US2999647A - Mist and spray production method and nozzle designs for its usage - Google Patents

Mist and spray production method and nozzle designs for its usage Download PDF

Info

Publication number
US2999647A
US2999647A US718629A US71862958A US2999647A US 2999647 A US2999647 A US 2999647A US 718629 A US718629 A US 718629A US 71862958 A US71862958 A US 71862958A US 2999647 A US2999647 A US 2999647A
Authority
US
United States
Prior art keywords
mist
stream
spray
nozzle
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US718629A
Inventor
Sosnick Benjamin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US718629A priority Critical patent/US2999647A/en
Application granted granted Critical
Priority to US146672A priority patent/US3149783A/en
Publication of US2999647A publication Critical patent/US2999647A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/12Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means capable of producing different kinds of discharge, e.g. either jet or spray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl

Definitions

  • This invention relates to nozzle means for emitting water or other fluid from a single orifice in a spray pattern which may be varied at will to provide a solid cone shaped mist of controlled variation of distribution of the liquid throughout all portions thereof, or a solid conical shaped spray, also having distribution of liquid throughout, or a solid cylindrical stream.
  • the pattern exhibited by the emitted fluid may be controlled with great ease to provide, within an included angle of any desired amount up to a maximum of about 170, any desired distribution from mainly at center to substantially uniform to mainly at periphery.
  • My invention provides a greatly simplified means of producing either a cone shaped mist or cone shaped spray.
  • I provide larger channels than heretofore proposed for this purpose for a given pressure of input fluid, thereby greatly reducing the possibility of clogging and of course producing greater output volume.
  • My invention provides a nozzle whichis entirely devoid of all mechanical moving parts with the sole exception of suitable valve means, for example, aport valve which may be used to change the form in which the fluid is emitted from the nozzle.
  • suitable valve means for example, aport valve which may be used to change the form in which the fluid is emitted from the nozzle.
  • I provide means for producing a mist having the form of a cone and being solid i.e., having equal or otherwise as desired fluid distribution throughout at any desired angle, hereinafter referred to as a solid cone mist, or a solid cone spray of any desired angle.
  • Said angle may be any angle between a very wide angle such as 170 and an angle of 2 suitable to produce a solid straight spray or nearly cylindrical stream.
  • the nozzle of my invention is devoid of mechanisms which clog or wear out due to friction between parts and is devoid of movable members near the output orifice which in nozzles of the prior art tend to stick or seize or otherwise malfunction.
  • My invention furthermore eliminates the disadvantage of well known spray nozzles in which circular rotation of the fluid is provided in a chamber immediately preceding the output orifice, in that such nozzles produce a hollow conical spray or mist i.e., one in which fluid distribution throughout the spray is not equal, but a much greater amount of fluid is emitted near the sides of the cone than in the center of the cone.
  • fluid distribution throughout the nozzle is relatively equal when so desired, or greater at the center, or greater at the periphery.
  • Another object is improved nozzle means for providing, with a minimum of effort and adjustment, a solid cone spray or mist of any desired included angle while having substantial distribution of fluid emission of desired distribution pattern throughout a cone of any included angle at which the operator may wish to have the device.
  • Another object is a nozzle means having these advantages and the further advantages of having no moving parts near the output orifice and therefore being relatively trouble free.
  • FIGURE 1 is a perspective view of one embodiment of my invention
  • FIGURE 2 is a partially cut-away partially cross-sectional plan view of the embodiment of FIGURE 1;
  • FIGURE 3 is a cross-sectional view of the embodiment of FIGURE 1 taken on line 33 of FIGURE 2;
  • FIGURE 4 is a partially cut-away fragmentary side view of another embodiment
  • FIGURE 5 is a front view of the embodiment of FIG- URE 4.
  • FIGURE 6 is a cut-away perspective view of one embodiment of my invention.
  • FIGURE 7 is a cross-sectional side view of the outer cylindrical tube of the embodiment shown in FIGURE 6;
  • FIGURE 8 is a cross-sectional side view of the inner cylindrical tube of the embodiment shown in FIGURE 6;
  • FIGURE 9 is a perspective view of another embodiment of my invention.
  • FIGURE 10 is a cross-sectional side view of the outer cylindrical tube of the embodiment shown in FIGURE 9;
  • FIGURE 11 is a cross-sectional side view of the inner cylindrical tube of the embodiment shown in FIGURE 9.
