US2920457A - Refrigeration system with vortex means - Google Patents

Refrigeration system with vortex means Download PDF

Info

Publication number
US2920457A
US2920457A US718841A US71884158A US2920457A US 2920457 A US2920457 A US 2920457A US 718841 A US718841 A US 718841A US 71884158 A US71884158 A US 71884158A US 2920457 A US2920457 A US 2920457A
Authority
US
United States
Prior art keywords
refrigerant
tube
vortex tube
refrigeration system
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US718841A
Inventor
Jr James L Bartlett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Garrett Corp
Original Assignee
Garrett Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Garrett Corp filed Critical Garrett Corp
Priority to US718841A priority Critical patent/US2920457A/en
Application granted granted Critical
Publication of US2920457A publication Critical patent/US2920457A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect

Definitions

  • a' conventional vapor cycle refrigeration system utilizes a compresor to increase the pressure of the gaseous refrigerant withdrawn from the evaporator. verted to a liquid in a condenser by transferring heat to the surrounding atmosphere or other coolant, after which the liquid refrigerant is passed through an expansion valve or other throttling or expansion device where it is partly converted to a low temperature gas.
  • the mixture of liquid and gas at relatively low temperature and pressure, then flows through the evaporator where the refrigerant absorbs heat from the medium being cooled, and the heated refrigerant, now completely gaseous,'flows from the evaporator back to the compressor where its pressure is again increased and the cycle repeated.
  • the size of the condenser required in the above-described vapor cycle refrigeration system is dependent, of course, on many variables, such as the temperature of the atmosphere or other coolant surrounding the condenser, the refrigerant used and the system pressures.
  • the choice of refrigerant as well as the pressures used in the system can be varied to meet difierent conditions, but the temperature of the surrounding atmosphere or other medium is usually fixed.
  • This invention would solve the problem of increasing the temperature difference between the compressed refrigerant and the surrounding atmosphere by utilizing a vortex tube in place of the condenser normally employed in such systems.
  • the vortex tube is preferably of the type having a closed end hot tube so that none of the refrigerant is lost to the surrounding atmosphere.
  • Such a vortex tube is more particularly described and claimed in the co-pending application of Frederick H. Green, Serial No. 171,147, filed June 29, 1950, now Patent No. 2,839,898, and entitled Multiple Vortex Tube Generator Cooling Unit.
  • This type of vortex tube operates without loss of fluid and with the temperature of the fluid flowing in the hot tube above the temperature of the fluid admitted to the tube. This temperature difierence between the inlet temperature of the gas and the temperature of the gas in the hot tube results in a greater temperature diiferential between the temperature of the refrigerant and the surrounding coolant, thus permitting a decrease in the amount of heat exchange surface required.
  • the principal object of this invention is to provide a novel vapor cycle refrigeration system -which utilizes a vortex tube in place of the conventional condenser.
  • a still further object of this invention- is to provide a novel vapor cycle refrigeration system which is very compact and is capable of high efficiency over a wide range of temperature of the coolant employed.
  • a suitable compressor unit 10 in this instance illustrated as being a motor-driven centrifugal compressor, which compresses the gaseous refrigerantwithdrawn from the evaporator 22.
  • the discharge of the compressorltl is connecied to the inlet 12 of a vortex tube 13 by means of a conduit 11.
  • the vortex tube '13 has a hot tube 14 extending from one end of the inlet 12 and a cold tube or outlet 20 extending from the opposite side of the inlet.
  • the inlet 12 should be designed so that the compressed gaseous refrigerant is caused-to flow in a helical path into the interior of the hot tube 14, andto return out the cold tube 20, as required in operating a vortex tube of the aforementioned type-
  • the operation of such a vortex tube ismore fully. explained in the above-referenced copending application.
