US3002123A - Traveling wave tube structure - Google Patents

Traveling wave tube structure Download PDF

Info

Publication number
US3002123A
US3002123A US633604A US63360457A US3002123A US 3002123 A US3002123 A US 3002123A US 633604 A US633604 A US 633604A US 63360457 A US63360457 A US 63360457A US 3002123 A US3002123 A US 3002123A
Authority
US
United States
Prior art keywords
delay line
passageways
tube
wave
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US633604A
Inventor
Rolf W Peter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US633604A priority Critical patent/US3002123A/en
Application granted granted Critical
Publication of US3002123A publication Critical patent/US3002123A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/24Slow-wave structures, e.g. delay systems

Definitions

  • the wave is fed to one end of a suitable elongated, slow-wave propagating structure or delay line wherein the longitudinal velocity of the slow wave along the line is a fraction, say 3, of the velocity of light.
  • An electron beam is projected along the line at a velocity approximately equal to the longitudinal wave velocity.
  • the electron beam and the wave traveling on the delay line interact to cause the amplitude of the wave to increase exponentially; hence, an amplified signal isobtained at the output end of the tube.
  • the beam velocity should be slightly greater than the undisturbed longitudinal Wave velocity 3f the delay line, that is, the wave velocity without the cam.
  • the power handling ability of a traveling wave tube is determined by the power carrying capacity or the delay line.
  • the helix diameter must be substantially smaller than /2 of the free space wavelength of the signal wave to be amplified. This requirement limits the maximum power that can be handled by the line, and also limits the maximum current of the electron beam projected adjacent to the line. The same limitations apply to previous delay lines of other types.
  • Another object of the invention is the provision of an improved traveling wave tube having a relatively large current electron beam and a delay line having a relatively large power carrying capacity.
  • the foregoing and related objects are realized in accordance with the invention by the provision or a threedirnensional slow wavepropagating structure having a phase velocity in any direction thereth'rough substantially less than the velocity of light in free space.
  • the structure has a dimension in each of three co-ordinate directions at least equal to one-half wavelength at the lowest frequency in the operating frequency range, which preferably would be above 1000 megacycles.
  • FIGURE 1 is a partially schematic, longitudinal sectional view of a traveling wave tube embodying a swisscheese like delay line according to the invention
  • FIGURE 2 is an en arged longitudinal sectional view of a portion of the tube illustrated in FIGURE 1;
  • FIGURE 3 is a transverse sectional view taken through line 33 of FIGURE 2; 1
  • FIGURE 4 is a transverse sectional view taken through line 4-4 of FIGURE 2;
  • FIGURE 5 illustrates schematically a portion of another delay line embodying the invention and exemplified in a zig-zag conductor delay line structure
  • FIGURE 6 is a lan view of the delay line portion i1- lu'strated in FIGURE 5;
  • FIGURE 7 is a partially schematic plan view of a Patented Sept. 26, 1961 portion of a traveling wave tube having an interdigital delay line structure according to another embodiment of the invention.
  • FIGURE 8 is a longitudinal sectional view taken through line 8 -8 of FIGURE 7;
  • FIGURE 9 is a transverse sectional view taken through line 9-3 of FIGURE 8.
  • FIGURE 10 is a sectional view of a portion of a traveling wave tube having an interdigital delay line structure and illustrating another aspect of the invention.
  • FIGURES 1 to 4 there is shown in FIGURES 1 to 4 an elongated traveling wave tube 10 embodying an aspect of the invention.
  • the traveling wave tube It includes a conductive envelope 12,
  • a plurality of relatively dense beams of electrons 14, 16, 1S, 2i), 22, 24, 2-5, 23, and 3d are thermionically emitted from a number of cathodes 32, 34, and 36, one cathode for each beam.
  • the cathodes 32, 34, and 36 are connected to a common lead and are each provided with a heater (not shown).
  • Apertured focusing electrodes 38, 4t and 42 and apertured accelerating electrodes 44, 46, and 48 are provided, one for each cathode.
  • Each of the focusing electrodes 38, 40, and 42 is connected to its cathode as indicated in FIG- URE 1.
  • Each accelerating electrode is supplied with a positive bias, with respect to its cathode, so that electrons from each of the cathodes are accelerated toward its accelerating electrode.
  • the electrons of each beam pass through its accelerating electrode apertures and into a delay line structure 50, to be described, and drift toward a relatively high positively biased collector el trode 52.
  • This delay line 59 in'the embodiment illustrated in FIGURES l to 4, has a generally swiss-cheese configuration and will be so referred to hereinafter.
  • This swiss-cheese delay line 50 is a signal Wave propagating structure comprised of an elongated block having aligned openings defining a three dimensional lattice of conducting walls defining intersecting passageways therethrough'.
  • each of the passageways has a circular cross section.
  • the arrangement of passageways provides a structure in which the phase velocity of the delay line is reduced in anydirection therethrough to a velocity substantially less than the velocity of light in free space.
  • the delay line has a dimension in each of three (so-ordinate directions at least'equal to one half wavelength at the lowest operating frequency of the line, the frequency range being preferably above about 1000 megacycles.
  • nine passageways 54, 56, 53, 64 62, 64, 66, '68, and '70 are adapted to pass nine electron beams 14 to 3 0 longitudinally therethrough for interaction with a signal wave propagated along the line.