  • the first stream may be defined as a stream having a straight line flow and the other stream or streams as stream or streams having a rotating flow (rotational component with respect to the first stream).
  • the streams mutually interact as follows: the stream having a straight line flow draws the rotational stream towards the center, while the rotating flow produces rotation of the straight line flow.
  • the extent of mutual interaction may be suitably controlled in accordance with my invention to provide a spray or mist having substantially equal fluid distribution throughout or any desired variation of distribution from greater at center to greater at periphery (which may be varied at will) as hereinbefore described.
  • Said control is accomplished in at least one embodiment by suitably varying the velocity of the stream having straight line flow, or by alternately or simultaneously varying the velocity of one or more of the streams having rotational flow, or by variation of the ratio of the cross sectional dimensions of the stream having straight line flow and the streams having rotational flow.
  • Said control is accomplished in at least one other embodiment by varying the velocity of the feed stream to the nozzle.
  • any one of a number of requirements with respect to the variation of density from the center to the outer surface of the conical spray or mist may be any one of a number of requirements with respect to the variation of density from the center to the outer surface of the conical spray or mist. Some usages require uniform density, other uses may require greater density at the center, other usages may require greater density near the periphery. Any density pattern which may be desired may be obtained in accordance with my invention by suitably varying the velocities and by varying the flow rates by suitable variation of the cross section of the stream in my device.
  • the stream or streams having rotational flow are caused to impinge or intersect a first stream having straight line flow in an essentially helical or spiral or circular pattern. Special characteristics may thus be obtained.
  • Vector analysis for determination of expected characteristics of the cone gives only an approximation when the onward component of the rotational stream is over one third that of the straight line stream at the initial cylinder or at the median of truncated cone interaction.
  • the fluid that is being r concludedd or being sprayed is a liquid of high ratio of surface tension to wetting coefficient for the material of the wall of emitting orifice and the wall thickness is greater than one tenth the difference between the diameter of: the emitting orifice and the diameter of the straight line flow stream before interaction with the rotational flow stream.
  • the distance to which the fluid can be sprayed or the mist propelled is considerably greater for a given pressure and volume than that presently attained.
  • a wider cone angle, especially where the cone is solid, and a greater propelled distance where desired has many obvious advantages. This is in addition to the greater efiiciency of spray or mist production as measured by the ratio of volume of spray or mist or the power necessary for its production. This increased efficiency is due to the elimination of small openings and mechanically moving parts.
  • nozzles particularly suitable for use as a fire fighting nozzle, but in accordance with the invention I may make paint spray nozzles, shower heads, fuel injection nozzles for internal combustion engines, diesel engines, rocket engines and the like, insecticide nozzles and industrial spray nozzles, ionization sprays, sprays for fission and fusion reaction controls, sprays for :hemical reactors and sprays for colloidal conglomeraions.
  • Nozzles in accordance with my invention my be made of any suitable material such as a metal (brass, steel, aluminum or other suitable metal), plastics, ceramic, and if desired even wood. It is of course to be understood that although the accompanying drawings show preferred embodiments, many variations incorporating my invention are possible.
  • nozzle 1 which may be attached to a source of liquid, preferably water, by means of a connector such as the thread at connector 10 which couples the nozzle to tubing 11.
  • Liquid introduced into the nozzle flows first into the plug valve indicated generally as 13, through inlet 14, from valve 13 the liquid may flow to output orifice 15, simultaneously through tubes 23, 24 and 25 when the valve is in position shown in FIGURE 2.
  • Valve 13 comprises valve housing 16 provided with a rotatable plug member therein which may comprise outer plug wall 17 and center shaft 18 which is connected to outer wall 17 by means not shown.
  • Attached center shaft 18 may project from the housing 16 through an aperture which may be provided with seals to prevent leakage therethrough by means well known in the art and therefore for the sake of simplicity omitted from the drawings, and to shaft 18 there may be connected operating lever 19.
