US2968442A - Turbine type foam or water nozzle for fire fighting - Google Patents

Turbine type foam or water nozzle for fire fighting Download PDF

Info

Publication number
US2968442A
US2968442A US791239A US79123959A US2968442A US 2968442 A US2968442 A US 2968442A US 791239 A US791239 A US 791239A US 79123959 A US79123959 A US 79123959A US 2968442 A US2968442 A US 2968442A
Authority
US
United States
Prior art keywords
nozzle
turbine
impeller
fluid
fire fighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US791239A
Inventor
John D Grabski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US791239A priority Critical patent/US2968442A/en
Application granted granted Critical
Publication of US2968442A publication Critical patent/US2968442A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/022Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements the rotating deflecting element being a ventilator or a fan
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/005Delivery of fire-extinguishing material using nozzles

Definitions

  • This invention relates generally to improvements in controlling the fluid flow through nozzles and the character and pattern of the fluid flow therefrom.
  • the instant invention further relates to improvements in automatic distributing nozzles designed principally for use in extinguishing fires.
  • the instant device overcomes the problem of the burdensome handling of a three-inch or larger fire hose and conventional screw type nozzle by several men, due to the burdensome size, weight and unwieldy maneuvering and manipulation of conventional types of fire hose nozzles during use.
  • the primary object of this invention is to provide means whereby the issuing fluid from the nozzle may be varied from a laminar flow stream of fluid to a clouded mist of comminuted particles of fluid and air in the form of a wide angle fog pattern.
  • a further object of this invention is to provide a turbine type of foam or water nozzle for fire fighting.
  • Another object of this invention is to provide a nozzle whereby an adjustable whirling spray may be provided.
  • Another object of this invention is to provide a variable load actuated turbine fluid flow control in a nozzle under high fluid pressure which gives an infinite variation in the stream pattern between the limits of a wide angle fog pattern and a straight stream pattern.
  • Another object of this invention is to provide a nozzle having an electrical load actuated turbine control means within the nozzle housing to vary the quantity of flow and shape of fluid flow envelope issuing from the nozzle.
  • Another object of this invention is to provide a fluid flow atomizing nozzle which may be controlled remotely from the point of fluid discharge of the nozzle.
  • Fig. l is a view, in elevation, of the nozzle and its turbine housing
  • Fig. 2 is a front end view of Fig.1;
  • Fig. 3 is a vertical longitudinal sectional view of the nozzle and turbine control mechanism
  • Fig. 4 is a sectional view taken on line 4--4 of Fig. 3 showing the gearing mechanism connecting the propeller shaft to the electrical generator;
  • Fig. 5 is a view, partly in section, taken on line 5-5 of Fig. 3 showing turbine blade bearing or support means;
  • Fig. 6 shows a view, in elevation, of the preferred embodiment of the nozzle including an electrical load for the generator to control the turbine within the nozzle to vary the shape and character of fluid flow issuing from the nozzle;
  • Fig. 7 is a section through impeller blade 15a of Fig. 3
  • the instant turbine type nozzle consists essentially of a hydraulic turbine impeller mounted in the water discharge passage and connected to a loading device such as an electrical generator, electric brake, water brake, or other variable load means.
  • the speed of the turbine may be varied by varying the load on the turbineimpeller, thus varying the angle at which the foam or water leaves the turbine blading. This permits the operator, even at remote points from the nozzle, to obtain all types of dis charge from a straight stream flow to a desired wide angle fog by simply varying the load on the turbine impeller within the open end nozzle.