  • the reduced phase velocity of the delay line 50 is realizedby virtue of the passageways therethrough.
  • delay [line illustrated, comprise the nine longitudinally oriented passageways 54 to 70 and a number of longitudinally spaced sets of transversely oriented passageways.
  • Each set of transversely oriented passageways is made up of a number of passageways in a common plane.
  • FIGS 2 and 3 The first of the two sets illustrated in FIGURES 2 and 3 is comprised of six passageways in two perpendicularly oriented arrays each made up of three passageways 74, 76, and 78, and 80, 82, 84, respectively. Each of the passageways in this first set passes through three of the longitudinally extending beam passageways.
  • the second of the two sets is comprised of ten passageways in two perpendicularly oriented arrays each made up of five passageways 86, 88, 90, 92, and 94, and 96, 98, 100, 102, and 104, respectively, the direction of elongation of each passageway being indicated in FIGURE 4 by a double headed arrow.
  • Four of the passageways (namely 86, $4, 96, and 104) in this second set each passes through only one of the longitudinally extending beam passageways, four pass through only two of the beam passageways, and two pass through three beam passageways.
  • Adjacent sets have the direction of orientation of each of the passageways ofiiset transversely 45 from the passageways in the adjacent set.
  • the relatively massive nature of the delay 'line described provides a relatively large and efficient heat sink and allows the tube to be operated at relatively high power levels.
  • swiss cheese delay line 50 has been described as embodied in a line having a given orientation and number of longitudinal and transverse passageways, it will be appreciated that a different orientation and number of longitudinal and transverse passageways may .instead be used. Also, while the passageways have been described as being of circular cross section, some or .all
  • passageways may instead have cross sections of other shapes to provide diiferent delay line characteristics or to accommodate differently shaped electron beams.
  • the delay line is made of a magnetically transparent material such as copper in order to allow magnetic flux from a focusing solenoid 72 around the tube 10 to penetrate the delay '-line and maintain the electron beams focused along their paths of travel.
  • a signal wave is fed into the tube through an input wave guide 106 where transverse and longitudinal signal wave components are excited in the delay line 50.
  • the longitudinal wave velocity along the line is reduced by the line to a small fraction of the velocity of light.
  • the electric potentials on the tube electrodes are adjusted so that the electron beams are projected along the delay line at a velocity slightly greater than the undisturbed longitudinal wave velocity.
  • each of the electron beams and the wave components traveling longitudinally of the delay line interact to cause the amplitude of the wave to increase exponentially. Consequently, an amplified signal is obtained at the output end of the tube at the output wave guide 108. Since the delay line of the invention allows the use of a large number of electron beams with a single delay line the tube is adapted to provide a relatively high power output.
  • the delay line structure described provides a great advantage in terms of high power amplification in the microwave frequency range.
  • swiss-cheese delay line 50 One practical way of constructing the swiss-cheese delay line 50 described is by taking a cylindrical block of copper and boring passageways therethrough as shown in FIGURES 2 to 4. After the passageways have been bored the cylindrical block is slid into a copper sleeve which is to form a part of the envelope 12, for closing off the passageways thus providing a closed three-dimensional lattice of passageways.
  • FIGURES 5 and 6 show, as another form of the invention, a delay line having a zig-zag arrangement of wires connected together to form a three-dimensional lattice of intersecting passageways.
  • the zig-zag delay line of FIGURES 5 and 6 have dimensions in each of three co-ordinate directions x, y, and z at least one half wave length of the lowest frequency of the frequency range of the tube.
  • the wires in two planes are illustrated, namely those in the planes yz and xz.
  • the structure illustrated may, for example, be made of a number of flat zig-zag wires welded together at the apexes.
  • the zig-zag delay line 110 is excited by signal wave and a plurality of electron beams 112, 114, 116, and 1.18 are projected from suitably positioned electron guns (not shown) through the delay line.
  • the interaction between the signal wave on the delay line 110 .and the electron beams 112 to 118 is effected in substantially the same manner as that between the beams and delay line in the structures of FIGURES l to 4 to amplify the signal wave.
  • interactio may be provided in an electron tube between electron beams traveling in different directions in order to produce mixing or modulation;
  • another electron beam 120 may be projected from another suitably positioned electron gun (not shown) and through thezigzag delay line 110 and through some of the otherelectron beams 112 and 116. In such an event the beams lattice of intersecting passageways.
  • a delay line according to the invention may take the form of an interdigital In the traveling wave tube 122 of FIGURES 7 to 9 there is provided the usual electron guns 124, 126, and 128 at one end of the tube, a collecting electrode 130 at the other end of the tube, and an interdigital delay line 132 between the electron guns and the collecting electrode.
  • the interdigital delay line 132 here comprises three parallel, digitated wall-like delay line portions 134, 136, and 138, the two outside portions 134 and 138 forming part of the envelope of the tube.
