US2935396A - Cellularized light metal - Google Patents

Cellularized light metal Download PDF

Info

Publication number
US2935396A
US2935396A US644608A US64460857A US2935396A US 2935396 A US2935396 A US 2935396A US 644608 A US644608 A US 644608A US 64460857 A US64460857 A US 64460857A US 2935396 A US2935396 A US 2935396A
Authority
US
United States
Prior art keywords
metal
cellularized
carbonate
magnesium
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US644608A
Inventor
John F Pashak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Priority to US644608A priority Critical patent/US2935396A/en
Application granted granted Critical
Publication of US2935396A publication Critical patent/US2935396A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4981Utilizing transitory attached element or associated separate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]

Definitions

  • Theinvention relates to cellularized light metal, such as magnesium and the magnesium-base alloys and alumitruth and the aluminum-base alloys. It more particularly concerns a method by which the metal is given a cellular structure having lightness and strength.
  • the invention is based upon the discovery that'by ad mixing a carbonate of one of the second group metals cadmium, magnesium, with a suitable particulate solid form of the metal to be cellularized, die expressing the mixture at a temperature at which the metal particles undergo a welding together during the die expression, and
  • the invention then consists of the method of cellularizing the aforesaid light metal herein fully described and particularly pointed out in the claims, the annexed drawing illustrating an embodiment of'the invention.
  • the cellu- 'lar product can be formed in situ in hollow. objects,'as
  • V 1 1 The particulated metal and pulverulent carbonate are mixed together in suitable proportions whereby to at least partially coat the metal particles with carbonate particles which are dust like and more or less adhere to the metal particles.
  • the amount of carbonate to use is not sharply critical and may range from about 0.5 to 20 percent of the weight of the metal, a preferred amount being about 5 percent in the case of a carbonate of magnesium or 15 percent in the case of cadmium carbonate.
  • magnesium carbonate for example
  • 'MiXr ing can be etfected in various ways, as for example, by tumbling the metal and carbonate particles together in a closed vessel, such as a barrel which is turned end over end. Mixing, in which the particles are tumbled about in a vessel revolving at 50 r.p.m., can be accomplished satisfactorily in 15 minutes but other mixing times ma be used.
  • the mixture of metal and carbonate particles is changed into the container of an extrusion press and die. expressed at a temperature somewhat lower, e.g. 25 to 350 Fahrenheit degrees lower, than that which would .be suitable for the extrusion of the metal alone-as under stood in the metal extrusion art.
  • the temperature of thechargein the container may be as low as 300 F. Itis desirable to avoid extrusion temperatures at which excessive composition of the carbonate occurs, and for 'this reason; it is preferable to extrude the charge at as low a'temperature as practicable without incurring the use of excessive pressures which tend to produce excessive wear on the extrusion dies and other parts of the extrusionapparatus.
  • the extrusion or die expressing operation welds the metal particles together into a rigid body consisting of a matrix of metal in which the carbonate particlesjariedis ⁇ persed as more or less discrete-masses enveloped-in'the 1 In the drawing the single figure is a fragmentary view breadth, and. thickness does not exceed 10 times any other.
  • Usable metal particles are those which pass through a No. 10 standard sieve and of which not more than 10 percent pass through aNo. 325 mesh standard sieve.
  • Preferred particles have a size such as'to pass through a No. 20 standard sieve with not more than 10 percent passing through a No. 100 standard sieve.
  • Various carbonates of the aforesaid second group metal ' may be used in pulverulent form, for example: magnesite (MgCO nesquehonite (MgCO .3H O), hydromagnesite (3MgCO .Mg(OH) .3H O), lansfordite aniline", (MgCO .Mg(OH) .3H O), cadmium carbonate KCdCO Of these the heavy basic carbonate, hydromagnesiteis preferred. These materials'are normally-of metal.
  • the die expressed product so-obtained is heat treated at a sufficiently elevated temperature to bring aboutlelea'jse of gas from the carbonate in the interstices of the metal matrix thus bringing about gas bubble formation, ltlicitfmperature being high enough to permit plastic deformation of the metal whereby the gas generated produces expansion of the metal matrix into a cellular form.