  • the extreme end 15 or the hot tube 14 is closed by any desired means, such as an end cap or the like, in order to prevent the escape of refrigerant from the system.
  • the hot tube 15 may also be provided with suitable fins 16 in order to increase the surface available for transferring heat from the refrigerant in the hot tube to the surrounding atmosphere or other coolant. In some cases it may be desirable to provide artificial means, such as a fan or pump, not shown, for increasing the flow of coolant over the surface of the hot tube 14.
  • the cold outlet 20 of the vortex tube is connected, by means of a conduit 21, to the evaporator 22 of the refrigeration system.
  • the lower end of the cold outlet 20 serves as the liquid receiver for the system, although it may be desirable in some systems to provide a separate receiver.
  • An expansion valve 23 or other flow restricting means is mounted in the conduit 21 for controlling the expansion of the liquid refrigerant into a low pressure gas and liquid mixture.
  • the discharge of the evaporator 22 is connected to the inlet of the compressor 10 by means of the conduit 25 so that the gaseous refrigerant discharge from the evaporator may be recompressed by the compressor 10.
  • a small motor-driven pump or fan 24 is shown for circulating the medium which is being refrigerated over the coils of the evaporator 22.
  • the fan of course, is unnecessary in many refrigeration systems, such as those utilized in household refrigerators.
  • a vortex tube may be operated with the end of the hot tube completely closed, and the surface of the hot tube will act as a heat exchanger to transfer to the surrounding coolant heat from the gaseous fluid flowing in a helical or vortical path in the hot tube.
  • the temperature of the refrigerant vapor flowing at the inner periphery of the hot tube will be much higher than its inlet temperature, and thus the transfer of heat from the compressed gaseous refrigerant to the surrounding coolant will be improved due to the greater tempera- "ice 3 ture difference between the gas and the coolant, thus permitting a reduction in the heat transfer area required in order to supply a desired condensing capacity.
  • the use of the vortex tube also permits the system to operate efficiently over a wider range of temperatures of the coolant.
  • a vapor cycle refrigeration system comprising:
  • a vapor cycle refrigeration system comprising: a compressor means; the discharge of said compressor means being connected to the inlet of a vortex tube, said vortex tube having a closed end hot tube, the cold outlet of said vortex tube being connected to an evaporator; and the outlet of said evaporator being connected to the inlet of said compressor.
  • a vapor cycle refrigeration system comprising: a compressor means for increasing the pressure of the refrigerant; the discharge of said compressor being connected to the inlet of a vortex tube, said vortex tube having a closed end hot tube; passage means for connecting the cold outlet of said vortex tube to an evaporator; flow restricting means disposed in said passage means for re- A ⁇ stricting the flow therein and the outlet of said evaporator being connected to the inlet of said compressor means.
  • a refrigeration system comprising: compressor means for increasing the pressure of a gaseous refrigerant; the discharge of said compressor being connected to the inlet of a vortex tube, said vortex tube having a closed end hot tube; cooling means disposed on said hot tube; the cold outlet of said vortex tube being connected to an evaporator; and said evaporator being connected to the inlet of said compressor.
  • a refrigeration system comprising: compressor means for increasing the pressure of a gaseous refrigerant; the discharge of said compressor being connected to the inlet of a vortex tube, said vortex tube having a closed end hot tube; cooling means disposed on said,hot tube; the cold outlet of said vortex tube being connected to an evaporator; and means for controlling the flow from said cold outlet to said evaporator.
  • a refrigeration system having compressor means for increasing the pressure of a refrigerant, expansion means for said refrigerant, and evaporator means for said refrigerant; condensing means for said refrigerant comprising a vortex tube, the inlet of said vortex tube being connected to the discharge of said compressor means and the outlet of said vortex tube being connected to said expansion means.

