrounds the stem portion 62 of connecting rod assembly 36. This spring is calibrated to exert a pressure equal to the desired maximum compressor outlet pressure. The lower end of spring 60 engages shoulder 64 on the lower end 66 of connecting rod assembly 36, while the upper end of the spring engages a washer 68 which surrounds stem 62 and seats against the semi-circular base 70 of piston 34.
  • spring 60 exerts a force causing piston 34 to move upwardly in relation to wrist pin 38 so that the latter is resiliently seated in the base of elongated slots 54 and 56.
  • a compressor according to the present invention retains the simplicity of conventional balanced head construction yet aifords greatly increased compressor efficiency when compressor outlet pressure is low, thereby substantially improving the recovery rate of a system in which the invention is incorporated.
  • a piston having a vertically elongated slot extending transversely therethrough, a connecting'rod, a wrist pin secured in said rod and extending into said slot, and resilient means reacting between said connecting rod and piston biasing said wrist pin into engagement with the lower end of said elongated slot.
  • a piston having a vertically elongated slot extending transversely therethrough, a connecting rod, a wrist pin secured in said rod and extending into said slot, and resilient means surrounding said rod yieldably urging said piston and said rod in opposite 4 directions causing said wrist pin to engage the lower end of said elongated slot.
  • a piston having a pair of vertically elongated transversely aligned slots extending therethrough, a connecting rod, a Wrist pin secured in said rod and having end extending into each of said slots, respectively, and resilient means surrounding said rod and yieldably engaging'saidpiston and connecting rod so as to urge the la-tter'in a direction causing said wrist pin end portions to engage the lower ends of the respective elongated slots.