  • the cellular product so-obtained has a lower-density than that of the metal of which it is formed, theireductio'ri' in density depending upon the nature ofthecarbonate, metal, and operating conditions particularly the temperature of the die expression and heat treating steps.
  • the cell size in general ranges from 0.01 .to 20 mm. in diameter with the majority of them in size .range of0.03 to 1.0 mm. in diameter.
  • the density may range from about 0.5 to 1.1 grams per cc.
  • cellularized product strongly holds nails and screws.
  • a 10 penny nail in cellularized magnesium-base alloy, a 10 penny nailrequires a pull of 157 pounds per inch of penetration for withdrawal. This may be j 7 1 pared to a withdrawal pull of 132 pounds per inch and 70 pounds per inch of penetration of the same nail in yellow pine and white pine, respectively, perpendicular to the grain.
  • a 1 /2 inch No. 10 wood screw requires a pull of 1200 pounds for withdrawal per inch of penetration into cellularized magnesium-base alloy. In comparison the withdrawal pull of a similar screw from white pine is 320 pounds per inch of penetration.
  • the cellularized product formed in accordance with the invention possesses an unusually low thermal conductivity being, in the case of magnesium-base alloy, about to of that of the alloy itself.
  • the alloy cellularized had the nominal composition of 6 percent zinc, 0.6 percent zirconium, balance magnesium.
  • the alloy was in the form of more or less spherical particles most .of which passed through a 10 mesh sieve and were retained on a 100 mesh sieve.
  • the particles were mixed with percent by Weight of hydromagnesite having a specific gravity of 2.16.
  • Mixing was efiected by placing the metal and carbonate particles in a tumbling barrel for 30 minutes.
  • the resulting mixture was charged into a 4 inch diameter cylindrical container of an ext'rusion press fitted with a die having a 1 inch diameter opening. The charge was heated to about 440 F. and the die to about 430 F.
  • the die expressed object then expands in situ filling the mold cavity thereby taking the configuration of the mold cavity surface.
  • aluminum-base alloy and magnesium-base alloy means alloys of these metals in which the aluminum and the magnesium respectively eonstitut eat least 80 percent or the weight of the alloy.
  • the method of producing a cellularized form of a light metal selected from the group consisting of aluminum, magnesium and the alloys having one of these metals as a base which comprises commingling particles of the metal and a particulated carbonate of a metal selected from the group consisting of cadmium and magnesium in the proportions of from 0.5 to 15 percent of the weight of the metal particles, die expressing the soformed mixture at a temperature of 25 to 350 Fahrenheit degrees lower than a temperature suitable for die expressing the metal alone, and then heat treating the soobtained product at a temperature and for a time sufiicient to decompose the carbonate therein thereby to generate gas in situ causing the product to become cellularized.
  • Alloy Composition Particle Carbo- Per- Temp., Redue- Time, Temp., Gram/cc.
  • i 1 The minus sign followed by a number means that the particles pass thru a standard sieve or that number; plus sign followed by a number means that the particles are retained on a standard sieve of that number.
  • Nos. 12 and 13 metal particles are sawdust.
  • MgC 0a is nesquehonite.
  • Reduction is the ratio of the cross-sectional area of the extrusion press container compared to the area of the die opening.
  • the die expressed product before heat treatment may be given a shape having the configuration of but smaller size than the hollow to be filled.
  • the size of the shaped die expressed product to be used as a filling can be calculated from the density change expected on submitting the die expressed product to heat treatment.
  • the so-shaped and sized die expressed product is placed in the space to be filled and then heat treated in situ to effect the desired expansion and cellularization.
  • the cellularized product can be shaped by forming it in situ in a die or mold cavity having the form desired. In this case, as in filling a hollow object, the die expressed product before heat treatment, and somewhat smaller in volume than the mold cavity, is placed in the mold cavity and heat treated in situ. As a result of the heat treatment, 75 2,784,125