  • Each of the wall-like portions 134, 136, and 138 have parallel, regularly spaced digits 140 extending transversely therefrom.
  • the central wall delay line portion 136 has digits extendingperpendicularly from both sides thereof and each of the other two portions 134 and 138 have digits extending perpendicularly only from the side of the portion facing the inside of the tube.
  • the digits of the outside portions 134 and 138 are aligned with each other along axis perpendicular to the portions.
  • the digits of the central portion 136 have their axes of transverse extension disposed intermediate adjacent longitudinally spaced digits of theoutside delay line portions.
  • the central portion 136 is provided with transversely extending passageways or apertures 142 at regions adjacent to the digits extending from the two outside portions so that adjacent digits of the two outside portions 134 and 136 can see each other through the apertures 142.
  • the end digits 144 of the two outside walls delay line portions extend into contact with each other and are connected to each other at a position adjacent to the central portion 136 by means of a bus bar 145 and 146 at each end of the delay line 132.
  • the bus bars extend to the outside of the tube to provide, together with a portion of the tube envelope, the input 147 and output 148 of the tube.
  • the longitudinal distances between each of the bus bars 145 and 146 and the end walls 151 and 153, respectively, are chosen so that the impedance of the two conductor input and output lines 147 and 149 are each equal to the characteristic impedance of the delay line 132.
  • adjacent walls are inductively and capacitively coupled to each other to provide a resultant interdigital structure having a phase velocity in any direction substantially less than the velocity of light in free space and with the delay line having a dimension in each of three co-ordinate directions at least equal to one-half wave-length at the lowest operating frequency of the tube.
  • the operation of the tube of FIGURES 7 to 9 is similar to that of the tube of FIGURES 1 to 4 but provides a physical structure which may be more easily constructed than the one of FIGURES 1 to 4.
  • FIGURE 10 illustrates a delay line structure having four central wall-like delay line portions 150 each having digits 152 extending perpendicularly from both sides thereof and adapted to be used as part of a delay line structure made up of six parallel, Wall-like delay line portions. Only the innermost extensions of the digits 152 of the two outside delay line portions are shown.
  • adjacent delay line portions have the axis of extension of their digits longitudinally spaced with respect to each other, with the inside Wall-like portions having passageways or apertures 154 extending transversely therethrough adjacent to the digits of adjacent wall-like portions so that facing digits of alternate walllike portions see each other through the apertures of the intermediate wall-like portion.
  • the traveling wave structure of the invention provides an improved delay line which has relatively high power carrying capacity and lends itself for use in relatively high power, multi-beam traveling wave tubes.
  • a traveling wave tube comprising an evacuated envelope containing a signal wave propagating structure adapted to propagate slow Waves therea'long in each of three coordinate directions, and means for projecting a beam of electrons along a path through said structure and in interaction relation with waves propagated in one of said directions along said structure, said structure comprising conducting means defining a three dimensional lattice of intersecting passageways therethrough for reducing the phase velocity of said structure in any direction therethrough to a velocity substantially less than the velocity of light in free space, said conductive means comprising at least three parallel conductive plates each having a two-dimensional array of transverse conductive fingers interleaved with the fingers of an adjacent plate, the intermediate plate having apertures aligned with the fingers of the two adjacent plates, one of said passageways containing said path of said electron beam for interaction of said beam with a signal wave traveling along said structure.
  • a three-dimensional signal-wave propagating structure adapted to propagate slow waves therealong in each of three coordinate directions, comprising a three dimensional interdigital array of metallic digitaled conductors defining a three dimensional lattice of intersecting passageways therethrough for reducing the phase velocity of said structure in any direction therethrough to a velocity substantially less than the velocity of light in free space, said array of conductors comprising at least three parallel conductive plates each having a two-dimensional array of transverse conductive fingers interleaved with the fingers of an adjacent plate, the intermediate plate having apertures aligned with the fingers of the adjacent plates.
  • a traveling wave tube comprising an evacuated envelope containing a signal wave propagating structure adapted to propagate slow waves therealong in each of three coordinate directions comprising conducting means defining a three-dimensional lattice of intersecting passageways therethrough for reducing the phase velocity of said structure in any direction therethrough to a velocity substantially less than the velocity of light in free space, said conductive means comprising at least three parallel conductive plates each having a two-dimensional array of transverse conductive fingers interleaved with the fingers of an adjacent plate, the intermediate plate having apertures aligned with the fingers of the two adjacent plates and means for projecting a plurality of electron beams along parallel paths through a like plurality of said passageways in one of said directions, for interaction with a signal wave traveling along said structure in said one direction.