Description

Oct. 17, 1961 J. B. KING VARIABLE CLEARANCE VOLUME AIR COMPRESSOR Filed Sept. 15, 1958 INVENTOR. /mfizz BY ,i 1 A TTOAIV EV Wm WW 6 f M Z 1 .m i w. ILL:
Uite States This invention relates to air compressors and more parstem ticularly, although not exclusively, to compressors of the type commonly referred to as balanced head compressors.
As used herein, the term balanced head is intended to designate a continuous operation compressor wherein the compression pressure generated thereby is equal to the desired maximum pressure to be confined in the air storage tank supplied by the compressor. The singular advantage of such compressors is simplicity of valve construction, no provisions being required to disable compressor operation when maximum storage tank pressure has been achieved.
Conventionally, balanced head compressors have been constructed so that the clearance between the piston at top dead center and the cylinder head remains constant. When such a compressor-was intended to charge an air storage tank at a desired maximum pressure of, for example, 250 p.s.i., the maximum compression pressure of the compressor was necessarily limited to 250 p.s.i. Because of this limitation of compression pressure, the recovery rate of conventional balanced head compressors is relatively low in comparison to compressors which operate periodically at optimum compression pressure.
An object of the present invention is to provide an improved air compressor.
Another object is to provide a balanced head compressor having improved recovery rate.
A further object is to provide an improved balanced head compressor which operates at high compression pressure when the compressor outlet pressure is low and at reduced compression pressure when the outlet pressure is high.
Still a further object is to provide a balanced head compressor which is adapted to provide a relatively low clearance volume when the system pressure is low and progressively increasing clearance volume as maximum system pressure is achieved.
A still further object is to provide a variable clearance volume air compressor including a piston and connecting rod structure having resilient biasing means disposed therebetween calibrated to exert a spring force equal to the desired maximum compressor outlet pressure.
These and other objects, advantages, and features of the invention will become more fully apparent as reference is had to the accompanying specification and drawings wherein:
FIG. 1 is a front elevational view, partly in section and with parts broken away, illustrating a compressor structure incorporating the invention;
FIG. 2 is a side elevational view of the structure shown in FIG.1;'and
FIG. 3 is an enlarged fragmentary view, partly in section and with parts broken away, illustrating the relative relationship of certain of the parts under dissimilar conditions of operation.
Referring now to the drawings and particularly FIGS. 1 and 2, the reference numeral 2 indicates a unitary compressor body which includes an upper cylinder portion 4 and a lower crankcase portion 6. As seen best in FIG. 2, crankcase portion 6 is formed with a laterally facing opening 8 over which is disposed a crankshaft support 10. Rotatably supported in housing 10 is a crankshaft 12, the
inner end of which includes a counterweight 14 and crank pin 16.
Cylinder portion 4 is formed with a vertical cylindrical bore 18 having a sleeve 20 press fitted therein. Disposed over the upper open end of cylinder portion 4 is an exhaust valve plate 22 having an exhaust port 24 extending therethrough. A reed type exhaust valve 26 overlies port 24 and is connected to the upper surface of plate 22 by bolt 28. Vertically adjacent plate 22 is a cylinder head 30 which is secured to plate 22 and cylindrical portion l by means of machine bolts 32.
Slidably disposed in sleeve 20 is a piston 34 which is operatively connected to crank pin 16 by means of a connecting rod assembly 36 and wrist pin 38. Piston 34 has an intake passage 40 formed in its top wall 42. A reed type intake valve 44 overlies passage 40 and is secured to wall 42 by bolt 46.
In accordance with the present inventiomwrist pin 38 is press fitted in a cooperating transverse bore 48 formed in the upper end of connecting rod 36 and has its opposite ends 50 and 52 extending into vertically elongated transversely extending slots '54 and 56, respectively, formed in transverse alignment in piston 34. The width of each slot 54 and 56 (see FIGS. 1 and 3) is equal to the diameter of wrist pin 33, while the vertical extent of each slot is sufiicient to allow a predetermined relative vertical movement between wrist pin 38 and piston 34. It will thus be seen that piston 34 is capable of vertical displacement relative to wrist pin 38 such that the clearance between the top wall 42 of piston 34 and the bottom wall 58 of valve plate 22 may vary considerably as compared to the fixed clearance distance inherent in conventional compressor construction.
In order to locate piston 34 in the proper relation to wrist pin 38 in accordance with the invention, a compression type coil spring 60 surrounds the stem portion 62 of connecting rod assembly 36. This spring is calibrated to exert a pressure equal to the desired maximum compressor outlet pressure. The lower end of spring 60 engages shoulder 64 on the lower end 66 of connecting rod assembly 36, while the upper end of the spring engages a washer 68 which surrounds stem 62 and seats against the semi-circular base 70 of piston 34. By reference to FIGS. 1 and 2, it will be evident that spring 60 exerts a force causing piston 34 to move upwardly in relation to wrist pin 38 so that the latter is resiliently seated in the base of elongated slots 54 and 56. As a result, the normal clearance between'piston top wall 42 and valve plate wall 58 is extremely limited. Accordingly, when the pressure in cylinder head outlet 72 is low, displacement of the piston through its full stroke develops a relatively high compression pressure. However, as the outlet pressure ap proaches the desired maximum, the piston is subject to increased resistance which causes spring 60 to compress and allow the piston to move downwardly in relation to wrist pin 38. The downward movement of piston 34 in relation to wrist pin 38 results in increased clearance between piston top wall 42 and wall 58 of plate 22 and a corresponding decrease in compression pressure. In FIG. 3, the change from initial clearance volume to final clearance volume is illustrated by the position of piston 34 in dash-dot lines and solid lines, respectively. Since the spring '60 is calibrated to exert a force equal to the desired compressor outlet pressure, it will be apparent that as soon as the desired outlet pressure is achieved, spring 60 will yield on each compression stroke sufliciently to allow the full downward displacement of the piston relative to the wrist pin 38 shown in FIG. 3. Thereafter, each compression stroke of the compressor will generate a compression pressure in the compression chamber 74 which exactly equals the compression pressure in outlet 72 and will, therefore, prevent further displacement of air through exhaust valve 26 since the pressure is equal on both sides thereof, thereby producing the balanced head condition.
It will now be seen that a compressor according to the present invention retains the simplicity of conventional balanced head construction yet aifords greatly increased compressor efficiency when compressor outlet pressure is low, thereby substantially improving the recovery rate of a system in which the invention is incorporated.
While but one embodiment of the invention has been shown and described, it will be apparent that other changes and modifications may be made therein. It is, therefore, to be understood that it is not intended to limit the invention to the embodiment shown, but only by the scope of the claims which follow.
I claim:
1. In a gas compressor having a predetermined maximum outlet pressure, a piston having a vertically elongated slot extending transversely therethrough, a connecting'rod, a wrist pin secured in said rod and extending into said slot, and resilient means reacting between said connecting rod and piston biasing said wrist pin into engagement with the lower end of said elongated slot.
2. The structure set forth in claim 1 wherein the biasing force of said resilient means equals the force exerted by the maximum outlet pressure.
3. In a gas compressor, a piston having a vertically elongated slot extending transversely therethrough, a connecting rod, a wrist pin secured in said rod and extending into said slot, and resilient means surrounding said rod yieldably urging said piston and said rod in opposite 4 directions causing said wrist pin to engage the lower end of said elongated slot.
4. The structure set forth in claim 3 wherein said resilient means exerts :a spring load on said piston equal to a predetermined compressor outlet pressure.
5. In agas compressor, a piston having a pair of vertically elongated transversely aligned slots extending therethrough, a connecting rod, a Wrist pin secured in said rod and having end extending into each of said slots, respectively, and resilient means surrounding said rod and yieldably engaging'saidpiston and connecting rod so as to urge the la-tter'in a direction causing said wrist pin end portions to engage the lower ends of the respective elongated slots.
6. The structure set forth inclaim 5 wherein said resilient means comprises a'coil spring disposed in compression between said piston and a portion of said connecting rod.
References Cited in the file of this patent UNITED STATES PATENTS 938,724 Thompson Nov. 2, 1909 1,203,259 Pogue Oct. 31, 1916 1 ,311,693 Hazard a; July 29, 1919 2,041,468 Grubbs May 19, 1936 2,131,729 Fee Oct. 4, 1938 2,188,503 Ericson Jan. 30, 1940 2,277,135 Newell Mar. 24, 1942 2,500,669 Doeg Mar. 14, 1950 2,524,273; Saler Oct. 3, 1950 2,535,308 Mansted s Dec. 26, 1950
US761106A 1958-09-15 1958-09-15 Variable clearance volume air compressor Expired - Lifetime US3004810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US761106A US3004810A (en) 1958-09-15 1958-09-15 Variable clearance volume air compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US761106A US3004810A (en) 1958-09-15 1958-09-15 Variable clearance volume air compressor