Description

May 3, 1960 J. F. PASHAK CELLULARIZED LIGHT METAL Filed March 7. 1957 I N V EN TOR. John E Pasha/r W #Ma HT 7' ORNE Y8 .Ufli s m Perm Q 2,935,396 CELLULARIZED LIGHT METAL John F. Pashak, Linwood, Mich., assignor to The Dow Chemical Company, Midland, Mich., a corporation of Delaware Application March 7, 1957, Serial No. 644,608
. 8 Claims. (Cl. 75 -20) Theinvention relates to cellularized light metal, such as magnesium and the magnesium-base alloys and alumitruth and the aluminum-base alloys. It more particularly concerns a method by which the metal is given a cellular structure having lightness and strength.
Insofar as I am aware, no method is commercially available by which cellularized articles of the light metals magnesium, aluminum and the alloys having these metals as a base may be produced without melting. Accordingly, it is the principal object of the invention to provide a method fulfilling this need.
I The invention is based upon the discovery that'by ad mixing a carbonate of one of the second group metals cadmium, magnesium, with a suitable particulate solid form of the metal to be cellularized, die expressing the mixture at a temperature at which the metal particles undergo a welding together during the die expression, and
then heat treatingthe die expressed product at a temfor stiffening purposes, by suitably heat treating the die expressed product placed within the object.
The invention then consists of the method of cellularizing the aforesaid light metal herein fully described and particularly pointed out in the claims, the annexed drawing illustrating an embodiment of'the invention.
If desired, the cellu- 'lar product can be formed in situ in hollow. objects,'as
"ice
2 a a a a finely divided state, for example, in particles smaller than about 50 microns. A preferred range of size is from 0.1 to 0.3 micron. V 1 1 The particulated metal and pulverulent carbonate are mixed together in suitable proportions whereby to at least partially coat the metal particles with carbonate particles which are dust like and more or less adhere to the metal particles. The amount of carbonate to use is not sharply critical and may range from about 0.5 to 20 percent of the weight of the metal, a preferred amount being about 5 percent in the case of a carbonate of magnesium or 15 percent in the case of cadmium carbonate. Generally satisfactory results are had with from about 2 to 8 percent of magnesium carbonate, for example; 'MiXr ing can be etfected in various ways, as for example, by tumbling the metal and carbonate particles together in a closed vessel, such as a barrel which is turned end over end. Mixing, in which the particles are tumbled about in a vessel revolving at 50 r.p.m., can be accomplished satisfactorily in 15 minutes but other mixing times ma be used.
The mixture of metal and carbonate particles is changed into the container of an extrusion press and die. expressed at a temperature somewhat lower, e.g. 25 to 350 Fahrenheit degrees lower, than that which would .be suitable for the extrusion of the metal alone-as under stood in the metal extrusion art. In the case of magnesium-base alloys, for example, the temperature of thechargein the container may be as low as 300 F. Itis desirable to avoid extrusion temperatures at which excessive composition of the carbonate occurs, and for 'this reason; it is preferable to extrude the charge at as low a'temperature as practicable without incurring the use of excessive pressures which tend to produce excessive wear on the extrusion dies and other parts of the extrusionapparatus. Satisfactory extrusion results can 'be obtained over a wide range of temperature as for example 400 to 850 F. The extrusion or die expressing operation welds the metal particles together into a rigid body consisting of a matrix of metal in which the carbonate particlesjariedis} persed as more or less discrete-masses enveloped-in'the 1 In the drawing the single figure is a fragmentary view breadth, and. thickness does not exceed 10 times any other.' Usable metal particles are those which pass through a No. 10 standard sieve and of which not more than 10 percent pass through aNo. 325 mesh standard sieve. Preferred particles have a size such as'to pass through a No. 20 standard sieve with not more than 10 percent passing through a No. 100 standard sieve. An