Description

Jan. 12, 1960 BARTLETT, JR 2,920,457
REFRIGERATION SYSTEM WITH VORTEX MEANS Filed March 5, 1958 INVENTORI JAMES L. BARTLETEJR.
U i ed W8 P m REFRIGERATION SYSTEM WITH VORTEX MEANS James L. Bartlett, IL, Rolling Hills, Calif., assignor to The Garrett Corporation, Los Angeles, Calif a corporation of California This invention pertains to refrigeration systems and more particularly to a vapor cycle refrigeration system which utilizes a vortex tube as a heat exchange means for dissipating heat to the surrounding atmosphere.
As is well known, a' conventional vapor cycle refrigeration system utilizes a compresor to increase the pressure of the gaseous refrigerant withdrawn from the evaporator. verted to a liquid in a condenser by transferring heat to the surrounding atmosphere or other coolant, after which the liquid refrigerant is passed through an expansion valve or other throttling or expansion device where it is partly converted to a low temperature gas. The mixture of liquid and gas, at relatively low temperature and pressure, then flows through the evaporator where the refrigerant absorbs heat from the medium being cooled, and the heated refrigerant, now completely gaseous,'flows from the evaporator back to the compressor where its pressure is again increased and the cycle repeated.
The size of the condenser required in the above-described vapor cycle refrigeration system is dependent, of course, on many variables, such as the temperature of the atmosphere or other coolant surrounding the condenser, the refrigerant used and the system pressures. The choice of refrigerant as well as the pressures used in the system can be varied to meet difierent conditions, but the temperature of the surrounding atmosphere or other medium is usually fixed. Thus, in order to further decrease the size of the condenser after the refrigerant and system pressures have been chosen, it would be necessary to increase the temperature diflerence between the compressed refrigerant and the surrounding atmosphere or to increase the coolant flow. This is often not feasible in the conventional type of vapor cycle system employing a condenser, and thus the size of the condenser can only be reduced to a certain minimum.
This invention would solve the problem of increasing the temperature difference between the compressed refrigerant and the surrounding atmosphere by utilizing a vortex tube in place of the condenser normally employed in such systems. The vortex tube is preferably of the type having a closed end hot tube so that none of the refrigerant is lost to the surrounding atmosphere. Such a vortex tube is more particularly described and claimed in the co-pending application of Frederick H. Green, Serial No. 171,147, filed June 29, 1950, now Patent No. 2,839,898, and entitled Multiple Vortex Tube Generator Cooling Unit. This type of vortex tube operates without loss of fluid and with the temperature of the fluid flowing in the hot tube above the temperature of the fluid admitted to the tube. This temperature difierence between the inlet temperature of the gas and the temperature of the gas in the hot tube results in a greater temperature diiferential between the temperature of the refrigerant and the surrounding coolant, thus permitting a decrease in the amount of heat exchange surface required.
The compressed refrigerant is then con- 2,920,457 Patented Jan. 12, 1960 Accordingly, the principal object of this invention is to provide a novel vapor cycle refrigeration system -which utilizes a vortex tube in place of the conventional condenser.
A still further object of this invention-is to provide a novel vapor cycle refrigeration system which is very compact and is capable of high efficiency over a wide range of temperature of the coolant employed.
These and further objects and advantages of this invention will be more easily understood by those skilled in the art to which it pertains, from the following detailed description of a preferred embodiment when ,taken in conjunction with the attached drawing. The drawing shows a schematic arrangement of a vapor cycle refrigeration system embodying the principles of this invention.
Referring to the drawing, there is shown a suitable compressor unit 10, in this instance illustrated as being a motor-driven centrifugal compressor, which compresses the gaseous refrigerantwithdrawn from the evaporator 22. The discharge of the compressorltl is connecied to the inlet 12 of a vortex tube 13 by means of a conduit 11. The vortex tube '13 has a hot tube 14 extending from one end of the inlet 12 and a cold tube or outlet 20 extending from the opposite side of the inlet. The inlet 12,.of course, should be designed so that the compressed gaseous refrigerant is caused-to flow in a helical path into the interior of the hot tube 14, andto return out the cold tube 20, as required in operating a vortex tube of the aforementioned type- The operation of such a vortex tube ismore fully. explained in the above-referenced copending application. The extreme end 15 or the hot tube 14 is closed by any desired means, such as an end cap or the like, in order to prevent the escape of refrigerant from the system. The hot tube 15 may also be provided with suitable fins 16 in order to increase the surface available for transferring heat from the refrigerant in the hot tube to the surrounding atmosphere or other coolant. In some cases it may be desirable to provide artificial means, such as a fan or pump, not shown, for increasing the flow of coolant over the surface of the hot tube 14.