  • Figs.'1 to 7 illustrate the general form of the invention which consists of a turbine nozzle housing 11 containing therein turbine shaft 12, turbine shaft spider or support means 17 secured by bolt 19 which carries shaft 12 in bearing means 21, and turbine impeller means 15 rigidly attached to the end of shaft 12 by nuts 13 and 23.
  • the other end of shaft 12 is connected by gear train means 25 to a loading device 14.
  • Loading device 14 in the embodiment illustrated employs as a variable load and turbine control device an electrical generator which, through shaft 12 and a gear train 25, imposes a load on the turbine impeller 15 to vary its speed.
  • the pressurized fluid supply flowing through fluid conducting member 20, housing 11, and member 17 impinges upon the impeller blades 15a of member 15, such that the reaction of the fluid flow against the turbine impeller 15, as controlled by the loading device 14, results in a smooth, positive and reliable control of the fluid flow through the nozzle such that the fluid issuing from the nozzle may be varied from a laminar flow stream of fluid to a clouded mist of com-minuted particles of fluid and air in the form of a wide angle fog pattern.
  • propeller shaft 12 passes through housing 11, a portion of fluid passage 46, sealing means 27, and bearing means 28.
  • Yoke 40 rotatively supports pinion gears 33 and 34.
  • Gear 36 is operably connected to shaft 48 of loading device 14 by splining or other suitable means.
  • Fig. 4 shows a sectional view of gear train 25 comprising driver gear 36, pinion gears 33 and 34 and pinion support and bearing 35 and 35a, respectively, and stationary ring gear 38.
  • Fig. 6 shows the preferred embodiment of the inven. tion in which the loading device 14 is an electric load for controlling the turbine impeller 15 (fluid impact) to vary the stream pattern issuing from the nozzle from a wide angle fog pattern to a straight stream pattern.
  • Remote control of the discharge pattern from the nozzle may be accomplished by means of an electrical load 44 connected to the output of the generator used as a loading device.
  • the electrical load 44 may be located remotely from the nozzle.
  • means 14 is not restricted to an electrical load control means, but may be a fluid motor, mechanical brake means, an electrical load means which may be in various forms, as for example, an electrical generator, electrical braking motor, electrical selsyn motor or electromagnetic braking means, a fluid dynamometer or other suitable load means well known to those skilled in the art.
  • Fig. 7 shows a section through the impeller blade 15a with accompanying velocity vectors for the pressurized supply of water entering and leaving the impeller 15 in nozzle casing 11 of Fig. 3.
  • the nozzle is capable of varying the angle of the stream of fire fighting foam or water from a straight stream to a wide angle fog or spray.
  • U max 4 x V kU max Equation 4 will determine the blade discharge angle [3.
  • U max should be the maximum speed of turbine impeller meansllS.
  • Equation 2 Equation 2 above may be written:
  • W weight of fluid flowing lbs/sec.
  • a nozzle comprising a chamber having an inlet and discharge opening, coupling means on said inlet for connecting a pressurized fluid supply to said chamber, impeller means rotatably mounted in said discharge opening, electrical generator means carried externally by said chamber, geared coupling means connected to the rotor of said generator imeans, shaft means connected between said geared coupling means and said impeller 'meansand a variable resistive load connected to the output of said generator whereby adjustment of the load on said generator controls the rotational velocity of said impeller to vary the stream pattern discharged from said nozzle between the limits of a wide angle fog pattern to a substantially straight stream pattern.