  • a liquid which flows out from valve 13 toward orifice 15 through tube 23 constitutes a first stream of liquid which flows coaxially with the axis of orifice 15 and which therefore has a flow pattern which may be described as straight line flow.
  • Tube 23 connects with chamber 20 immediately adjacent outlet 15.
  • Tubes 24 and 25 likewise connect with chamber 20 and are so arranged, as shown, as to introduce the streams flowing therethrough into chamber 20 in a tangential manner with respect to the stream flowing through tube 23.
  • the streams introduced into chamber 20 through tubes 24 and 25 have a rotational component with respect to the direction of flow of the stream introduced thereto through tube 23 and may be described as having a rotational flaw.
  • outlet 15 is not necessarily constricted and is not a nozzle in the sense that the term may be taken to mean a constricted orifice, but is a nozzle only in the sense that liquid may be emitted therefrom in a spray pattern.
  • liquid is introduced into chamber 32 adjacent outlet 36 respectively through tubes 31 and 33.
  • the stream of liquid introduced through tube 31 travels substantially coaxially with the axis of outlet 36 and as a straight line flow pattern.
  • Fluid introduced into chamber 32 from tube 33 has a rotational component with respect to the stream entering from 31 and may be described as having rotational flow.
  • the spray or mist emitted from outlet 36 is a solid conical mist or spray having an included angle and other characteristics determined by the relative velocity of the streams introduced through tubes 31 and 33, and the relative cross sectional areas i.e., the flowage thereof at the velocity at which the streams enter.
  • a nozzle 40 which may be attached to a source of liquid, preferably water, by means of a connector such as the threaded connector 43 which may couple the nozzle 40 to a liquid source.
  • Liquid introduced into the nozzle 40 flows first into cylindrical tube 41, then through a straight line output orifice 63 as well as through the orifices 47 which are offset from and in a plane parallel to the axis of the straight line orifice 63, orifices 47 being on opposing sides of orifice 63 and extending at an opposing angle to each other.
  • the liquid passes through orifices 63 and 47 and into cylindrical tube 42 from which the desired spray pattern is emitted through discharge aperture 51.
  • Cylindrical tube 41 is received within cylindrical tube 42; the forward closed end 44 of tube 41 may be rotated and thereby brought forward and into closer proximity with closed end 50 of tube 42 to adjust the spray pattern by varying the rotational position of peripheral dowels 46 of tube 41 within the helical slots 53 of tube 42, thus obtaining the desired change in spray pattern.
  • the cylindrical tube 41 may be provided with a peripheral gasket or flange 45 near the closed end 44 to prevent leakage of fluid from back pressure within tube 42.
  • Tube 41 may have peripheral flange 48 to receive a wrench for tightening threaded connector end 43 and tube 42 may have a peripheral flange 52 near the discharge aperture end 50.
  • FIGURES 9, and 11 is shown another embodiment of my invention comprising means for varying the emission pattern of the liquid in accordance with the invention.
  • the nozzle indicated generally as 60 is rotatably attached to a liquid source by means of threads 56 on the open end of the cylindrical tube 54. Liquid may pass through tube 54 thence through orifice 58 and orifice 65 and into cylindrical tube 55, orifice 65 being a straight line flow orifice and orifice 58 being extended oflset from and on a plane parallel to the axis of orifice 65.
  • Cylindrical tube 54 fits within cylindrical tube 55 and the desired spray pattern is emitted from the discharged aperture 61 of the enclosed end 62 of cylindrical tube 55.
  • the method may also be used for spraying of dust, for example, by suspending a powdered chemical or other dust in a fluid such as air or liquid and causing it to be emitted from the orifice in the manner hereinbefore described.
  • 'Fluid emitting device to provide emittent fluid in a continuously variable pattern from a nearly cylindrical stream to a wide angle cone, said pattern further continuously variable from greatest fluid density at the center of the cone to greatest fluid density at the edges of the cone, comprising a generally cylindrical chamber provided with a single fluid outlet and a first fluid inlet disposed to introduce into said chamber a fluid stream coaxial with said outlet, and at least one additional fluid inlet disposed to introduce into said chamber a fluid stream at an angle to the axis of said first stream, conduits for carrying said streams to said inlets and valve means in said conduits for controlling the flow of each of the streams and shutting off either stream without shutting 01f the other, characterized by said outlet being flared and having a diameter substantially equal to that of said chamber and by said chamber being substantially non-convergent upstream of said outlet.
  • the device of claim 1 provided with at least two of such additional fluid inlets.
  • valve means are provided by a single plug valve.