Description

Sept. 26, 1961 R. w. PETER 3,002,123
TRAVELING WAVE TUBE STRUCTURE Filed Jan. 11, 1957 4 Sheets-Sheet 1 Q 2% I\ x Q a m N 4 VA VA INVEN TOR. HELP W PETER agw Sept. 26, 1961 R. w. PETER TRAVELING WAVE TUBE STRUCTURE 4 Sheets-Sheet 2 Filed Jan. 11, 1957 mm m MP W m a n Hi'TOEA EY Sept. 26, 1961 R. w. PETER TRAVELING WAVE TUBE STRUCTURE 4 Sheets-Sheet 3 Filed Jan. 11. 1957 V A V A l A V A m V/ A VJVAV/JVAW) UQLUMI,
INVENTOR. flau- VL F5755 B Wfldim 45 flrraeA/zr Sept. 26, 1961 R. w. PETER 3,002,123
TRAVELING WAVE TUBE STRUCTURE Filed Jan. 11, 1957 4 Sheets-Sheet 4 WI H I L. J W
INVENTOR. F ULF W PETER United States PatentFGl 3,002,123 v TRAVELEJG WAVE TUBE STRUCTURE Rolf W. Peter, Cranbnry, NJL, assignor to Radio Zorporation of America, a corporation of Delaware Filed Jan. 11, 1957, Ser. No. 633,604 3 Claims. (Cl. SIS-3.6)
In a traveling wave tube an electromagnetic signal.
wave is fed to one end of a suitable elongated, slow-wave propagating structure or delay line wherein the longitudinal velocity of the slow wave along the line is a fraction, say 3, of the velocity of light. An electron beam is projected along the line at a velocity approximately equal to the longitudinal wave velocity. Under such conditions the electron beam and the wave traveling on the delay line interact to cause the amplitude of the wave to increase exponentially; hence, an amplified signal isobtained at the output end of the tube. Actually, for'ma'ximum amplification the beam velocity should be slightly greater than the undisturbed longitudinal Wave velocity 3f the delay line, that is, the wave velocity without the cam.
As is known, the power handling ability of a traveling wave tube is determined by the power carrying capacity or the delay line. When, for example, a conventional helix is used as the delay line of a traveling wave tube the helix diameter must be substantially smaller than /2 of the free space wavelength of the signal wave to be amplified. This requirement limits the maximum power that can be handled by the line, and also limits the maximum current of the electron beam projected adjacent to the line. The same limitations apply to previous delay lines of other types.
Accordingly, it is one of the objects of the invention to provide an improved traveling wave delay line strucmore which has a relatively high power carrying capacity.
Another object of the invention is the provision of an improved traveling wave tube having a relatively large current electron beam and a delay line having a relatively large power carrying capacity.
The foregoing and related objects are realized in accordance with the invention by the provision or a threedirnensional slow wavepropagating structure having a phase velocity in any direction thereth'rough substantially less than the velocity of light in free space. The structure has a dimension in each of three co-ordinate directions at least equal to one-half wavelength at the lowest frequency in the operating frequency range, which preferably would be above 1000 megacycles.
The invention will now be described in greater detail in connection with the accompanying drawing wherein:
FIGURE 1 is a partially schematic, longitudinal sectional view of a traveling wave tube embodying a swisscheese like delay line according to the invention;
FIGURE 2 is an en arged longitudinal sectional view of a portion of the tube illustrated in FIGURE 1;
FIGURE 3 is a transverse sectional view taken through line 33 of FIGURE 2; 1
FIGURE 4 is a transverse sectional view taken through line 4-4 of FIGURE 2;
FIGURE 5 illustrates schematically a portion of another delay line embodying the invention and exemplified in a zig-zag conductor delay line structure;
FIGURE 6 is a lan view of the delay line portion i1- lu'strated in FIGURE 5;
FIGURE 7 is a partially schematic plan view of a Patented Sept. 26, 1961 portion of a traveling wave tube having an interdigital delay line structure according to another embodiment of the invention;
FIGURE 8 is a longitudinal sectional view taken through line 8 -8 of FIGURE 7;
FIGURE 9 is a transverse sectional view taken through line 9-3 of FIGURE 8; and
FIGURE 10 is a sectional view of a portion of a traveling wave tube having an interdigital delay line structure and illustrating another aspect of the invention.
Referring now to the drawing in greater detail, there is shown in FIGURES 1 to 4 an elongated traveling wave tube 10 embodying an aspect of the invention. The traveling wave tube It) includes a conductive envelope 12,
which may be of a magnetically transparent material such as copper, and containing the various internal tube elements. A plurality of relatively dense beams of electrons 14, 16, 1S, 2i), 22, 24, 2-5, 23, and 3d (nine being used in the embodiment illustrated in FIGURES 1-4) are thermionically emitted from a number of cathodes 32, 34, and 36, one cathode for each beam. The cathodes 32, 34, and 36 are connected to a common lead and are each provided with a heater (not shown). Apertured focusing electrodes 38, 4t and 42 and apertured accelerating electrodes 44, 46, and 48 are provided, one for each cathode. Each of the focusing electrodes 38, 40, and 42 is connected to its cathode as indicated in FIG- URE 1. Each accelerating electrode is supplied with a positive bias, with respect to its cathode, so that electrons from each of the cathodes are accelerated toward its accelerating electrode. The electrons of each beam pass through its accelerating electrode apertures and into a delay line structure 50, to be described, and drift toward a relatively high positively biased collector el trode 52. e