,7 assortment of sizes of particle is desirable, uniformity of size preferably is to be avoided. 1 Various carbonates of the aforesaid second group metal 'may be used in pulverulent form, for example: magnesite (MgCO nesquehonite (MgCO .3H O), hydromagnesite (3MgCO .Mg(OH) .3H O), lansfordite aniline", (MgCO .Mg(OH) .3H O), cadmium carbonate KCdCO Of these the heavy basic carbonate, hydromagnesiteis preferred. These materials'are normally-of metal.
The die expressed product so-obtained is heat treated at a sufficiently elevated temperature to bring aboutlelea'jse of gas from the carbonate in the interstices of the metal matrix thus bringing about gas bubble formation, ltlicitfmperature being high enough to permit plastic deformation of the metal whereby the gas generated produces expansion of the metal matrix into a cellular form. t
The cellular product so-obtained has a lower-density than that of the metal of which it is formed, theireductio'ri' in density depending upon the nature ofthecarbonate, metal, and operating conditions particularly the temperature of the die expression and heat treating steps. The cell size in general ranges from 0.01 .to 20 mm. in diameter with the majority of them in size .range of0.03 to 1.0 mm. in diameter. In the case of magnesium; base alloys, such as those containing up to 6 percent of zinc with =0I"Wltl10lli up to 6 percent of aluminum, and up to 0.8 percent of dissolved zirconium, except in alloys containing aluminum, the balance being magnesium, the density may range from about 0.5 to 1.1 grams per cc. and compressive strengths of from about 1800 to 4500 p.s.i. may be obtained with tensile strengths of 1800 to 2100 p.s.i. Shear strengths may range from 2000 to: 4000 p.s.i. and impact strength, by the Charpy test, from 0.25 to 0.60 foot pound. In addition 'to-the desirable properties of lightness in weight coupled with strength, the cellularized product strongly holds nails and screws. For example, in cellularized magnesium-base alloy, a 10 penny nailrequires a pull of 157 pounds per inch of penetration for withdrawal. This may be j 7 1 pared to a withdrawal pull of 132 pounds per inch and 70 pounds per inch of penetration of the same nail in yellow pine and white pine, respectively, perpendicular to the grain. A 1 /2 inch No. 10 wood screw requires a pull of 1200 pounds for withdrawal per inch of penetration into cellularized magnesium-base alloy. In comparison the withdrawal pull of a similar screw from white pine is 320 pounds per inch of penetration. The cellularized product formed in accordance with the invention possesses an unusually low thermal conductivity being, in the case of magnesium-base alloy, about to of that of the alloy itself.
Referring to the figure in the drawing, the alloy cellularized had the nominal composition of 6 percent zinc, 0.6 percent zirconium, balance magnesium. The alloy was in the form of more or less spherical particles most .of which passed through a 10 mesh sieve and were retained on a 100 mesh sieve. The particles were mixed with percent by Weight of hydromagnesite having a specific gravity of 2.16. Mixing was efiected by placing the metal and carbonate particles in a tumbling barrel for 30 minutes. The resulting mixture was charged into a 4 inch diameter cylindrical container of an ext'rusion press fitted with a die having a 1 inch diameter opening. The charge was heated to about 440 F. and the die to about 430 F. From 450 to 500 tons push was applied to the ram of the press, thereby die expressing the mixture into a 1 inch diameter bar. This was then heat treated for 0.5 hour at 960 F. as a result of which the bar became cellularized with the structure shown and its density was 0.71 gram per cc.
The following tabulated data are illustrative of operating conditions and densities obtainable in practicing the invention.