The cold outlet 20 of the vortex tube is connected, by means of a conduit 21, to the evaporator 22 of the refrigeration system. The lower end of the cold outlet 20 serves as the liquid receiver for the system, although it may be desirable in some systems to provide a separate receiver. An expansion valve 23 or other flow restricting means is mounted in the conduit 21 for controlling the expansion of the liquid refrigerant into a low pressure gas and liquid mixture.
The discharge of the evaporator 22 is connected to the inlet of the compressor 10 by means of the conduit 25 so that the gaseous refrigerant discharge from the evaporator may be recompressed by the compressor 10. A small motor-driven pump or fan 24 is shown for circulating the medium which is being refrigerated over the coils of the evaporator 22. The fan, of course, is unnecessary in many refrigeration systems, such as those utilized in household refrigerators.
As explained in the above-reference-co-pending application, a vortex tube may be operated with the end of the hot tube completely closed, and the surface of the hot tube will act as a heat exchanger to transfer to the surrounding coolant heat from the gaseous fluid flowing in a helical or vortical path in the hot tube.
The temperature of the refrigerant vapor flowing at the inner periphery of the hot tube will be much higher than its inlet temperature, and thus the transfer of heat from the compressed gaseous refrigerant to the surrounding coolant will be improved due to the greater tempera- "ice 3 ture difference between the gas and the coolant, thus permitting a reduction in the heat transfer area required in order to supply a desired condensing capacity. In addition to decreasing the size of the over-all system, the use of the vortex tube also permits the system to operate efficiently over a wider range of temperatures of the coolant.
While but one embodiment of this invention has been described in detail, many additional modifications and improvements will occur to those skilled in the art within its broad spirit and scope.
I claim:
1. A vapor cycle refrigeration system comprising:
means for increasing the pressure of a refrigerant; a vortex tube; the inlet of said vortex tube being connected to the discharge of said pressure increasing means; the cold outlet of said vortex tube being connected to the evaporator of the refrigeration system; and the outlet of said evaporator being connected to the inlet of said pressure increasing means.
2. A vapor cycle refrigeration system comprising: a compressor means; the discharge of said compressor means being connected to the inlet of a vortex tube, said vortex tube having a closed end hot tube, the cold outlet of said vortex tube being connected to an evaporator; and the outlet of said evaporator being connected to the inlet of said compressor.
3. A vapor cycle refrigeration system comprising: a compressor means for increasing the pressure of the refrigerant; the discharge of said compressor being connected to the inlet of a vortex tube, said vortex tube having a closed end hot tube; passage means for connecting the cold outlet of said vortex tube to an evaporator; flow restricting means disposed in said passage means for re- A} stricting the flow therein and the outlet of said evaporator being connected to the inlet of said compressor means.
4. A refrigeration system comprising: compressor means for increasing the pressure of a gaseous refrigerant; the discharge of said compressor being connected to the inlet of a vortex tube, said vortex tube having a closed end hot tube; cooling means disposed on said hot tube; the cold outlet of said vortex tube being connected to an evaporator; and said evaporator being connected to the inlet of said compressor.
5. A refrigeration system comprising: compressor means for increasing the pressure of a gaseous refrigerant; the discharge of said compressor being connected to the inlet of a vortex tube, said vortex tube having a closed end hot tube; cooling means disposed on said,hot tube; the cold outlet of said vortex tube being connected to an evaporator; and means for controlling the flow from said cold outlet to said evaporator.
6. In a refrigeration system having compressor means for increasing the pressure of a refrigerant, expansion means for said refrigerant, and evaporator means for said refrigerant; condensing means for said refrigerant comprising a vortex tube, the inlet of said vortex tube being connected to the discharge of said compressor means and the outlet of said vortex tube being connected to said expansion means.
References Cited in the file of this patent UNITED STATES PATENTS 1,952,281 Ranque Mar. 27, 1934 2,111,904 Schlumbohm Mar. 22, 1938 2,295,983 Williams Sept. 15, 1942 2,683,972 Atkinson July 20, 1954 2,790,310 Green Apr. 30, 1957
US718841A 1958-03-03 1958-03-03 Refrigeration system with vortex means Expired - Lifetime US2920457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US718841A US2920457A (en) 1958-03-03 1958-03-03 Refrigeration system with vortex means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US718841A US2920457A (en) 1958-03-03 1958-03-03 Refrigeration system with vortex means