According to the invention, there is provided'a novel delay line structure 50- which has a relatively high power carrying capacity. This delay line 59, in'the embodiment illustrated in FIGURES l to 4, has a generally swiss-cheese configuration and will be so referred to hereinafter. This swiss-cheese delay line 50 is a signal Wave propagating structure comprised of an elongated block having aligned openings defining a three dimensional lattice of conducting walls defining intersecting passageways therethrough'. In the embodiment illustrated each of the passageways has a circular cross section. The arrangement of passageways provides a structure in which the phase velocity of the delay line is reduced in anydirection therethrough to a velocity substantially less than the velocity of light in free space. The delay line has a dimension in each of three (so-ordinate directions at least'equal to one half wavelength at the lowest operating frequency of the line, the frequency range being preferably above about 1000 megacycles. In the delay line 50 illustrated in the drawing, nine passageways 54, 56, 53, 64 62, 64, 66, '68, and '70 are adapted to pass nine electron beams 14 to 3 0 longitudinally therethrough for interaction with a signal wave propagated along the line.
As illustrated in FIGURES 2 to 4, the reduced phase velocity of the delay line 50 is realizedby virtue of the passageways therethrough. delay [line illustrated, comprise the nine longitudinally oriented passageways 54 to 70 and a number of longitudinally spaced sets of transversely oriented passageways.
Each set of transversely oriented passageways is made up of a number of passageways in a common plane. The
sets of transverse passageways consist of two diiferent passageway orientations, with sets of one orientation al- These passageways, in the The configuration of one set of transverse passageways is illustrated in FIGURE 3 and the configuration of transverse passageways of the other set is illustrated in FIG- URE 4. The first of the two sets illustrated in FIGURES 2 and 3 is comprised of six passageways in two perpendicularly oriented arrays each made up of three passageways 74, 76, and 78, and 80, 82, 84, respectively. Each of the passageways in this first set passes through three of the longitudinally extending beam passageways. The second of the two sets, illustrated in FIGURES 2 and 4, is comprised of ten passageways in two perpendicularly oriented arrays each made up of five passageways 86, 88, 90, 92, and 94, and 96, 98, 100, 102, and 104, respectively, the direction of elongation of each passageway being indicated in FIGURE 4 by a double headed arrow. Four of the passageways (namely 86, $4, 96, and 104) in this second set each passes through only one of the longitudinally extending beam passageways, four pass through only two of the beam passageways, and two pass through three beam passageways. Adjacent sets have the direction of orientation of each of the passageways ofiiset transversely 45 from the passageways in the adjacent set. The relatively massive nature of the delay 'line described provides a relatively large and efficient heat sink and allows the tube to be operated at relatively high power levels.
While the swiss cheese delay line 50 has been described as embodied in a line having a given orientation and number of longitudinal and transverse passageways, it will be appreciated that a different orientation and number of longitudinal and transverse passageways may .instead be used. Also, while the passageways have been described as being of circular cross section, some or .all
of the passageways may instead have cross sections of other shapes to provide diiferent delay line characteristics or to accommodate differently shaped electron beams.
The delay line is made of a magnetically transparent material such as copper in order to allow magnetic flux from a focusing solenoid 72 around the tube 10 to penetrate the delay '-line and maintain the electron beams focused along their paths of travel.
In operation (FIGURES 1 to 4) a signal wave is fed into the tube through an input wave guide 106 where transverse and longitudinal signal wave components are excited in the delay line 50. The longitudinal wave velocity along the line is reduced by the line to a small fraction of the velocity of light. The electric potentials on the tube electrodes are adjusted so that the electron beams are projected along the delay line at a velocity slightly greater than the undisturbed longitudinal wave velocity. Under such conditions, each of the electron beams and the wave components traveling longitudinally of the delay line interact to cause the amplitude of the wave to increase exponentially. Consequently, an amplified signal is obtained at the output end of the tube at the output wave guide 108. Since the delay line of the invention allows the use of a large number of electron beams with a single delay line the tube is adapted to provide a relatively high power output. Actually, the