Description

. Jan. 17, 1961 D, GgABsKl 2,968,442
TURBINE TYPE FOAM OR WATER NOZZLE FOR FIRE FIGHTING Filed Feb. 4, 1959 2 Sheets-Sheet 1 INVENTOR.
Jan. 17, 1961 .1. D. GRABSKI 2,968,442
TURBINE TYPE FOAM OR WATER NOZZLE FOR FIRE FIGHTING Filed Feb. 4, 1959 2 Sheets-Sheet 2 P J J & @g
Q N H- INVENTOR.
Grabs/m y BY w K? Q g United States PatentO TURBINE TYPE FOAM R WATER NOZZLE FOR FIRE FIGHTING John D. Grabski, Springfield, Va., assignor to The United States of America as represented by the Secretary of the Army Filed Feb. 4, 1959, Ser. No. 791,239
1 Claim. (Cl. 239-381) (Granted under Title 35, U.S. Code (1952), sec. 266) The invention described herein may be manufactured and used by or for the Government for governmental purposes without payment of any royalty thereon.
This invention relates generally to improvements in controlling the fluid flow through nozzles and the character and pattern of the fluid flow therefrom.
The instant invention further relates to improvements in automatic distributing nozzles designed principally for use in extinguishing fires.
The instant device overcomes the problem of the burdensome handling of a three-inch or larger fire hose and conventional screw type nozzle by several men, due to the burdensome size, weight and unwieldy maneuvering and manipulation of conventional types of fire hose nozzles during use.
The primary object of this invention is to provide means whereby the issuing fluid from the nozzle may be varied from a laminar flow stream of fluid to a clouded mist of comminuted particles of fluid and air in the form of a wide angle fog pattern.
A further object of this invention is to provide a turbine type of foam or water nozzle for fire fighting.
Another object of this invention is to provide a nozzle whereby an adjustable whirling spray may be provided.
Another object of this invention is to provide a variable load actuated turbine fluid flow control in a nozzle under high fluid pressure which gives an infinite variation in the stream pattern between the limits of a wide angle fog pattern and a straight stream pattern.
Another object of this invention is to provide a nozzle having an electrical load actuated turbine control means within the nozzle housing to vary the quantity of flow and shape of fluid flow envelope issuing from the nozzle.
Another object of this invention is to provide a fluid flow atomizing nozzle which may be controlled remotely from the point of fluid discharge of the nozzle.
With these and other objects in view, the invention consists in certain novel features of construction and combinations and arrangements of parts, as will be more fully hereinafter described and claimed.
In the drawings:
7 Fig. l is a view, in elevation, of the nozzle and its turbine housing;
Fig. 2 is a front end view of Fig.1;
Fig. 3 is a vertical longitudinal sectional view of the nozzle and turbine control mechanism;
Fig. 4 is a sectional view taken on line 4--4 of Fig. 3 showing the gearing mechanism connecting the propeller shaft to the electrical generator;
Fig. 5 is a view, partly in section, taken on line 5-5 of Fig. 3 showing turbine blade bearing or support means;
Fig. 6 shows a view, in elevation, of the preferred embodiment of the nozzle including an electrical load for the generator to control the turbine within the nozzle to vary the shape and character of fluid flow issuing from the nozzle; and
Fig. 7 is a section through impeller blade 15a of Fig. 3
showing vectors representing the velocity of fluid entering and leaving blade 15a.
The instant turbine type nozzle consists essentially of a hydraulic turbine impeller mounted in the water discharge passage and connected to a loading device such as an electrical generator, electric brake, water brake, or other variable load means. The speed of the turbine may be varied by varying the load on the turbineimpeller, thus varying the angle at which the foam or water leaves the turbine blading. This permits the operator, even at remote points from the nozzle, to obtain all types of dis charge from a straight stream flow to a desired wide angle fog by simply varying the load on the turbine impeller within the open end nozzle.
Referring to the drawings, Figs.'1 to 7 illustrate the general form of the invention which consists of a turbine nozzle housing 11 containing therein turbine shaft 12, turbine shaft spider or support means 17 secured by bolt 19 which carries shaft 12 in bearing means 21, and turbine impeller means 15 rigidly attached to the end of shaft 12 by nuts 13 and 23. The other end of shaft 12 is connected by gear train means 25 to a loading device 14.
Loading device 14 in the embodiment illustrated employs as a variable load and turbine control device an electrical generator which, through shaft 12 and a gear train 25, imposes a load on the turbine impeller 15 to vary its speed. The pressurized fluid supply flowing through fluid conducting member 20, housing 11, and member 17 impinges upon the impeller blades 15a of member 15, such that the reaction of the fluid flow against the turbine impeller 15, as controlled by the loading device 14, results in a smooth, positive and reliable control of the fluid flow through the nozzle such that the fluid issuing from the nozzle may be varied from a laminar flow stream of fluid to a clouded mist of com-minuted particles of fluid and air in the form of a wide angle fog pattern. v
Referring to Fig. 3, propeller shaft 12 passes through housing 11, a portion of fluid passage 46, sealing means 27, and bearing means 28. Yoke 40 rotatively supports pinion gears 33 and 34. Gear 36 is operably connected to shaft 48 of loading device 14 by splining or other suitable means.
Fig. 4 shows a sectional view of gear train 25 comprising driver gear 36, pinion gears 33 and 34 and pinion support and bearing 35 and 35a, respectively, and stationary ring gear 38.