Publications (1)

Publication Number Publication Date
US2920457A true US2920457A (en) 1960-01-12

Family

ID=24887769

Family Applications (1)

Application Number Title Priority Date Filing Date
US718841A Expired - Lifetime US2920457A (en) 1958-03-03 1958-03-03 Refrigeration system with vortex means

Country Status (1)

Country Link
US (1) US2920457A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287924A (en) * 1965-09-02 1966-11-29 Gen Motors Corp Refrigerating apparatus
US3982378A (en) * 1975-03-13 1976-09-28 Sohre Joachim S Energy conversion device
US4594084A (en) * 1985-07-15 1986-06-10 Astrl Corporation Air conditioning system
US4646524A (en) * 1984-03-23 1987-03-03 Jantec Co., Ltd. Method of intensifying heat in reversed Rankine cycle and reversed Rankine cycle apparatus for conducting the same
US5205126A (en) * 1992-04-15 1993-04-27 Schnurr Brian F Vehicular cooling apparatus
WO2000003186A1 (en) * 1998-07-10 2000-01-20 Universal Vortex, Inc. Vortex pilot gas heater
US6250086B1 (en) * 2000-03-03 2001-06-26 Vortex Aircon, Inc. High efficiency refrigeration system
US6289679B1 (en) * 1999-07-13 2001-09-18 Universal Vortex, Inc Non-freeze enhancement in the vortex tube
US6293108B1 (en) * 2000-06-30 2001-09-25 Vortex Aircon Regenerative refrigeration system with mixed refrigerants
US6401463B1 (en) 2000-11-29 2002-06-11 Marconi Communications, Inc. Cooling and heating system for an equipment enclosure using a vortex tube
US6430937B2 (en) 2000-03-03 2002-08-13 Vai Holdings, Llc Vortex generator to recover performance loss of a refrigeration system
US6494935B2 (en) 2000-12-14 2002-12-17 Vortex Aircon, Inc. Vortex generator
US6507282B1 (en) 2000-01-14 2003-01-14 The Holmes Group, Inc. Filter monitoring system using a thermistor
US6507125B1 (en) * 1999-06-11 2003-01-14 Young Mi Choi High efficiency energy converting apparatus and method thereof
US20040103671A1 (en) * 2002-11-22 2004-06-03 Mituhiro Kanao Refrigerator having vortex type condenser
US20060150643A1 (en) * 2005-01-13 2006-07-13 Shaun Sullivan Refrigerator
US20080271465A1 (en) * 2006-10-18 2008-11-06 Cessna Aircraft Company System and method for controlling an environment in an aircraft using a vortex cooler
US20080303283A1 (en) * 2007-06-06 2008-12-11 Greencentaire, Llc Energy transfer apparatus and methods
US20090200005A1 (en) * 2008-02-09 2009-08-13 Sullivan Shaun E Energy transfer tube apparatus, systems, and methods
US20110108246A1 (en) * 2009-05-01 2011-05-12 Xergy Incorporated Tubular System for Electrochemical Compressor
US20150121940A1 (en) * 2013-11-05 2015-05-07 Lg Electronics Inc. Refrigeration cycle of refrigerator
US10358046B2 (en) * 2017-04-05 2019-07-23 Ford Global Technologies, Llc Vehicle thermal management system with vortex tube
RU192448U1 (en) * 2018-12-29 2019-09-17 Александр Иванович Андреев Swirl evaporator
US10427538B2 (en) 2017-04-05 2019-10-01 Ford Global Technologies, Llc Vehicle thermal management system with vortex tube
US11149991B2 (en) * 2019-02-15 2021-10-19 Yang Yoon Seon Heating and cooling apparatus having moisture removal function for testing electrical characteristic of semiconductor element using probe system
EP4004459A4 (en) * 2019-07-22 2023-08-02 Nex Flow Air Products Corp. Vortex tube cooling system and method of using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1952281A (en) * 1931-12-12 1934-03-27 Giration Des Fluides Sarl Method and apparatus for obtaining from alpha fluid under pressure two currents of fluids at different temperatures
US2111904A (en) * 1931-11-25 1938-03-22 Schlumbohm Peter Refrigerating system
US2295983A (en) * 1940-10-15 1942-09-15 Chrysler Corp Air conditioning system
US2683972A (en) * 1951-10-30 1954-07-20 Phillips Petroleum Co Recovery of natural gas condensate
US2790310A (en) * 1954-11-23 1957-04-30 Garrett Corp Axial flow vortex tube mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2111904A (en) * 1931-11-25 1938-03-22 Schlumbohm Peter Refrigerating system
US1952281A (en) * 1931-12-12 1934-03-27 Giration Des Fluides Sarl Method and apparatus for obtaining from alpha fluid under pressure two currents of fluids at different temperatures
US2295983A (en) * 1940-10-15 1942-09-15 Chrysler Corp Air conditioning system
US2683972A (en) * 1951-10-30 1954-07-20 Phillips Petroleum Co Recovery of natural gas condensate
US2790310A (en) * 1954-11-23 1957-04-30 Garrett Corp Axial flow vortex tube mechanism