'power capabilities of the tube are determined by the heat conduction of the line in the transverse direction. Consequently, the delay line structure described provides a great advantage in terms of high power amplification in the microwave frequency range.
One practical way of constructing the swiss-cheese delay line 50 described is by taking a cylindrical block of copper and boring passageways therethrough as shown in FIGURES 2 to 4. After the passageways have been bored the cylindrical block is slid into a copper sleeve which is to form a part of the envelope 12, for closing off the passageways thus providing a closed three-dimensional lattice of passageways.
' While the swiss-cheese delay line described has been illustrated as having both longitudinal and transverse y: passageways for receiving electron beams therethrough structure.
and for reducing the phase velocity of the line to substantially less than the speed of light, it will be appreciated that additional passageways may be incorporated in the line to provide for water cooling of the line and thus increase its power handling capacity. However, such additional passageways have been omitted in the drawing for simplicity of illustration.
FIGURES 5 and 6 show, as another form of the invention, a delay line having a zig-zag arrangement of wires connected together to form a three-dimensional lattice of intersecting passageways. As is the case in the swiss cheese delay line of FIGURES 1 to 4, the zig-zag delay line of FIGURES 5 and 6 have dimensions in each of three co-ordinate directions x, y, and z at least one half wave length of the lowest frequency of the frequency range of the tube. In the drawing, only the wires in two planes are illustrated, namely those in the planes yz and xz. The structure illustrated may, for example, be made of a number of flat zig-zag wires welded together at the apexes. The zig-zag delay line 110 is excited by signal wave and a plurality of electron beams 112, 114, 116, and 1.18 are projected from suitably positioned electron guns (not shown) through the delay line. The interaction between the signal wave on the delay line 110 .and the electron beams 112 to 118 is effected in substantially the same manner as that between the beams and delay line in the structures of FIGURES l to 4 to amplify the signal wave. According to a feature of the invention, interactio may beprovided in an electron tube between electron beams traveling in different directions in order to produce mixing or modulation; For example, another electron beam 120 may be projected from another suitably positioned electron gun (not shown) and through thezigzag delay line 110 and through some of the otherelectron beams 112 and 116. In such an event the beams lattice of intersecting passageways.
As shown in FIGURES 7 to 9, a delay line according to the invention may take the form of an interdigital In the traveling wave tube 122 of FIGURES 7 to 9 there is provided the usual electron guns 124, 126, and 128 at one end of the tube, a collecting electrode 130 at the other end of the tube, and an interdigital delay line 132 between the electron guns and the collecting electrode.
The interdigital delay line 132 here comprises three parallel, digitated wall-like delay line portions 134, 136, and 138, the two outside portions 134 and 138 forming part of the envelope of the tube. Each of the wall- like portions 134, 136, and 138 have parallel, regularly spaced digits 140 extending transversely therefrom. The central wall delay line portion 136 has digits extendingperpendicularly from both sides thereof and each of the other two portions 134 and 138 have digits extending perpendicularly only from the side of the portion facing the inside of the tube. The digits of the outside portions 134 and 138 are aligned with each other along axis perpendicular to the portions. The digits of the central portion 136 have their axes of transverse extension disposed intermediate adjacent longitudinally spaced digits of theoutside delay line portions. The central portion 136 is provided with transversely extending passageways or apertures 142 at regions adjacent to the digits extending from the two outside portions so that adjacent digits of the two outside portions 134 and 136 can see each other through the apertures 142. As illustrated in FIGURE 9, the end digits 144 of the two outside walls delay line portions extend into contact with each other and are connected to each other at a position adjacent to the central portion 136 by means of a bus bar 145 and 146 at each end of the delay line 132. The bus bars extend to the outside of the tube to provide, together with a portion of the tube envelope, the input 147 and output 148 of the tube. The longitudinal distances between each of the bus bars 145 and 146 and the end walls 151 and 153, respectively, are chosen so that the impedance of the two conductor input and output lines 147 and 149 are each equal to the characteristic impedance of the delay line 132.
In the arrangement described in FIGURES 7 to 9 adjacent walls are inductively and capacitively coupled to each other to provide a resultant interdigital structure having a phase velocity in any direction substantially less than the velocity of light in free space and with the delay line having a dimension in each of three co-ordinate directions at least equal to one-half wave-length at the lowest operating frequency of the tube.