Fig. 6 shows the preferred embodiment of the inven. tion in which the loading device 14 is an electric load for controlling the turbine impeller 15 (fluid impact) to vary the stream pattern issuing from the nozzle from a wide angle fog pattern to a straight stream pattern. Remote control of the discharge pattern from the nozzle may be accomplished by means of an electrical load 44 connected to the output of the generator used as a loading device. The electrical load 44 may be located remotely from the nozzle. However, it is to be well understood that means 14 is not restricted to an electrical load control means, but may be a fluid motor, mechanical brake means, an electrical load means which may be in various forms, as for example, an electrical generator, electrical braking motor, electrical selsyn motor or electromagnetic braking means, a fluid dynamometer or other suitable load means well known to those skilled in the art.
Fig. 7 shows a section through the impeller blade 15a with accompanying velocity vectors for the pressurized supply of water entering and leaving the impeller 15 in nozzle casing 11 of Fig. 3. The nozzle is capable of varying the angle of the stream of fire fighting foam or water from a straight stream to a wide angle fog or spray. If
the turbine is held 'fast so that it cannot rotate, the blades or vanes act simply as guide vanes and the stream is dispersed in a wide angle spray or fog pattern, the angle of the pattern with the axis .of the nozzle being determined by the discharge angle '18 of Fig. 7. "It 'isvto be noted that with a constant absolute entrance velocity V there will be only one condition or value of blade velocity U at which the 'fluid will enter the turbine tangent to the blade at entrance,'that is, when a=oc' or when V iscoincident with the tangent to the blade as shown in Fig. 7 resulting in the relative discharge velocity V being tangent to the blade. However, the relatively long fluid passage between the blades will-straighten the stream-and insure that the direction of the relative discharge velocity V jis essentially tangent'to the discharge edge of the blade. Due to variation in theblade velocity U withthe radius of the turbinewheel the blades 15a should be made so that the blade angles 'of 15a vary with the radius of turbine'wheel '15.
The velocity vectors and vectorial angles of Fig. 7, showing a section of one form of impeller which may be used, are defined by reference symbols as follows:
While a particular configuration of impeller has been shown, it is to be understood that other forms of impellers may be used. The novelty of the present invention resides in the manner of controlling the speed of rotation of the impeller by imposing a load thereon which may be varied uniformly over a considerable range varying from maximum speed (U) to standstill or zero rotation corresponding to a discharge pattern varying respectively, from a wide angle fog-like spray pattern to a straight stream. It is within the ability of those skilled in the impeller art to design a particular impeller to yield a desired spray pattern or a variety of patterns resulting from control of the impeller rotational speed by means of the load control herein described, and therefore this description will not attempt to describe the steps or theory involved in the design of any p"rticular type of impeller. For the particular impeller design shown, however, the absolute velocity of fluid leaving turbine blade 15a, assuming K=1, is given by the formula:
It is apparent from Equation 1 that with V and 18 constant, the magnitude of V is a function of the blade velocity U. It now remains to .be shown that the discharge angle '7 is a function of U assuming V and e as constants.
Again assuming K=1 It is evident that 'y is a function of U. If U=0, tan 'y=ctn ,3. As U increases, tan 7 decreases and if fl-is properly selected so that at some realistic value U=U max,
U max x V U max sin {3 and y will be zero and the 'fiuid will leave the turbine in a direction parallel to the axis of rotation of impeller 15.
ctn 6:
U max 4 x V kU max Equation 4 will determine the blade discharge angle [3. U max should be the maximum speed of turbine impeller meansllS.
Equation 2 above may be written:
W=weight of fluid flowing lbs/sec.
g=acceleration of gravity V =magnitude of fluid velocity, ft./sec.
:R=means flow radius of impeller blade 15a, in feet F=force on the blade-15a, in pounds T=torque, ft.-lbs.
While there has been described what is at present considered to be the preferred embodiment of this invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the invention.
I claim:
A nozzle comprising a chamber having an inlet and discharge opening, coupling means on said inlet for connecting a pressurized fluid supply to said chamber, impeller means rotatably mounted in said discharge opening, electrical generator means carried externally by said chamber, geared coupling means connected to the rotor of said generator imeans, shaft means connected between said geared coupling means and said impeller 'meansand a variable resistive load connected to the output of said generator whereby adjustment of the load on said generator controls the rotational velocity of said impeller to vary the stream pattern discharged from said nozzle between the limits of a wide angle fog pattern to a substantially straight stream pattern.
References Cited in the file of this patent UNITED STATES PATENTS 1,305,803 Irwin June 3, .1919 1,729,144 Banning Sept. 24, 1.929 2,767,024 Swan Oct. 16, 1956
US791239A 1959-02-04 1959-02-04 Turbine type foam or water nozzle for fire fighting Expired - Lifetime US2968442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US791239A US2968442A (en) 1959-02-04 1959-02-04 Turbine type foam or water nozzle for fire fighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US791239A US2968442A (en) 1959-02-04 1959-02-04 Turbine type foam or water nozzle for fire fighting