Publications (1)

Publication Number Publication Date
US3004810A true US3004810A (en) 1961-10-17

Family

ID=25061145

Family Applications (1)

Application Number Title Priority Date Filing Date
US761106A Expired - Lifetime US3004810A (en) 1958-09-15 1958-09-15 Variable clearance volume air compressor

Country Status (1)

Country Link
US (1) US3004810A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374944A (en) * 1966-08-26 1968-03-26 Gen Electric Compressor unit
US3375972A (en) * 1966-08-11 1968-04-02 Zefex Inc Pump for a gaseous medium
DE2506949A1 (en) * 1974-02-21 1975-08-28 Thomas Industries Inc AIR COMPRESSOR
US4013048A (en) * 1975-12-12 1977-03-22 Reitz Daniel M Bourke type engine
WO1981003203A1 (en) * 1980-05-09 1981-11-12 D Finley Deflecting rocker arm for an internal combustion engine
US4557228A (en) * 1981-12-30 1985-12-10 Samodovitz Arthur J Piston and spring powered engine
US4721073A (en) * 1985-10-25 1988-01-26 Toyota Jidosha Kabushiki Kaisha Compression ratio changing device using an eccentric bearing for an internal combustion engine
US5072654A (en) * 1990-01-18 1991-12-17 Detroit Diesel Corporation Piston and bearing assemblies
US5112145A (en) * 1990-01-18 1992-05-12 Detroit Diesel Corporation Piston and bearing assemblies
US5398652A (en) * 1991-02-04 1995-03-21 Jackson; Francis W. Knife-edge rocker bearing internal combustion engine
US5613837A (en) * 1994-04-27 1997-03-25 Aisin Seiki Kabushiki Kaisha Air compressor inlet and outlet valve arrangement
US6634867B2 (en) 2001-10-12 2003-10-21 Hans-Georg G. Pressel Shuttle piston assembly with dynamic valve
US20050120730A1 (en) * 2003-12-04 2005-06-09 Yu Chen Heat pump water heating system including a compressor having a variable clearance volume
US20100293938A1 (en) * 2007-12-21 2010-11-25 Christian Doberschuetz Hydraulic fluid pump of a vehicle brake system having a delivery means
US20110076164A1 (en) * 2009-09-25 2011-03-31 Wen San Chou Air compressor having tilted piston
WO2020093122A1 (en) * 2018-11-05 2020-05-14 Filho Marcio Improvement to an internsl combustion engine with intercalated mechanical functioning

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US938724A (en) * 1908-11-25 1909-11-02 Herbert L Thompson Steam-pump.
US1203259A (en) * 1915-01-07 1916-10-31 George D Pogue Variable-feed pump.
US1311693A (en) * 1919-07-29 hazard
US2041468A (en) * 1934-11-15 1936-05-19 Hayward I Grubbs Fuel pump
US2131729A (en) * 1935-04-30 1938-10-04 Gasoline Energy Distributors L Thermostatically controlled variable-throw crankpin mounting device
US2188503A (en) * 1937-04-17 1940-01-30 Carter Carburetor Corp Pump device
US2277135A (en) * 1940-04-29 1942-03-24 Westinghouse Air Brake Co Compressor apparatus
US2500669A (en) * 1947-12-12 1950-03-14 Nash Kelvinator Corp Refrigerating apparatus
US2524273A (en) * 1948-06-03 1950-10-03 Westinghouse Electric Corp Piston construction
US2535308A (en) * 1947-11-10 1950-12-26 Mansted Svend Axel Jorgen Compressor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1311693A (en) * 1919-07-29 hazard
US938724A (en) * 1908-11-25 1909-11-02 Herbert L Thompson Steam-pump.
US1203259A (en) * 1915-01-07 1916-10-31 George D Pogue Variable-feed pump.
US2041468A (en) * 1934-11-15 1936-05-19 Hayward I Grubbs Fuel pump
US2131729A (en) * 1935-04-30 1938-10-04 Gasoline Energy Distributors L Thermostatically controlled variable-throw crankpin mounting device
US2188503A (en) * 1937-04-17 1940-01-30 Carter Carburetor Corp Pump device
US2277135A (en) * 1940-04-29 1942-03-24 Westinghouse Air Brake Co Compressor apparatus
US2535308A (en) * 1947-11-10 1950-12-26 Mansted Svend Axel Jorgen Compressor
US2500669A (en) * 1947-12-12 1950-03-14 Nash Kelvinator Corp Refrigerating apparatus
US2524273A (en) * 1948-06-03 1950-10-03 Westinghouse Electric Corp Piston construction