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287924A (en) * 1965-09-02 1966-11-29 Gen Motors Corp Refrigerating apparatus
US3982378A (en) * 1975-03-13 1976-09-28 Sohre Joachim S Energy conversion device
US4646524A (en) * 1984-03-23 1987-03-03 Jantec Co., Ltd. Method of intensifying heat in reversed Rankine cycle and reversed Rankine cycle apparatus for conducting the same
US4594084A (en) * 1985-07-15 1986-06-10 Astrl Corporation Air conditioning system
US5205126A (en) * 1992-04-15 1993-04-27 Schnurr Brian F Vehicular cooling apparatus
WO2000003186A1 (en) * 1998-07-10 2000-01-20 Universal Vortex, Inc. Vortex pilot gas heater
US6082116A (en) * 1998-07-10 2000-07-04 Universal Vortex, Inc. Vortex pilot gas heater
US6507125B1 (en) * 1999-06-11 2003-01-14 Young Mi Choi High efficiency energy converting apparatus and method thereof
US6289679B1 (en) * 1999-07-13 2001-09-18 Universal Vortex, Inc Non-freeze enhancement in the vortex tube
US6507282B1 (en) 2000-01-14 2003-01-14 The Holmes Group, Inc. Filter monitoring system using a thermistor
US6425249B1 (en) * 2000-03-03 2002-07-30 Vai Holdings, Llc High efficiency refrigeration system
US6430937B2 (en) 2000-03-03 2002-08-13 Vai Holdings, Llc Vortex generator to recover performance loss of a refrigeration system
US6250086B1 (en) * 2000-03-03 2001-06-26 Vortex Aircon, Inc. High efficiency refrigeration system
US6293108B1 (en) * 2000-06-30 2001-09-25 Vortex Aircon Regenerative refrigeration system with mixed refrigerants
US6401463B1 (en) 2000-11-29 2002-06-11 Marconi Communications, Inc. Cooling and heating system for an equipment enclosure using a vortex tube
US6494935B2 (en) 2000-12-14 2002-12-17 Vortex Aircon, Inc. Vortex generator
US20040103671A1 (en) * 2002-11-22 2004-06-03 Mituhiro Kanao Refrigerator having vortex type condenser
US7565808B2 (en) 2005-01-13 2009-07-28 Greencentaire, Llc Refrigerator
US20060150643A1 (en) * 2005-01-13 2006-07-13 Shaun Sullivan Refrigerator
US8099966B2 (en) * 2006-10-18 2012-01-24 Textron Innovations Inc. System and method for controlling an environment in an aircraft using a vortex cooler
US20080271465A1 (en) * 2006-10-18 2008-11-06 Cessna Aircraft Company System and method for controlling an environment in an aircraft using a vortex cooler
US20080303283A1 (en) * 2007-06-06 2008-12-11 Greencentaire, Llc Energy transfer apparatus and methods
US20080302108A1 (en) * 2007-06-06 2008-12-11 Sullivan Shaun E Energy transfer apparatus and methods
US7654095B2 (en) 2007-06-06 2010-02-02 Greencentaire, Llc Energy transfer apparatus and methods
US7726135B2 (en) 2007-06-06 2010-06-01 Greencentaire, Llc Energy transfer apparatus and methods
US20090200005A1 (en) * 2008-02-09 2009-08-13 Sullivan Shaun E Energy transfer tube apparatus, systems, and methods
US20110108246A1 (en) * 2009-05-01 2011-05-12 Xergy Incorporated Tubular System for Electrochemical Compressor
US8640492B2 (en) * 2009-05-01 2014-02-04 Xergy Inc Tubular system for electrochemical compressor
US20150121940A1 (en) * 2013-11-05 2015-05-07 Lg Electronics Inc. Refrigeration cycle of refrigerator
US10655894B2 (en) * 2013-11-05 2020-05-19 Lg Electronics Inc. Refrigeration cycle of refrigerator
US10358046B2 (en) * 2017-04-05 2019-07-23 Ford Global Technologies, Llc Vehicle thermal management system with vortex tube
US10427538B2 (en) 2017-04-05 2019-10-01 Ford Global Technologies, Llc Vehicle thermal management system with vortex tube
RU192448U1 (en) * 2018-12-29 2019-09-17 Александр Иванович Андреев Swirl evaporator
US11149991B2 (en) * 2019-02-15 2021-10-19 Yang Yoon Seon Heating and cooling apparatus having moisture removal function for testing electrical characteristic of semiconductor element using probe system
EP4004459A4 (en) * 2019-07-22 2023-08-02 Nex Flow Air Products Corp. Vortex tube cooling system and method of using same