The operation of the tube of FIGURES 7 to 9 is similar to that of the tube of FIGURES 1 to 4 but provides a physical structure which may be more easily constructed than the one of FIGURES 1 to 4.
When an interdigital delay line structure of the general type illustrated in FIGURES 7 to 9 is desired but with greater transverse dimensions than those of the delay line structure of these figures, more than three parallel, digitated Wall-like delay line portions may be used. FIGURE 10 illustrates a delay line structure having four central wall-like delay line portions 150 each having digits 152 extending perpendicularly from both sides thereof and adapted to be used as part of a delay line structure made up of six parallel, Wall-like delay line portions. Only the innermost extensions of the digits 152 of the two outside delay line portions are shown. As in the delay line of FIGURES 7 to 9, adjacent delay line portions have the axis of extension of their digits longitudinally spaced with respect to each other, with the inside Wall-like portions having passageways or apertures 154 extending transversely therethrough adjacent to the digits of adjacent wall-like portions so that facing digits of alternate walllike portions see each other through the apertures of the intermediate wall-like portion.
From the foregoing, it will be appreciated that the traveling wave structure of the invention provides an improved delay line which has relatively high power carrying capacity and lends itself for use in relatively high power, multi-beam traveling wave tubes.
What is claimed is:
1. A traveling wave tube comprising an evacuated envelope containing a signal wave propagating structure adapted to propagate slow Waves therea'long in each of three coordinate directions, and means for projecting a beam of electrons along a path through said structure and in interaction relation with waves propagated in one of said directions along said structure, said structure comprising conducting means defining a three dimensional lattice of intersecting passageways therethrough for reducing the phase velocity of said structure in any direction therethrough to a velocity substantially less than the velocity of light in free space, said conductive means comprising at least three parallel conductive plates each having a two-dimensional array of transverse conductive fingers interleaved with the fingers of an adjacent plate, the intermediate plate having apertures aligned with the fingers of the two adjacent plates, one of said passageways containing said path of said electron beam for interaction of said beam with a signal wave traveling along said structure.
2. A three-dimensional signal-wave propagating structure adapted to propagate slow waves therealong in each of three coordinate directions, comprising a three dimensional interdigital array of metallic digitaled conductors defining a three dimensional lattice of intersecting passageways therethrough for reducing the phase velocity of said structure in any direction therethrough to a velocity substantially less than the velocity of light in free space, said array of conductors comprising at least three parallel conductive plates each having a two-dimensional array of transverse conductive fingers interleaved with the fingers of an adjacent plate, the intermediate plate having apertures aligned with the fingers of the adjacent plates.
3. A traveling wave tube comprising an evacuated envelope containing a signal wave propagating structure adapted to propagate slow waves therealong in each of three coordinate directions comprising conducting means defining a three-dimensional lattice of intersecting passageways therethrough for reducing the phase velocity of said structure in any direction therethrough to a velocity substantially less than the velocity of light in free space, said conductive means comprising at least three parallel conductive plates each having a two-dimensional array of transverse conductive fingers interleaved with the fingers of an adjacent plate, the intermediate plate having apertures aligned with the fingers of the two adjacent plates and means for projecting a plurality of electron beams along parallel paths through a like plurality of said passageways in one of said directions, for interaction with a signal wave traveling along said structure in said one direction.
References Cited in the file of this patent UNITED STATES PATENTS 2,577,619 Kock Dec. 4, 1951 2,774,005 Kazan Dec. 11, 1956 2,810,854 Cutler Oct. 22, 1957 2,827,588 Guenard et a1 Mar. 18, 1958 2,849,643 Mourier Aug. 26, 1958 2,880,417 Lovick Mar. 31, 1959 2,888,598 Palluel May 26, 1959 2,889,486 Guenard et a1 June 2, 1959 2,896,117 Birdsall et a1 July 21, 1959 FOREIGN PATENTS 691,900 Great Britain May 20, 1953 1,119,802 France Apr. 9, 1956
US633604A 1957-01-11 1957-01-11 Traveling wave tube structure Expired - Lifetime US3002123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US633604A US3002123A (en) 1957-01-11 1957-01-11 Traveling wave tube structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US633604A US3002123A (en) 1957-01-11 1957-01-11 Traveling wave tube structure