Description

Sept. 12, 1961 B. SOSNICK MIST AND SPRAY PRODUCTION METHOD AND NOZZLE DESIGNS FOR ITS USAGE 2 Sheets-Sheet 1 Filed March 5, 1.958
MI I: I:
INVENTOR.
BEN M/N SOSN/GK Attorney Sept. 12, 1961 B. SOSNICK 2,999,647
MIST AND SPRAY PRQDUCTION METHOD AND NOZZLE DESIGNS FORITS USAGE Filed March 3,1958 2 Sheets-Sheet 2 FIG .9
54 55 INVENTOR.
BENJAMIN SOS/V/CK Attorney 74 2 Jim United States Fatent 2,999,647 MIST AND SPRAY PRODUCTION METHOD AND NOZZLE DESIGNS FOR ITS USAGE Benjamin Sosnick, San Jose, Calif. Filed Mar. 3, 1958, Ser. No. 718,629 '3 Claims. (Cl. 239-468) This invention relates to nozzle means for emitting water or other fluid from a single orifice in a spray pattern which may be varied at will to provide a solid cone shaped mist of controlled variation of distribution of the liquid throughout all portions thereof, or a solid conical shaped spray, also having distribution of liquid throughout, or a solid cylindrical stream. The pattern exhibited by the emitted fluid may be controlled with great ease to provide, within an included angle of any desired amount up to a maximum of about 170, any desired distribution from mainly at center to substantially uniform to mainly at periphery.
My invention provides a greatly simplified means of producing either a cone shaped mist or cone shaped spray. I provide larger channels than heretofore proposed for this purpose for a given pressure of input fluid, thereby greatly reducing the possibility of clogging and of course producing greater output volume.
My invention provides a nozzle whichis entirely devoid of all mechanical moving parts with the sole exception of suitable valve means, for example, aport valve which may be used to change the form in which the fluid is emitted from the nozzle. At the same time I provide means for producing a mist having the form of a cone and being solid i.e., having equal or otherwise as desired fluid distribution throughout at any desired angle, hereinafter referred to as a solid cone mist, or a solid cone spray of any desired angle. Said angle may be any angle between a very wide angle such as 170 and an angle of 2 suitable to produce a solid straight spray or nearly cylindrical stream.
Many devices have been heretofore proposed for producing a spray and mist, but those which have been produced and are now in use have various disadvantages which are overcome in my invention. The nozzle of my invention is devoid of mechanisms which clog or wear out due to friction between parts and is devoid of movable members near the output orifice which in nozzles of the prior art tend to stick or seize or otherwise malfunction. My invention furthermore eliminates the disadvantage of well known spray nozzles in which circular rotation of the fluid is provided in a chamber immediately preceding the output orifice, in that such nozzles produce a hollow conical spray or mist i.e., one in which fluid distribution throughout the spray is not equal, but a much greater amount of fluid is emitted near the sides of the cone than in the center of the cone. In my nozzle, fluid distribution throughout the nozzle is relatively equal when so desired, or greater at the center, or greater at the periphery.
It is therefore an object of the invention to provide an improved nozzle means for providing a solid cone mist or spray.
Another object is improved nozzle means for providing, with a minimum of effort and adjustment, a solid cone spray or mist of any desired included angle while having substantial distribution of fluid emission of desired distribution pattern throughout a cone of any included angle at which the operator may wish to have the device.
Another object is a nozzle means having these advantages and the further advantages of having no moving parts near the output orifice and therefore being relatively trouble free.
Other objects willbecome apparent from the drawings and from the following detailed description in which it is intended to illustrate the applicability of the invention was? Patented Sept. 12, 1961 without thereby limiting its scope to less than that of all equivalents which will be apparent to one skilled in the art. In the drawings like reference numerals refer to like parts and:
FIGURE 1 is a perspective view of one embodiment of my invention;
FIGURE 2 is a partially cut-away partially cross-sectional plan view of the embodiment of FIGURE 1;
FIGURE 3 is a cross-sectional view of the embodiment of FIGURE 1 taken on line 33 of FIGURE 2;
FIGURE 4 is a partially cut-away fragmentary side view of another embodiment;
FIGURE 5 is a front view of the embodiment of FIG- URE 4;
FIGURE 6 is a cut-away perspective view of one embodiment of my invention;
FIGURE 7 is a cross-sectional side view of the outer cylindrical tube of the embodiment shown in FIGURE 6;
FIGURE 8 is a cross-sectional side view of the inner cylindrical tube of the embodiment shown in FIGURE 6;
FIGURE 9 is a perspective view of another embodiment of my invention;
FIGURE 10 is a cross-sectional side view of the outer cylindrical tube of the embodiment shown in FIGURE 9; and
FIGURE 11 is a cross-sectional side view of the inner cylindrical tube of the embodiment shown in FIGURE 9.
In accordance with my invention I accomplished the aforesaid objects and have achieved the advantages mentioned above by providing in a nozzle a first stream of fluid traveling toward the orifice from which the fluid is to be emitted substantially coaxially with the axis of the orifice and provided also one or some streams which are not coaxial but which intercept or impinge upon said first stream on the outer portions thereof in such manner as to introduce rotational movement in at least the outer portions of said first stream. Said streams are brought into conjuncture in a chamber devoid of mechanically moving parts, twisting, straightening, or swirling means and generally in a chamber devoid of mechanical means interposed to the flow of either of the streams except to confine the combined streams to the outlet. The first stream may be defined as a stream having a straight line flow and the other stream or streams as stream or streams having a rotating flow (rotational component with respect to the first stream). The streams mutually interact as follows: the stream having a straight line flow draws the rotational stream towards the center, while the rotating flow produces rotation of the straight line flow. The extent of mutual interaction may be suitably controlled in accordance with my invention to provide a spray or mist having substantially equal fluid distribution throughout or any desired variation of distribution from greater at center to greater at periphery (which may be varied at will) as hereinbefore described. Said control is accomplished in at least one embodiment by suitably varying the velocity of the stream having straight line flow, or by alternately or simultaneously varying the velocity of one or more of the streams having rotational flow, or by variation of the ratio of the cross sectional dimensions of the stream having straight line flow and the streams having rotational flow. Said control is accomplished in at least one other embodiment by varying the velocity of the feed stream to the nozzle. Thus I provide a simple but highly and surprisingly effective means of producing a fluid in a conical spray or mist having any desired angle and having substantially any desired variation of fluid distribution from almost entirely at center to substantially uniform to mainly at periphery.