the die expressed object then expands in situ filling the mold cavity thereby taking the configuration of the mold cavity surface.
As used in the specification and claims, the terms aluminum-base alloy and magnesium-base alloy means alloys of these metals in which the aluminum and the magnesium respectively eonstitut eat least 80 percent or the weight of the alloy.
I claim:
1. The method of producing a cellularized form of a light metal selected from the group consisting of aluminum, magnesium and the alloys having one of these metals as a base which comprises commingling particles of the metal and a particulated carbonate of a metal selected from the group consisting of cadmium and magnesium in the proportions of from 0.5 to 15 percent of the weight of the metal particles, die expressing the soformed mixture at a temperature of 25 to 350 Fahrenheit degrees lower than a temperature suitable for die expressing the metal alone, and then heat treating the soobtained product at a temperature and for a time sufiicient to decompose the carbonate therein thereby to generate gas in situ causing the product to become cellularized.
2. The method according to claim 1 in which the light metal is a magnesium-base alloy.
3. The method according to claim 1 in which the light metal is an aluminum-base alloy.
4. The method according to claim 2 in which the particulated carbonate is nesquehonite.
5. The method according to claim 2 in which the particulated carbonate is cadmium carbonate.
6. The method according to claim 2 in which the carbonate is hydromagnesite.
Table Composition of Mix Extrusion Heat Treatment Example Product No. Density,
Alloy Composition Particle Carbo- Per- Temp., Redue- Time, Temp., Gram/cc.
Size 1 nate cent F. tion Hours F.
20 +100 OdCOs 10 700 0:1 0.25 1050 1.1 20 +100 CdCOa 15 700 9:1 1. 0 960 0.78 10 +10 MgCos 5 500 9:1 0. 5 960 0.68 10 +100 higC Os 5 440 9:1 0. 5 980 0. 57 100 MgC O3 5 360 9: 1 0.5 960 0. 82 10 +100 MgCOz 5 400 36:1 0.5 960 0.73 10 +100 MgCOs 1 400 0.5 960 0.83 20 MgCOa 5 400 9:1 0.25 1000 0. 85 20 MgCOa 5 400 9:1 1. 0 1000 1! 0. 9 20 MgCOa 5 400 9:1 1.0 1000 2 1. 0 20 MgC 0a 5 650 31:1 0. 5 980 2.14 1.?i)%1l\gig, 0.25% Cr, 0.7% Si, 20 MgCO; 5 625 31:1 0.5 980 1.86
8. 1.6% Cu, 2.5% Mg, 0.3% Cr, 20 MgOOa 5 625 31:1 0.5 980 1. 43
5.6% Zn, bal. Al.
i 1 The minus sign followed by a number means that the particles pass thru a standard sieve or that number; plus sign followed by a number means that the particles are retained on a standard sieve of that number.
9 Estimates.
Nos. 1-11, inc., metal particles substantially spherical, formed by atomizing.
Nos. 12 and 13 metal particles are sawdust. MgC 0a is nesquehonite.
Reduction is the ratio of the cross-sectional area of the extrusion press container compared to the area of the die opening.
In using the cellularized product as a filling, as for example, for stifiening a hollow article, the die expressed product before heat treatment may be given a shape having the configuration of but smaller size than the hollow to be filled. The size of the shaped die expressed product to be used as a filling can be calculated from the density change expected on submitting the die expressed product to heat treatment. The so-shaped and sized die expressed product is placed in the space to be filled and then heat treated in situ to effect the desired expansion and cellularization. If desired, the cellularized product can be shaped by forming it in situ in a die or mold cavity having the form desired. In this case, as in filling a hollow object, the die expressed product before heat treatment, and somewhat smaller in volume than the mold cavity, is placed in the mold cavity and heat treated in situ. As a result of the heat treatment, 75 2,784,125
References Cited in the file of this patent UNITED STATES PATENTS 2,434,775 Sosnick Jan. 20, 1948 2,464,517 Kuntz Mar. 15, 1949 2,517,223 Mantell Aug. 1, 1950 2,553,016 Sosnick May 15, 1951 2,659,137 Leontis et a1. Nov. 17, 1953 2,671,955 Grubel et a1. Mar. 16, 1954 2,721,378 Oliver et a1 Oct. 25, 1955 2,751,289 Elliott June 19, 1956 la ke Ma 195.1

