US2998092A - Jet propulsion nozzle with noise reducing means - Google Patents

Jet propulsion nozzle with noise reducing means Download PDF

Info

Publication number
US2998092A
US2998092A US689921A US68992157A US2998092A US 2998092 A US2998092 A US 2998092A US 689921 A US689921 A US 689921A US 68992157 A US68992157 A US 68992157A US 2998092 A US2998092 A US 2998092A
Authority
US
United States
Prior art keywords
nozzle
walls
jet propulsion
paths
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US689921A
Inventor
Brown David Morris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Application granted granted Critical
Publication of US2998092A publication Critical patent/US2998092A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/46Nozzles having means for adding air to the jet or for augmenting the mixing region between the jet and the ambient air, e.g. for silencing
    • F02K1/48Corrugated nozzles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/12Deep fat fryers, e.g. for frying fish or chips
    • A47J37/1223Deep fat fryers, e.g. for frying fish or chips with means for filtering the frying liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/40Nozzles having means for dividing the jet into a plurality of partial jets or having an elongated cross-section outlet

Definitions

  • This invention is concerned with jet propulsion nozzles, for example as set forth in US. Patent No. 2,982,092, issued May 2, 1961, to John Michael Storer Keen, constructed to afford from adjacent the nozzle inlet at least to the throat thereof a plurality of paths for the hot gas flowing through the nozzle, the number of such paths being selected to reduce the noise level in operation of the nozzle as compared with an equivalent nozzle of common construction which for example in the case of a convergent nozzle is a frusto-conical tube.
  • the paths are conveniently formed by attaching elements which taper in the upstream direction, to the inner surface of a tubular wall; such elements at their downstream ends extend radially inwardly either to the nozzle axis in which case the paths have sector-shaped outlets, or only part way towards the nozzle axis in which case the periphery of the outlet appears corrugated.
  • each of the elements defining the gas paths includes a pair of circumferentially-facing walls bounding the adjacent gas paths and an axially-facing wall joining the downstream ends of the circumferentially-facing walls, so that at the outlet of the nozzle the gas paths alternate with the axially-facing walls around the nozzle, and the circumferentially-facing walls have axial extensions beyond the outlet of the nozzle to delay mixing of hot gases leaving the nozzle and air flowing into the zones behind the axially-facing walls.
  • the extensions extend in the radial direction outwardly beyond the perimeter of the nozzle.
  • FIGURE 1 is an axial section through one construction
  • FIGURE 1A is a perspective view showing the construction of one of the members 12 of FIGURE 1.
  • FIGURE 2 is a view in the direction of arrow 2 on FIGURE 1 and shows the section line 11 for FIGURE 1, and
  • FIGURES 3 and 4 are corresponding views of the second construction.
  • the nozzle illustrated is a convergent nozzle and comprises an outer tubular Wall -of frusto-conical form and a series of elements 12 (in this case six) attached to the inner surface of the wall 10 to define a corresponding series of trough-like paths for the hot gases leading from adjacent the inlet 10a of the nozzle to the outlet 10b.
  • Each of the elements 12 has a pair of circumferentially-facing walls 12a bounding the trough-like gas paths and an axially-facing end wall 12!), so that the end walls 12b alternate with the ends of the trough-like paths at the outlet 10b.
  • the elements 12 are of tetrahedron form and are of such dimensions that the total cross-sectional area for gas flow through the nozzle decreases gradually from the inlet 10a to provide a throat at the outlet 10b. Also at their downstream ends the elements 12 extend to the nozzle axis. Such a nozzle has a lower noise level as compared with an equivalent simple frusto-conical nozzle.
  • the walls 12a are provided with extensions beyond the outlet 10b of the nozzle.
  • the extension walls 120 are contained in axial planes and extend radially from the nozzle axis to beyond the perimeter of the nozzle at its outlet.
  • FIGURES 3 and 4 there is shown a construction of nozzle in which the elements 12 forming the trough-like paths leading to the throat at the nozzle outlet 10b do not extend to the nozzle axis at their downstream ends.
  • Each element has a pair of circumferentially-facing walls 12d, and inwardly-facing wall 12e joining the inner edges of the walls 12d and an axially-facing end wall 12 joining the downstream ends of the walls 12d, and 12e.
  • extension walls 12g are contained in axial planes and extend radially from the inner edges of the walls 12d to beyond the perimeter of the nozzle at its outlet.
  • the invention is applicable not only to convergent nozzles but also to convergent/divergent nozzles having trough-like paths running through both sections of the nozzle and in this case the extension walls will be downstream of the outlet from the divergent section of the nozzle.
  • a jet propulsion nozzle comprising a tubular outer wall and a series of angularly-spaced elements extending radially inwards from the inner surface of the tubular outer wall to define from adjacent the nozzle inlet at least to the throat thereof a plurality of paths for the hot gas flowing through the nozzle, the number of such paths being selected to reduce the noise level in operation of the nozzle, wherein each of the elements defining the gas paths includes a pair of angularly-spaced circumferentially-facing walls bounding the adjacent gas paths and an axially-facing wall joining the downstream ends of the circumferentially-facing walls, so that at the outlet of the nozzle the gas paths alternate with the axially-facing walls around the nozzle, and the circumferentially-facing walls have axial extensions beyond the outlet of the nozzle to delay mixing of hot gases leaving the nozzle and air flowing into the zones behind the axiallyfacing walls.
  • a jet propulsion nozzle according to claim 1, wherein said elements at their downstream ends extend radially to the axis of the nozzle and the axial extensions are walls contained in axial planes and extend radially from the nozzle axis to beyond the perimeter of the nozzle.
  • a jet propulsion nozzle according to claim 1, wherein the said elements at their downstream ends project radially part way along towards the nozzle axis and the extensions are walls contained in axial planes and extending radially from the inner edges of the circumferentially-facing walls to beyond the perimeter of the nozzle.
  • a jet propulsion nozzle comprising a tubular outer wall and a series of angularly-spaced elements extending radially inwards from the inner surface of the tubular outer wall to define from adjacent the nozzle inlet at least to the throat thereof a plurality of paths for the hot gas flowing through the nozzle, the number of such paths being selected to reduce the noise level in operation of the nozzle, wherein each of the elements defining the gas paths includes a pair of angularly-spaced circumferentially-facing walls bounding the adjacent gas paths, the angular spacing of said pair of walls of each of the angularly-spaced elements being substantially equal to the angular spacing of the angularly-spaced elements, and each of the elements further comprising an axiallyfacing wall joining the downstream ends of the circumferentially-facing walls, so that at the outlet of the nozzle the gas paths alternate with the axially-facing walls around the nozzle, and the circumferentially-facing walls have axial extensions beyond the outlet of the nozzle to delay mixing of hot gases