Publications (1)

Publication Number Publication Date
US2968442A true US2968442A (en) 1961-01-17

Family

ID=25153080

Family Applications (1)

Application Number Title Priority Date Filing Date
US791239A Expired - Lifetime US2968442A (en) 1959-02-04 1959-02-04 Turbine type foam or water nozzle for fire fighting

Country Status (1)

Country Link
US (1) US2968442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146953A (en) * 1963-04-06 1964-09-01 Komanns Heinrich Josef Spray spout for use in a dishwashing machine
US5129121A (en) * 1989-09-18 1992-07-14 Gideon Gelman Turbine driven rotating brush

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1305803A (en) * 1919-06-03 irwin
US1729144A (en) * 1925-10-24 1929-09-24 Jr Thomas A Banning Meter and the like
US2767024A (en) * 1953-09-01 1956-10-16 Harold A Swan Sprinkler head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1305803A (en) * 1919-06-03 irwin
US1729144A (en) * 1925-10-24 1929-09-24 Jr Thomas A Banning Meter and the like
US2767024A (en) * 1953-09-01 1956-10-16 Harold A Swan Sprinkler head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146953A (en) * 1963-04-06 1964-09-01 Komanns Heinrich Josef Spray spout for use in a dishwashing machine
US5129121A (en) * 1989-09-18 1992-07-14 Gideon Gelman Turbine driven rotating brush

Similar Documents

Publication Publication Date Title
US4976319A (en) Water driven fan for firefighting
US2144035A (en) Fan blast transformer
US2853227A (en) Supersonic compressor
US3677503A (en) Reaction--impulse--counterrotating--airfoil
US3780812A (en) Method and apparatus for generating fire-fighting foam
US2968442A (en) Turbine type foam or water nozzle for fire fighting
US5125797A (en) Portable water driven high velocity fan
US2396130A (en) Air jet propelled helicopter
US3393745A (en) Water-powered fire-fighting foam generator
US3879152A (en) Turbine
DK144936B (en) WATER TREATED APPLICATION FOR FIRE-EXTINGUISHING FOAM
US2988327A (en) Emergency power systems for aircraft auxiliary apparatus
US2048847A (en) Liquid spray device
US4040577A (en) Lockwood airfoil used in conjunction with man transport device
US3054417A (en) Apparatus for mixing liquids in a constant proportion
US3942911A (en) Bladed rotors
US3620306A (en) Means for foam generation
US2933140A (en) Selector valve
US2807137A (en) Jet deflecting device for jet propulsion units
US3275198A (en) Air stream driven pumping system
US3142179A (en) Apparatus responsive to fluid flow
US8453999B2 (en) High capacity water misting gun
US2780174A (en) Pump and power plant assembly
US2020788A (en) Torpedo wake reducing device
US2827762A (en) Constant speed reaction motor