Claims (1)

1. THE METHOD OF PRODUCING A CELLULARIZED FORM OF A LIGHT METAL SELECTED FROM THE GROUP CONSISTING OF ALUMINUM, MAGNESIUM AND THE ALLOYS HAVING ONE OF THESE METALS AS A BASE WHICH COMPRISES COMMINGLING PARTICLES OF THE METAL AND A PARTICULATED CARBONATE OF A METAL SELECTED FROM THE GROUP CONSISTING OF CADMIUM AND MAGNESIUM IN THE PROPORTIONS OF FROM 0.5 TO 15 PERCENT OF THE WEIGHT OF THE METAL PARTICLES, DIE EXPRESSING THE SOFORMED MIXTURE AT A TEMPERATURE OF 25 TO 350 FAHRENHEIT DEGREES LOWER THAN A TEMPERATURE SUITABLE FOR DIE EXPRESSING THE METAL ALONE, AND THEN HEAT TREATING THE SOOBTAINED PRODUCT AT A TEMPERATURE AND FOR A TIME SUFFICIENT TO DECOMPOSE THE CARBONATE THEREIN THEREBY TO GENERATE GAS IN SITU CAUSING THE PRODUCT TO BECOME CELLULARIZED.
US644608A 1957-03-07 1957-03-07 Cellularized light metal Expired - Lifetime US2935396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US644608A US2935396A (en) 1957-03-07 1957-03-07 Cellularized light metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US644608A US2935396A (en) 1957-03-07 1957-03-07 Cellularized light metal

Publications (1)

Publication Number Publication Date
US2935396A true US2935396A (en) 1960-05-03

Family

ID=24585613

Family Applications (1)

Application Number Title Priority Date Filing Date
US644608A Expired - Lifetime US2935396A (en) 1957-03-07 1957-03-07 Cellularized light metal

Country Status (1)

Country Link
US (1) US2935396A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2983597A (en) * 1959-06-11 1961-05-09 Lor Corp Metal foam and method for making
US3087807A (en) * 1959-12-04 1963-04-30 United Aircraft Corp Method of making foamed metal
US3210166A (en) * 1959-03-24 1965-10-05 Minnesota Mining & Mfg Cast porous metal
US3300296A (en) * 1963-07-31 1967-01-24 American Can Co Method of producing a lightweight foamed metal
US3301672A (en) * 1962-08-03 1967-01-31 St Joseph Lead Co Solid-state preparation of foamed lead
US5564064A (en) * 1995-02-03 1996-10-08 Mcdonnell Douglas Corporation Integral porous-core metal bodies and in situ method of manufacture thereof
US5992500A (en) * 1996-04-16 1999-11-30 Cmi International, Inc. Method of making a casting having a low density insert
US6135542A (en) * 1996-11-21 2000-10-24 Wilhelm Karmann Gmbh Car body part, particularly a contoured frame member
US20020127425A1 (en) * 1998-04-09 2002-09-12 Mepura Metallpulvergesellschaft Mbh Ranshofen Process for producing foamed metal moldings and foamed metal moldings
US20070264152A1 (en) * 2004-05-29 2007-11-15 The University Of Liverpool Porous Metallic Materials and Method of Production Thereof
DE102009020004A1 (en) 2009-05-05 2010-11-11 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Powder metallurgical process for the production of metal foam
US10359603B1 (en) 2013-08-21 2019-07-23 The Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama In Huntsville Lightweight adaptive metal cooled mirrors