Description

Aug. 29, 1961 D. M. BROWN 2,998,092
JET PROPULSION NOZZLE WITH NOISE REDUCING MEANS Filed Oct. 14, 1957 2 Sheets-Sheet l j j flaw .IWI W Aug. 29, 1961 D. M. BROWN 2,998,092
JET PROPULSION NOZZLE WITH NOISE REDUCING MEANS Filed Oct. 14, 1957 2 Sheets-Sheet 2 United States Patent 2,998,092 JET PROPULSION NOZZLE WITH NOISE REDUCING MEANS David Morris Brown, Alvaston, England, assignor to Rolls-Royce Limited, Derby, England, a British com- Eiled Oct. 14, 1957, Ser. No. 689,921 Claims priority, application Great Britain Oct. 18, 1956 Claims. (Cl. 181-4 1) This invention comprises improvements in or relating to jet propulsion nozzles.
This invention is concerned with jet propulsion nozzles, for example as set forth in US. Patent No. 2,982,092, issued May 2, 1961, to John Michael Storer Keen, constructed to afford from adjacent the nozzle inlet at least to the throat thereof a plurality of paths for the hot gas flowing through the nozzle, the number of such paths being selected to reduce the noise level in operation of the nozzle as compared with an equivalent nozzle of common construction which for example in the case of a convergent nozzle is a frusto-conical tube. The paths are conveniently formed by attaching elements which taper in the upstream direction, to the inner surface of a tubular wall; such elements at their downstream ends extend radially inwardly either to the nozzle axis in which case the paths have sector-shaped outlets, or only part way towards the nozzle axis in which case the periphery of the outlet appears corrugated.
According to the present invention, in a nozzle as set forth, each of the elements defining the gas paths includes a pair of circumferentially-facing walls bounding the adjacent gas paths and an axially-facing wall joining the downstream ends of the circumferentially-facing walls, so that at the outlet of the nozzle the gas paths alternate with the axially-facing walls around the nozzle, and the circumferentially-facing walls have axial extensions beyond the outlet of the nozzle to delay mixing of hot gases leaving the nozzle and air flowing into the zones behind the axially-facing walls.
Preferably the extensions extend in the radial direction outwardly beyond the perimeter of the nozzle.
Two constructions of jet propulsion nozzle according to this invention will now be described with reference to the accompanying drawings in which:
FIGURE 1 is an axial section through one construction,
FIGURE 1A is a perspective view showing the construction of one of the members 12 of FIGURE 1.
FIGURE 2 is a view in the direction of arrow 2 on FIGURE 1 and shows the section line 11 for FIGURE 1, and
FIGURES 3 and 4 are corresponding views of the second construction.
Referring to FIGURES 1 and 2, the nozzle illustrated is a convergent nozzle and comprises an outer tubular Wall -of frusto-conical form and a series of elements 12 (in this case six) attached to the inner surface of the wall 10 to define a corresponding series of trough-like paths for the hot gases leading from adjacent the inlet 10a of the nozzle to the outlet 10b. Each of the elements 12 has a pair of circumferentially-facing walls 12a bounding the trough-like gas paths and an axially-facing end wall 12!), so that the end walls 12b alternate with the ends of the trough-like paths at the outlet 10b. The elements 12 are of tetrahedron form and are of such dimensions that the total cross-sectional area for gas flow through the nozzle decreases gradually from the inlet 10a to provide a throat at the outlet 10b. Also at their downstream ends the elements 12 extend to the nozzle axis. Such a nozzle has a lower noise level as compared with an equivalent simple frusto-conical nozzle.
2,998,992 Patented Aug. 29, 1961 In order to delay mixing of the hot gas issuing from the nozzle with air flowing into the zones behind the walls 12b, the walls 12a are provided with extensions beyond the outlet 10b of the nozzle. The extension walls 120 are contained in axial planes and extend radially from the nozzle axis to beyond the perimeter of the nozzle at its outlet.
Referring now to FIGURES 3 and 4, there is shown a construction of nozzle in which the elements 12 forming the trough-like paths leading to the throat at the nozzle outlet 10b do not extend to the nozzle axis at their downstream ends. Each element has a pair of circumferentially-facing walls 12d, and inwardly-facing wall 12e joining the inner edges of the walls 12d and an axially-facing end wall 12 joining the downstream ends of the walls 12d, and 12e.