According to the purpose for which it is desired to utilize the spray or mist, there may be any one of a number of requirements with respect to the variation of density from the center to the outer surface of the conical spray or mist. Some usages require uniform density, other uses may require greater density at the center, other usages may require greater density near the periphery. Any density pattern which may be desired may be obtained in accordance with my invention by suitably varying the velocities and by varying the flow rates by suitable variation of the cross section of the stream in my device.
In the particularly unique embodiments of my device the stream or streams having rotational flow are caused to impinge or intersect a first stream having straight line flow in an essentially helical or spiral or circular pattern. Special characteristics may thus be obtained. Vector analysis for determination of expected characteristics of the cone gives only an approximation when the onward component of the rotational stream is over one third that of the straight line stream at the initial cylinder or at the median of truncated cone interaction. This is especially true where the fluid that is being rnisted or being sprayed is a liquid of high ratio of surface tension to wetting coefficient for the material of the wall of emitting orifice and the wall thickness is greater than one tenth the difference between the diameter of: the emitting orifice and the diameter of the straight line flow stream before interaction with the rotational flow stream. In general, the distance to which the fluid can be sprayed or the mist propelled is considerably greater for a given pressure and volume than that presently attained. A wider cone angle, especially where the cone is solid, and a greater propelled distance where desired has many obvious advantages. This is in addition to the greater efiiciency of spray or mist production as measured by the ratio of volume of spray or mist or the power necessary for its production. This increased efficiency is due to the elimination of small openings and mechanically moving parts.
The advantages of the nozzle of my invention, as set forth above, make the nozzle particularly suitable for use as a fire fighting nozzle, but in accordance with the invention I may make paint spray nozzles, shower heads, fuel injection nozzles for internal combustion engines, diesel engines, rocket engines and the like, insecticide nozzles and industrial spray nozzles, ionization sprays, sprays for fission and fusion reaction controls, sprays for :hemical reactors and sprays for colloidal conglomeraions.
Nozzles in accordance with my invention my be made of any suitable material such as a metal (brass, steel, aluminum or other suitable metal), plastics, ceramic, and if desired even wood. It is of course to be understood that although the accompanying drawings show preferred embodiments, many variations incorporating my invention are possible.
Referring now to FIGURES 1, 2 and 3, there is shown nozzle 1 according to my invention which may be attached to a source of liquid, preferably water, by means of a connector such as the thread at connector 10 which couples the nozzle to tubing 11. Liquid introduced into the nozzle flows first into the plug valve indicated generally as 13, through inlet 14, from valve 13 the liquid may flow to output orifice 15, simultaneously through tubes 23, 24 and 25 when the valve is in position shown in FIGURE 2. Valve 13 comprises valve housing 16 provided with a rotatable plug member therein which may comprise outer plug wall 17 and center shaft 18 which is connected to outer wall 17 by means not shown. Attached center shaft 18 may project from the housing 16 through an aperture which may be provided with seals to prevent leakage therethrough by means well known in the art and therefore for the sake of simplicity omitted from the drawings, and to shaft 18 there may be connected operating lever 19. A liquid which flows out from valve 13 toward orifice 15 through tube 23 constitutes a first stream of liquid which flows coaxially with the axis of orifice 15 and which therefore has a flow pattern which may be described as straight line flow. Tube 23 connects with chamber 20 immediately adjacent outlet 15. Tubes 24 and 25 likewise connect with chamber 20 and are so arranged, as shown, as to introduce the streams flowing therethrough into chamber 20 in a tangential manner with respect to the stream flowing through tube 23. Thus the streams introduced into chamber 20 through tubes 24 and 25 have a rotational component with respect to the direction of flow of the stream introduced thereto through tube 23 and may be described as having a rotational flaw.
It is to be noted that outlet 15 is not necessarily constricted and is not a nozzle in the sense that the term may be taken to mean a constricted orifice, but is a nozzle only in the sense that liquid may be emitted therefrom in a spray pattern.
By suitably varying the rotational position of the rotatable plug valve member within housing 16 so that wall 17 is suitably displaced from the position shown in FIG- URE 2, there may be provided, as well known in the art with respect to plug valves, any one of the following flow situations:
(1) Complete shut off of inlet 14.
(2) Constricted flow simultaneously through each of tubes 23, 24 and 25.
(3) Full flow outward only through tube 23.
(4) Constricted flow outward only through tube 23.
(5) Full flow outward only through tubes 24 and 25.
(6) Constricted flow outward only through tubes 24 and When flow oniy through tube 23 is provided, the flow outward from the nozzle is substantially entirely straight line flow and the liquid emitted has the form of a stream, only very slightly diverged, and may be projected a relatively great distance and ha relatively great penetration.