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2434775A (en) * 1943-05-08 1948-01-20 Sosnick Benjamin Process for making foamlike mass of metal
US2464517A (en) * 1943-05-13 1949-03-15 Callite Tungsten Corp Method of making porous metallic bodies
US2517223A (en) * 1948-08-23 1950-08-01 Allied Chem & Dye Corp Preparation of internally oxidized catalysts
US2553016A (en) * 1947-12-26 1951-05-15 Sosnick Benjamin Foamlike metal
US2659137A (en) * 1950-08-16 1953-11-17 Dow Chemical Co Composite alloy
US2671955A (en) * 1950-12-14 1954-03-16 Mallory & Co Inc P R Composite metal-ceramic body and method of making the same
US2721378A (en) * 1951-06-11 1955-10-25 Birmingham Small Arms Co Ltd Process for manufacture of porous structure
US2751289A (en) * 1951-10-08 1956-06-19 Bjorksten Res Lab Method of producing metal foam
US2784125A (en) * 1954-05-19 1957-03-05 Armco Steel Corp Wrought stainless steel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2434775A (en) * 1943-05-08 1948-01-20 Sosnick Benjamin Process for making foamlike mass of metal
US2464517A (en) * 1943-05-13 1949-03-15 Callite Tungsten Corp Method of making porous metallic bodies
US2553016A (en) * 1947-12-26 1951-05-15 Sosnick Benjamin Foamlike metal
US2517223A (en) * 1948-08-23 1950-08-01 Allied Chem & Dye Corp Preparation of internally oxidized catalysts
US2659137A (en) * 1950-08-16 1953-11-17 Dow Chemical Co Composite alloy
US2671955A (en) * 1950-12-14 1954-03-16 Mallory & Co Inc P R Composite metal-ceramic body and method of making the same
US2721378A (en) * 1951-06-11 1955-10-25 Birmingham Small Arms Co Ltd Process for manufacture of porous structure
US2751289A (en) * 1951-10-08 1956-06-19 Bjorksten Res Lab Method of producing metal foam
US2784125A (en) * 1954-05-19 1957-03-05 Armco Steel Corp Wrought stainless steel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210166A (en) * 1959-03-24 1965-10-05 Minnesota Mining & Mfg Cast porous metal
US2983597A (en) * 1959-06-11 1961-05-09 Lor Corp Metal foam and method for making
US3087807A (en) * 1959-12-04 1963-04-30 United Aircraft Corp Method of making foamed metal
US3301672A (en) * 1962-08-03 1967-01-31 St Joseph Lead Co Solid-state preparation of foamed lead
US3300296A (en) * 1963-07-31 1967-01-24 American Can Co Method of producing a lightweight foamed metal
US5564064A (en) * 1995-02-03 1996-10-08 Mcdonnell Douglas Corporation Integral porous-core metal bodies and in situ method of manufacture thereof
US5992500A (en) * 1996-04-16 1999-11-30 Cmi International, Inc. Method of making a casting having a low density insert
US6135542A (en) * 1996-11-21 2000-10-24 Wilhelm Karmann Gmbh Car body part, particularly a contoured frame member
US20020127425A1 (en) * 1998-04-09 2002-09-12 Mepura Metallpulvergesellschaft Mbh Ranshofen Process for producing foamed metal moldings and foamed metal moldings
US20070264152A1 (en) * 2004-05-29 2007-11-15 The University Of Liverpool Porous Metallic Materials and Method of Production Thereof
US8968641B2 (en) * 2004-05-29 2015-03-03 The University Of Liverpool Porous metallic materials and method of production thereof
DE102009020004A1 (en) 2009-05-05 2010-11-11 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Powder metallurgical process for the production of metal foam
WO2010127668A2 (en) 2009-05-05 2010-11-11 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Powder-metallurgical method for producing metal foam
US10359603B1 (en) 2013-08-21 2019-07-23 The Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama In Huntsville Lightweight adaptive metal cooled mirrors

Similar Documents

Publication Publication Date Title
US2935396A (en) Cellularized light metal
US3087807A (en) Method of making foamed metal
US2751289A (en) Method of producing metal foam
US4463058A (en) Silicon carbide whisker composites
US3066391A (en) Powder metallurgy processes and products
US2983597A (en) Metal foam and method for making
US5577546A (en) Particulate feedstock for metal injection molding
US3147110A (en) Die-expressed article of aluminum-base alloy and method of making
JPH08505659A (en) Production of particle-stabilized porous metal
JP3823024B2 (en) Foamable aluminum alloy and method for producing aluminum foam from foamable aluminum alloy
US4617979A (en) Method for manufacture of cast articles of fiber-reinforced aluminum composite
US3119684A (en) Article of magnesium-base alloy and method of making
US2553016A (en) Foamlike metal
US3119725A (en) Die-expressed article of magnesium-base alloy and method of making
US2659131A (en) Composite alloy
US2659132A (en) Composite alloy
WO2020020381A1 (en) Preparation method for low density metal matrix composite
RU2542044C1 (en) Method to produce strengthened aluminium-based alloys
US2659133A (en) Composite alloy
DE2135444B2 (en) Process for the production of porous, lightweight molded bodies based on light metal
US3166415A (en) Magnesium-based alloys
US2659130A (en) Composite alloy
GB2200976A (en) Shotgun pellets
US3177573A (en) Method of die-expressing an aluminum-base alloy
EP0666783B2 (en) Particulate feedstock for metal injection molding