In this construction, there are provided axial extensions 12g of the walls 12d to delay mixing of the hot gas issuing from the nozzle and air entering the zones behind the walls 12]. The extension walls 12g are contained in axial planes and extend radially from the inner edges of the walls 12d to beyond the perimeter of the nozzle at its outlet.
The invention is applicable not only to convergent nozzles but also to convergent/divergent nozzles having trough-like paths running through both sections of the nozzle and in this case the extension walls will be downstream of the outlet from the divergent section of the nozzle.
It is thought that by delaying the mixing of the hot gas and the air entering the zones behind the axially-facing end walls, the drag of the nozzle will be reduced.
I claim:
1. A jet propulsion nozzle comprising a tubular outer wall and a series of angularly-spaced elements extending radially inwards from the inner surface of the tubular outer wall to define from adjacent the nozzle inlet at least to the throat thereof a plurality of paths for the hot gas flowing through the nozzle, the number of such paths being selected to reduce the noise level in operation of the nozzle, wherein each of the elements defining the gas paths includes a pair of angularly-spaced circumferentially-facing walls bounding the adjacent gas paths and an axially-facing wall joining the downstream ends of the circumferentially-facing walls, so that at the outlet of the nozzle the gas paths alternate with the axially-facing walls around the nozzle, and the circumferentially-facing walls have axial extensions beyond the outlet of the nozzle to delay mixing of hot gases leaving the nozzle and air flowing into the zones behind the axiallyfacing walls.
2. A jet propulsion nozzle according to claim 1, wherein the extensions extend in the radial direction outwardly beyond the perimeter of the nozzle.
3. A jet propulsion nozzle according to claim 1, wherein said elements at their downstream ends extend radially to the axis of the nozzle and the axial extensions are walls contained in axial planes and extend radially from the nozzle axis to beyond the perimeter of the nozzle.
4. A jet propulsion nozzle according to claim 1, wherein the said elements at their downstream ends project radially part way along towards the nozzle axis and the extensions are walls contained in axial planes and extending radially from the inner edges of the circumferentially-facing walls to beyond the perimeter of the nozzle.
5. A jet propulsion nozzle comprising a tubular outer wall and a series of angularly-spaced elements extending radially inwards from the inner surface of the tubular outer wall to define from adjacent the nozzle inlet at least to the throat thereof a plurality of paths for the hot gas flowing through the nozzle, the number of such paths being selected to reduce the noise level in operation of the nozzle, wherein each of the elements defining the gas paths includes a pair of angularly-spaced circumferentially-facing walls bounding the adjacent gas paths, the angular spacing of said pair of walls of each of the angularly-spaced elements being substantially equal to the angular spacing of the angularly-spaced elements, and each of the elements further comprising an axiallyfacing wall joining the downstream ends of the circumferentially-facing walls, so that at the outlet of the nozzle the gas paths alternate with the axially-facing walls around the nozzle, and the circumferentially-facing walls have axial extensions beyond the outlet of the nozzle to delay mixing of hot gases leaving the nozzle and air flowing into the Zones behind the axially-facing walls.
4 References Cited in the file of this patent UNITED STATES PATENTS 2,382,386 Arms Aug. 14, 1945 2,648,192 Lee Aug. 11, 1953 2,664,700 Benoit Jan. 5, 1954 2,685,936 Brenneman et a1 Aug. 10, 1954 FOREIGN PATENTS 507,357 Italy Dec. 29, 1954 OTHER REFERENCES Flight, Reduction of Jet Noise, July 8, 1955, volume 68, No. 2424, p. 57-60.
US689921A 1956-10-18 1957-10-14 Jet propulsion nozzle with noise reducing means Expired - Lifetime US2998092A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2998092X 1956-10-18