Publications (1)

Publication Number Publication Date
US3002123A true US3002123A (en) 1961-09-26

Family

ID=24540331

Family Applications (1)

Application Number Title Priority Date Filing Date
US633604A Expired - Lifetime US3002123A (en) 1957-01-11 1957-01-11 Traveling wave tube structure

Country Status (1)

Country Link
US (1) US3002123A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126497A (en) * 1961-05-15 1964-03-24 white
US3324341A (en) * 1960-11-23 1967-06-06 Csf High power electron tube with multiple locked-in magnetron oscillators
US3548247A (en) * 1968-02-21 1970-12-15 Alexandr Mikhailovich Alexeenk Backward-wave tube with periodic electrostatic focusing

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2577619A (en) * 1947-05-16 1951-12-04 Bell Telephone Labor Inc Metallic structure for delaying unipolarized waves
GB691900A (en) * 1949-05-19 1953-05-20 Rudolf Kompfner Electron discharge devices
FR1119802A (en) * 1955-01-13 1956-06-26 Csf Two-dimensional delay array and cross-beam electron tubes
US2774005A (en) * 1951-10-03 1956-12-11 Kazan Benjamin Slow-wave structures for travelling wave tubes
US2810854A (en) * 1951-10-06 1957-10-22 Bell Telephone Labor Inc Serpentine traveling wave tube
US2827588A (en) * 1951-04-28 1958-03-18 Csf Travelling wave discharge tube arrangements utilizing delay lines
US2880417A (en) * 1955-02-11 1959-03-31 Lockheed Aircraft Corp Traveling wave device
US2888598A (en) * 1952-12-19 1959-05-26 Csf Delay lines
US2889486A (en) * 1952-04-03 1959-06-02 Csf Interdigital delay line
US2896117A (en) * 1955-02-28 1959-07-21 Hughes Aircraft Co Linear magnetron traveling wave tube

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2577619A (en) * 1947-05-16 1951-12-04 Bell Telephone Labor Inc Metallic structure for delaying unipolarized waves
GB691900A (en) * 1949-05-19 1953-05-20 Rudolf Kompfner Electron discharge devices
US2827588A (en) * 1951-04-28 1958-03-18 Csf Travelling wave discharge tube arrangements utilizing delay lines
US2774005A (en) * 1951-10-03 1956-12-11 Kazan Benjamin Slow-wave structures for travelling wave tubes
US2810854A (en) * 1951-10-06 1957-10-22 Bell Telephone Labor Inc Serpentine traveling wave tube
US2889486A (en) * 1952-04-03 1959-06-02 Csf Interdigital delay line
US2888598A (en) * 1952-12-19 1959-05-26 Csf Delay lines
FR1119802A (en) * 1955-01-13 1956-06-26 Csf Two-dimensional delay array and cross-beam electron tubes
US2849643A (en) * 1955-01-13 1958-08-26 Csf Double beam electron discharge tube
US2880417A (en) * 1955-02-11 1959-03-31 Lockheed Aircraft Corp Traveling wave device
US2896117A (en) * 1955-02-28 1959-07-21 Hughes Aircraft Co Linear magnetron traveling wave tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3324341A (en) * 1960-11-23 1967-06-06 Csf High power electron tube with multiple locked-in magnetron oscillators
US3126497A (en) * 1961-05-15 1964-03-24 white
US3548247A (en) * 1968-02-21 1970-12-15 Alexandr Mikhailovich Alexeenk Backward-wave tube with periodic electrostatic focusing

Similar Documents

Publication Publication Date Title
US2812467A (en) Electron beam system
US2853642A (en) Traveling-wave tube
US2957103A (en) High power microwave tube
US2849643A (en) Double beam electron discharge tube
US2802135A (en) Traveling wave electron tube
US3172004A (en) Depressed collector operation of electron beam device
US3378723A (en) Fast wave transmission line coupled to a plasma
US3002123A (en) Traveling wave tube structure
US2976454A (en) High frequency energy interchange device
US2992356A (en) Traveling wave amplifier tube
US3400297A (en) Traveling-wave type electron tube utilizing interaction between beam and te20 waveguide mode
US2896117A (en) Linear magnetron traveling wave tube
US3054018A (en) Traveling wave amplifier tube
US4742271A (en) Radial-gain/axial-gain crossed-field amplifier (radaxtron)
US3337765A (en) Traveling wave tube time delay device
US2761091A (en) Tube for ultra short waves
US2985789A (en) Low-noise electron gun
US2888609A (en) Electronic devices
US3249792A (en) Traveling wave tube with fast wave interaction means
US3230413A (en) Coaxial cavity slow wave structure with negative mutual inductive coupling
US3268761A (en) Traveling-wave tube slow-wave structure including multiple helices interconnected byspaced conductive plates
US3084279A (en) Travelling wave devices
US2831142A (en) Slow-wave structures
US3171054A (en) Coupled coaxial cavity travelingwave tube
EP3719830B1 (en) Sheet beam electron gun using axially-symmetric spherical cathode