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375972A (en) * 1966-08-11 1968-04-02 Zefex Inc Pump for a gaseous medium
US3374944A (en) * 1966-08-26 1968-03-26 Gen Electric Compressor unit
DE2506949A1 (en) * 1974-02-21 1975-08-28 Thomas Industries Inc AIR COMPRESSOR
US3961868A (en) * 1974-02-21 1976-06-08 Thomas Industries, Inc. Air compressor
US4013048A (en) * 1975-12-12 1977-03-22 Reitz Daniel M Bourke type engine
US4345550A (en) * 1978-04-28 1982-08-24 Finley Donald G Deflecting rocker arm for an internal combustion engine
WO1981003203A1 (en) * 1980-05-09 1981-11-12 D Finley Deflecting rocker arm for an internal combustion engine
US4557228A (en) * 1981-12-30 1985-12-10 Samodovitz Arthur J Piston and spring powered engine
US4721073A (en) * 1985-10-25 1988-01-26 Toyota Jidosha Kabushiki Kaisha Compression ratio changing device using an eccentric bearing for an internal combustion engine
US5112145A (en) * 1990-01-18 1992-05-12 Detroit Diesel Corporation Piston and bearing assemblies
US5072654A (en) * 1990-01-18 1991-12-17 Detroit Diesel Corporation Piston and bearing assemblies
US5398652A (en) * 1991-02-04 1995-03-21 Jackson; Francis W. Knife-edge rocker bearing internal combustion engine
US5613837A (en) * 1994-04-27 1997-03-25 Aisin Seiki Kabushiki Kaisha Air compressor inlet and outlet valve arrangement
US6634867B2 (en) 2001-10-12 2003-10-21 Hans-Georg G. Pressel Shuttle piston assembly with dynamic valve
US20050120730A1 (en) * 2003-12-04 2005-06-09 Yu Chen Heat pump water heating system including a compressor having a variable clearance volume
US6945062B2 (en) * 2003-12-04 2005-09-20 Carrier Corporation Heat pump water heating system including a compressor having a variable clearance volume
US20100293938A1 (en) * 2007-12-21 2010-11-25 Christian Doberschuetz Hydraulic fluid pump of a vehicle brake system having a delivery means
US9511754B2 (en) * 2007-12-21 2016-12-06 Robert Bosch Gmbh Hydraulic fluid pump of a vehicle brake system having a delivery means
US20110076164A1 (en) * 2009-09-25 2011-03-31 Wen San Chou Air compressor having tilted piston
WO2020093122A1 (en) * 2018-11-05 2020-05-14 Filho Marcio Improvement to an internsl combustion engine with intercalated mechanical functioning

Similar Documents

Publication Publication Date Title
US3004810A (en) Variable clearance volume air compressor
EP1605165A1 (en) Diaphragm pump
US2142329A (en) Alternating or varying pressureactuated pump
US4334837A (en) Diaphragm air pump assembly
US2598147A (en) Fuel feeding system
EP1179136B1 (en) Internal combustion engine high-pressure fuel delivery valve
US1768638A (en) Pump for refrigerating apparatus
US3027848A (en) Diaphragm pump
US2914047A (en) Automatic booster piston for internal combustion engines
US1764655A (en) Compressor
US1416696A (en) Compressor
US2550392A (en) Hydraulic reciprocating pump
US3671150A (en) Engine cam operated air compressor for vehicle leveling system
US2640432A (en) Expansible chamber device
US4059367A (en) Gaseous fluid compressing apparatus
US2305310A (en) Internal combustion engine
US3014468A (en) Internal combustion engines and pistons therefor
US2789550A (en) Anti-surge spring means
US2750930A (en) Fluid pressure motor driven pump and valve control device therefor
US1923333A (en) Compressor
US3244357A (en) Vacuum powered pump
US2981197A (en) Variable stroke diaphragm pump with eccentric drive
US2348679A (en) Pump
US2946503A (en) Air compressor
US370896A (en) Compressor for ice-machines