When outward flow takes place entirely through tubes 24 and 25 the flow within chamber 20 is substantially entirely rotational and a conical mist or spray is emitted.
When flow takes place through all three of the tubes simultaneously a solid cone mist or spray is emitted.
Referring now to the embodiments of FIGURES 4 and 5, liquid is introduced into chamber 32 adjacent outlet 36 respectively through tubes 31 and 33. The stream of liquid introduced through tube 31 travels substantially coaxially with the axis of outlet 36 and as a straight line flow pattern. Fluid introduced into chamber 32 from tube 33 has a rotational component with respect to the stream entering from 31 and may be described as having rotational flow. The spray or mist emitted from outlet 36 is a solid conical mist or spray having an included angle and other characteristics determined by the relative velocity of the streams introduced through tubes 31 and 33, and the relative cross sectional areas i.e., the flowage thereof at the velocity at which the streams enter.
Referring now to the embodiments of FEGURES 6 and 7 and 8, there is shown a nozzle 40 according to my invention which may be attached to a source of liquid, preferably water, by means of a connector such as the threaded connector 43 which may couple the nozzle 40 to a liquid source. Liquid introduced into the nozzle 40 flows first into cylindrical tube 41, then through a straight line output orifice 63 as well as through the orifices 47 which are offset from and in a plane parallel to the axis of the straight line orifice 63, orifices 47 being on opposing sides of orifice 63 and extending at an opposing angle to each other. The liquid passes through orifices 63 and 47 and into cylindrical tube 42 from which the desired spray pattern is emitted through discharge aperture 51. Cylindrical tube 41 is received within cylindrical tube 42; the forward closed end 44 of tube 41 may be rotated and thereby brought forward and into closer proximity with closed end 50 of tube 42 to adjust the spray pattern by varying the rotational position of peripheral dowels 46 of tube 41 within the helical slots 53 of tube 42, thus obtaining the desired change in spray pattern. The cylindrical tube 41 may be provided with a peripheral gasket or flange 45 near the closed end 44 to prevent leakage of fluid from back pressure within tube 42. Tube 41 may have peripheral flange 48 to receive a wrench for tightening threaded connector end 43 and tube 42 may have a peripheral flange 52 near the discharge aperture end 50.
In FIGURES 9, and 11 is shown another embodiment of my invention comprising means for varying the emission pattern of the liquid in accordance with the invention. The nozzle indicated generally as 60 is rotatably attached to a liquid source by means of threads 56 on the open end of the cylindrical tube 54. Liquid may pass through tube 54 thence through orifice 58 and orifice 65 and into cylindrical tube 55, orifice 65 being a straight line flow orifice and orifice 58 being extended oflset from and on a plane parallel to the axis of orifice 65. Cylindrical tube 54 fits within cylindrical tube 55 and the desired spray pattern is emitted from the discharged aperture 61 of the enclosed end 62 of cylindrical tube 55. As orifice 58 and orifice 65 of cylindrical tube 54 are brought into closer proximity with the discharge aperture 61 on the enclosed end 62 of cylindrical tube 55, this adjustment of cylindrical tube 54 within cylindrical tube 55 being brought about by external threads 57 on tube 54 being rotationally adjusted within internal threads 59 of tube 55, the flow from orifice 58 is substantially shut ofi and the emission from discharge orifice 61 is substantially entirely from straight line flow orifice 65.
The method may also be used for spraying of dust, for example, by suspending a powdered chemical or other dust in a fluid such as air or liquid and causing it to be emitted from the orifice in the manner hereinbefore described.
While certain modifications and embodiments of the invention have been described, it is of course to be understood that there are a great number of variations which will suggest themselves to anyone familiar with the subject matter thereof and it is distinctly understood that this invention should not be limited except by such limitations as are clearly imposed in the appended claims.
I claim:
1. 'Fluid emitting device to provide emittent fluid in a continuously variable pattern from a nearly cylindrical stream to a wide angle cone, said pattern further continuously variable from greatest fluid density at the center of the cone to greatest fluid density at the edges of the cone, comprising a generally cylindrical chamber provided with a single fluid outlet and a first fluid inlet disposed to introduce into said chamber a fluid stream coaxial with said outlet, and at least one additional fluid inlet disposed to introduce into said chamber a fluid stream at an angle to the axis of said first stream, conduits for carrying said streams to said inlets and valve means in said conduits for controlling the flow of each of the streams and shutting off either stream without shutting 01f the other, characterized by said outlet being flared and having a diameter substantially equal to that of said chamber and by said chamber being substantially non-convergent upstream of said outlet.
2. The device of claim 1 provided with at least two of such additional fluid inlets.
3. The device of claim 2 wherein said valve means are provided by a single plug valve.
References Cited in the file of this patent UNITED STATES PATENTS 526,525 Giesler Sept. 25, 1894 1,046,427 Barney Dec. 10, 1912 1,101,264 Eneas June 23, 1914 1,202,051 Gibbons Oct. 24, 1916 1,225,029 Hayes May 8, 1917 1,381,095 Starr June 7, 1921 1,419,070 Mays June 6, 1922 1,616,685 Frazier et a1. Feb. 8, 1927 2,046,149 Cole June 30, 1936 2,094,161 Paddack Sept. 28, 1937 2,127,883 Norton Aug. 23, 1938 2,378,348 Wilmes June 12, 1945 2,428,748 Bary Oct. 7, 1947 2,475,702 Funke July 12, 1949 2,893,646 Batts July 7, 1959 FOREIGN PATENTS I 65/26 Australia Apr. 11, 1927 417,888 Great Britain Oct. 15, 1934
US718629A 1958-03-03 1958-03-03 Mist and spray production method and nozzle designs for its usage Expired - Lifetime US2999647A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US718629A US2999647A (en) 1958-03-03 1958-03-03 Mist and spray production method and nozzle designs for its usage
US146672A US3149783A (en) 1958-03-03 1961-09-12 Method of merging at least two streams of fluid into a single body of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US718629A US2999647A (en) 1958-03-03 1958-03-03 Mist and spray production method and nozzle designs for its usage