Similar Documents

Publication Publication Date Title
US2920457A (en) Refrigeration system with vortex means
US5170639A (en) Cascade refrigeration system
US3153442A (en) Heating and air conditioning apparatus
CN108626902A (en) The Trans-critical cycle system of the supercooling with enhancing for high environment temperature
US4599873A (en) Apparatus for maximizing refrigeration capacity
US2359595A (en) Refrigerating system
US6658888B2 (en) Method for increasing efficiency of a vapor compression system by compressor cooling
US4569207A (en) Heat pump heating and cooling system
US2181354A (en) Condenser for refrigerators
JPS58129172A (en) Cooling facility
US2819592A (en) Accumulator heat exchanger
US3400555A (en) Refrigeration system employing heat actuated compressor
US4394816A (en) Heat pump system
US2720756A (en) Heat pump, including fixed flow control means
US3006155A (en) Heat pump including charge modifying means
US2120185A (en) Refrigerating apparatus
US2272093A (en) Refrigerating apparatus
US2979917A (en) Cooling arrangement for hermetically sealed refrigerant compressor
WO2002025179A1 (en) Refrigeration cycle
US3425238A (en) Turbine driven compressor arrangement
US4981023A (en) Air conditioning and heat pump system
US2959937A (en) Refrigeration system for air conditioning units
US3266258A (en) Method of increasing a vapour compressing refrigerating machine cooling effect
JP2003336918A (en) Cooling device
US2188893A (en) Refrigerating apparatus