Publications (1)

Publication Number Publication Date
US2998092A true US2998092A (en) 1961-08-29

Family

ID=10919457

Family Applications (1)

Application Number Title Priority Date Filing Date
US689921A Expired - Lifetime US2998092A (en) 1956-10-18 1957-10-14 Jet propulsion nozzle with noise reducing means

Country Status (1)

Country Link
US (1) US2998092A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3436020A (en) * 1965-12-13 1969-04-01 Bertin & Cie Jet engine exhaust silencer
US3556246A (en) * 1969-06-16 1971-01-19 Rohr Corp Method and apparatus for suppressing the noise of a fan jet engine
US20090320486A1 (en) * 2008-06-26 2009-12-31 Ephraim Jeff Gutmark Duplex tab exhaust nozzle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2382386A (en) * 1942-06-29 1945-08-14 Gen Electric Gas engine exhaust flame quencher
US2648192A (en) * 1949-09-27 1953-08-11 United Aircraft Corp Variable capacity jet exhaust augmenter
US2664700A (en) * 1948-03-20 1954-01-05 Onera (Off Nat Aerospatiale) Jet propelled aircraft tail unit
US2685936A (en) * 1950-08-08 1954-08-10 Lockheed Aircraft Corp Sound reduction equipment for use with jet-propulsion units

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2382386A (en) * 1942-06-29 1945-08-14 Gen Electric Gas engine exhaust flame quencher
US2664700A (en) * 1948-03-20 1954-01-05 Onera (Off Nat Aerospatiale) Jet propelled aircraft tail unit
US2648192A (en) * 1949-09-27 1953-08-11 United Aircraft Corp Variable capacity jet exhaust augmenter
US2685936A (en) * 1950-08-08 1954-08-10 Lockheed Aircraft Corp Sound reduction equipment for use with jet-propulsion units

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3436020A (en) * 1965-12-13 1969-04-01 Bertin & Cie Jet engine exhaust silencer
US3556246A (en) * 1969-06-16 1971-01-19 Rohr Corp Method and apparatus for suppressing the noise of a fan jet engine
US20090320486A1 (en) * 2008-06-26 2009-12-31 Ephraim Jeff Gutmark Duplex tab exhaust nozzle
WO2010011381A1 (en) * 2008-06-26 2010-01-28 General Electric Company Duplex tab exhaust nozzle
GB2474377A (en) * 2008-06-26 2011-04-13 Gen Electric Duplex tab exhaust nozzle
US8087250B2 (en) 2008-06-26 2012-01-03 General Electric Company Duplex tab exhaust nozzle
GB2474377B (en) * 2008-06-26 2012-02-29 Gen Electric Duplex tab exhaust nozzle

Similar Documents

Publication Publication Date Title
US3100627A (en) By-pass gas-turbine engine
US3092205A (en) Jet noise suppressor nozzle
US3153319A (en) Jet noise suppression means
US3299632A (en) Combustion chamber for a gas turbine engine
US4543784A (en) Exhaust flow mixers and nozzles
US3048376A (en) Fluid mixing apparatus
US3065818A (en) Jet noise suppressor nozzle
US2997845A (en) Jet propulsion nozzle adjustable to give forward and reverse thrusts
US2912821A (en) Valveless inlet for pulse jet
US7310939B2 (en) Device for reducing the jet noise of a turbomachine
US2648353A (en) Duct structure for gas-turbine engines
US3393518A (en) Aircraft power plant
US4474259A (en) Internally ventilated noise suppressor for jet engine
GB750307A (en) Improvements relating to variable nozzles for gas-turbine jet propulsion engines
US3327473A (en) Engine support structure
US2987136A (en) Apparatus for reducing noise
US2998092A (en) Jet propulsion nozzle with noise reducing means
US4428191A (en) Fuel combustion in ducted flow
US3436020A (en) Jet engine exhaust silencer
US3166903A (en) Jet engine structure
US2709337A (en) Boundary layer control for the diffuser of a gas turbine
US3019605A (en) Combustion apparatus of gas turbine engines with means controlling air flow conditions in the combustion apparatus
US2841958A (en) Combustion system of the kind comprising an outer air casing containing a flame compartment for use in gas turbine engines and ram jet engines
US2955417A (en) Jet propulsion nozzle with thrust reversing means
US2951339A (en) Combustion chamber swirler