Publications (1)

Publication Number Publication Date
US2999647A true US2999647A (en) 1961-09-12

Family

ID=24886842

Family Applications (1)

Application Number Title Priority Date Filing Date
US718629A Expired - Lifetime US2999647A (en) 1958-03-03 1958-03-03 Mist and spray production method and nozzle designs for its usage

Country Status (1)

Country Link
US (1) US2999647A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462083A (en) * 1966-12-19 1969-08-19 Robertson Co H H Mixing nozzle and dispersion method
US4150817A (en) * 1978-02-06 1979-04-24 Zimmermann & Jansen, Inc. Mixing chamber
FR2482478A1 (en) * 1980-05-17 1981-11-20 Grohe Armaturen Friedrich SHOWER DEVICE FOR SANITARY APPLICATIONS
US4646977A (en) * 1983-11-02 1987-03-03 Nippon Kokan Kabushiki Kaisha Spray nozzle
US4679595A (en) * 1983-06-30 1987-07-14 Jorgen Mosbaek Johannessen Aps Device for controlling the flow in a pipe system
US4862837A (en) * 1988-04-21 1989-09-05 Defense Research Technologies, Inc. Fuel injection of coal slurry using vortex nozzles and valves
US4915304A (en) * 1987-11-09 1990-04-10 Arag S.P.A. Gun, particularly for crop-spraying
US5035090A (en) * 1984-08-14 1991-07-30 Szuecs Johan Apparatus and method for cleaning stone and metal surfaces
US10247313B2 (en) * 2017-06-29 2019-04-02 Tao-Pao Chien Spray gun and adjustment valve thereof
US10974259B2 (en) 2018-03-13 2021-04-13 Innomist Llc Multi-mode fluid nozzles
US20220226838A1 (en) * 2021-01-21 2022-07-21 Xiamen Solex High-Tech Industries Co., Ltd. Water outlet device and shower

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US526525A (en) * 1894-09-25 Atomizer
US1046427A (en) * 1912-10-21 1912-12-10 Louis D Barney Lawn-sprinkling system.
US1101264A (en) * 1909-12-27 1914-06-23 Spray Engineering Co Spray-nozzle and method of distributing liquids.
US1202051A (en) * 1915-01-04 1916-10-24 Gerald R Cushman Spraying-nozzle.
US1225029A (en) * 1916-07-12 1917-05-08 Hayes Pump & Planter Company Attachment for spray-rods.
US1381095A (en) * 1920-03-27 1921-06-07 Fletcher C Starr Fuel-oil burner
US1419070A (en) * 1920-05-29 1922-06-06 William A Mays Oil burner
US1616685A (en) * 1925-06-15 1927-02-08 Hansen Mfg Co Spraying device
GB417888A (en) * 1933-07-14 1934-10-15 John Graves Mckean Improvements in and relating to liquid fuel burning apparatus
US2046149A (en) * 1930-01-16 1936-06-30 Harry C Cole Spraying machine
US2094161A (en) * 1933-11-09 1937-09-28 Ormond H Paddock Cleaning device
US2127883A (en) * 1935-05-09 1938-08-23 Herbert E Norton Spray nozzle
US2378348A (en) * 1944-02-16 1945-06-12 Binks Mfg Co Atomizing nozzle
US2428748A (en) * 1944-06-22 1947-10-07 Star Sprinkler Corp Nozzle
US2475702A (en) * 1946-03-23 1949-07-12 Robert St J Orr Nozzle
US2893646A (en) * 1958-10-07 1959-07-07 Charles C Batts Fluid spray nozzle

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US526525A (en) * 1894-09-25 Atomizer
US1101264A (en) * 1909-12-27 1914-06-23 Spray Engineering Co Spray-nozzle and method of distributing liquids.
US1046427A (en) * 1912-10-21 1912-12-10 Louis D Barney Lawn-sprinkling system.
US1202051A (en) * 1915-01-04 1916-10-24 Gerald R Cushman Spraying-nozzle.
US1225029A (en) * 1916-07-12 1917-05-08 Hayes Pump & Planter Company Attachment for spray-rods.
US1381095A (en) * 1920-03-27 1921-06-07 Fletcher C Starr Fuel-oil burner
US1419070A (en) * 1920-05-29 1922-06-06 William A Mays Oil burner
US1616685A (en) * 1925-06-15 1927-02-08 Hansen Mfg Co Spraying device
US2046149A (en) * 1930-01-16 1936-06-30 Harry C Cole Spraying machine
GB417888A (en) * 1933-07-14 1934-10-15 John Graves Mckean Improvements in and relating to liquid fuel burning apparatus
US2094161A (en) * 1933-11-09 1937-09-28 Ormond H Paddock Cleaning device
US2127883A (en) * 1935-05-09 1938-08-23 Herbert E Norton Spray nozzle
US2378348A (en) * 1944-02-16 1945-06-12 Binks Mfg Co Atomizing nozzle
US2428748A (en) * 1944-06-22 1947-10-07 Star Sprinkler Corp Nozzle
US2475702A (en) * 1946-03-23 1949-07-12 Robert St J Orr Nozzle
US2893646A (en) * 1958-10-07 1959-07-07 Charles C Batts Fluid spray nozzle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462083A (en) * 1966-12-19 1969-08-19 Robertson Co H H Mixing nozzle and dispersion method
US4150817A (en) * 1978-02-06 1979-04-24 Zimmermann & Jansen, Inc. Mixing chamber
FR2482478A1 (en) * 1980-05-17 1981-11-20 Grohe Armaturen Friedrich SHOWER DEVICE FOR SANITARY APPLICATIONS
US4679595A (en) * 1983-06-30 1987-07-14 Jorgen Mosbaek Johannessen Aps Device for controlling the flow in a pipe system
US4646977A (en) * 1983-11-02 1987-03-03 Nippon Kokan Kabushiki Kaisha Spray nozzle
US5035090A (en) * 1984-08-14 1991-07-30 Szuecs Johan Apparatus and method for cleaning stone and metal surfaces
US4915304A (en) * 1987-11-09 1990-04-10 Arag S.P.A. Gun, particularly for crop-spraying
US4862837A (en) * 1988-04-21 1989-09-05 Defense Research Technologies, Inc. Fuel injection of coal slurry using vortex nozzles and valves
US10247313B2 (en) * 2017-06-29 2019-04-02 Tao-Pao Chien Spray gun and adjustment valve thereof
US10974259B2 (en) 2018-03-13 2021-04-13 Innomist Llc Multi-mode fluid nozzles
US11590518B2 (en) 2018-03-13 2023-02-28 Innomist Llc Multi-mode fluid nozzles
US11845091B2 (en) 2018-03-13 2023-12-19 Innomist Llc Multi-mode fluid nozzles
US20220226838A1 (en) * 2021-01-21 2022-07-21 Xiamen Solex High-Tech Industries Co., Ltd. Water outlet device and shower
US11833530B2 (en) * 2021-01-21 2023-12-05 Xiamen Solex High-Tech Industries Co., Ltd. Water outlet device and shower

Similar Documents

Publication Publication Date Title
US2999647A (en) Mist and spray production method and nozzle designs for its usage
US5090619A (en) Snow gun having optimized mixing of compressed air and water flows
USRE40433E1 (en) Nozzle arrangement for a paint spray gun
US3737105A (en) Double spray nozzle
US1517598A (en) Apparatus for spraying fluids and mixing the same
US3920187A (en) Spray head
US2703260A (en) Dual orifice atomizing nozzle
US3149783A (en) Method of merging at least two streams of fluid into a single body of liquid
GB1205035A (en) Improvements in or relating to the decontaminating of gas streams
US10974259B2 (en) Multi-mode fluid nozzles
US2374041A (en) Variable capacity atomizing device
US2941729A (en) Hose nozzle with aerator
US1824952A (en) Oil burning system
US2566324A (en) Discharge device for fluids
US3887135A (en) Gas-atomizing nozzle by spirally rotating gas stream
US2530206A (en) Spray gun
US4394965A (en) Pulsating shower using a swirl chamber
US2593096A (en) Nozzle
US4523718A (en) Showerhead
US2578392A (en) Spray nozzle
US3157359A (en) Large volume liquid atomizer employing an acoustic generator
US3476322A (en) Lawn sprinkler nozzle
US3304012A (en) Spray nozzle
RU2615248C1 (en) Kochetov centrifugal vortex nozzle
US4256263A (en) Spray nozzle for shower apparatus