US2869360A - Method of and apparatus for - Google Patents

Method of and apparatus for Download PDF

Info

Publication number
US2869360A
US2869360A US2869360DA US2869360A US 2869360 A US2869360 A US 2869360A US 2869360D A US2869360D A US 2869360DA US 2869360 A US2869360 A US 2869360A
Authority
US
United States
Prior art keywords
cup
milling
moisture
shaft
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Publication date
Application granted granted Critical
Publication of US2869360A publication Critical patent/US2869360A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/10Starch-containing substances, e.g. dough
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content

Definitions

  • the ⁇ present invention relates in general to a method of and apparatus for treating materials; more particularly, it deals with the construction of a mill for comminuting materials to small particle size and with the use of the mill in processing materials of vegetable or animal origin.
  • An object of the invention isV to provide, for such uses as have been mentioned as well as others Vthat Willoccur to those vversed in the art, a laboratorymill capable of very quickly reducing to small particle size a given sample of material and, when the occasion arises, forming homogeneous blends or slurries of ⁇ semiliquid consistency.
  • Another object is to provide a unit ofthe character indicated which is capable of performingthe desired milling and/or blending operation under conditions which prevent loss of any portion of the test material to the atmosphere, as is very important in making accurate quantitative analyses in the laboratory.
  • Still another object is to provide a device of the character-indicated which, if necessary, is capable of performing the desired mixing or blending operations under controlled conditions of'time and/or temperature.
  • a further object is to provide a laboratory mill which is extremely reliable in operation; which is sturdy Vand long lived; which is versatile ⁇ as regards its ability to processa wide variety of'materials and its ability tomeet a wide range of vconditions reilecting the varying laboratory needs in'experim'ental work; whichis'smple and 2,869,360 Patented Jan. 20, 1959 convenient to use; and which requires little or no maintenance.
  • Yet another object is to provide a laboratory mill capable of processing solid or semisolid materials of either fluent or non-fluent character and which by its action generates in the material being treated heat which is useful in carrying out certain experimental tests on the material; a feature of the invention resides in the prof vision of means for adding additional heat when such will facilitate the procedure, or removing heat from the test Vspecimen during the milling operation when such is desirable or necessary to the test procedure.
  • a further object is to provide an apparatus for rapidly extracting moisture from seeds, grains, legumes and other moisture-containing materials (or extracting other heatvolatile liquids from such materials) for the purpose of determining the moisture or liquid content thereof or for other purposes that Vwill be self-evident to those versed in the art.
  • Still another object is to provide an improved method of and apparatus for making rapid determinations of the moisture content of grains or like substances.
  • Fig. l is a side elevational View of apparatus for extracting moisture from vegetable material or the like for the purpose of determining moisture content, which apparatus includesrny improved milling unit; for purposes of illustration certain parts are broken away and others are shown in cross section;
  • Fig. 2 is a fragmentary cross-sectional view taken along the line 2-2 of Fig. l;
  • Fig. 3 is a sectional elevation of a portion of my milling unit illustrating a modified form thereof
  • Pig. 4 is a sectional elevation of a portion of my milling unit illustrating another modified form thereof.
  • Fig. 5 is an enlarged cross section of the milling blade taken along the line 5--5 of Fig. 4 in the direction of the arrows.
  • the numeral 10 indicates an upright post supported on a suitable base 12 having feet i4. At the upper end of the post there is a rigid mount lr6 carrying ⁇ an electric motor 18, the latter being positioned so that its shaft 2l) is vertical. On the opposite side of the post from the motor the mount 16 has an integral arm 16a extending laterally and terminating in a headpiece tb.
  • a vertical shaft 22 is journaled in the headpiece, being carried by suitablebearings 24.
  • a pulley 26 connected via belt 2S to a pulley 30 on the motor shaft 2! whereby the motor is drivingly connected to shaft 22.
  • mount 16 extends upwardly between opposite sides of the belt, and secured thereto by means of screws 32 or otherwise is a guard or shroud 34 which covers the belt and pulleys on the top, with its depending lange v34a extending downwardly around the margin of the belt.
  • the headpiece 16h is generally cylindrical and at its I lower end is cut out as shown at 16C, forming opposed legs 16d. ⁇ To these legs a horizontal disc-shaped cover plate 36 is secured in any suitable fashion as, for example, by means of -bolts 33 (see Fig. 24).
  • the cover plate is centrally apertured and shaft 22 has an extension 22a of reduced diameter extending downwardly through this aperture.
  • a milling or cutter blade 40 is secured to the lower end of the shaft being thus spaced below the cover .3 t v36.
  • Onthe underside of the cover is cemented or otherwise bonded aA centrally apertured vcircular gasket 42, the purpose of which will be made clear presently.
  • I For use with my laboratory mill, I provide a generally "cylindrical cup 44'for receiving a sample of the material to be comminuted.
  • the upper rim of the cup is adapted ⁇ to be clamped against the cover platein seating and sealing engagement with the gasket 4Z-by the following means:
  • Extending laterally from the post is an arm 46 having at its outer end an internally threaded hole in which is 'received the externally threaded member 4S.
  • the latter has a knob 50at its lower end to permit turning it by hand, ⁇ and at its upper end it has a circular rest ⁇ xor seat 52 to Vengage the bottom of the cup.
  • Arm 46 is carried by a collar 46a encircling post 10 to turn thereon, and the collar is supported by means of a screw 54 received in a tapped holein the post so that it extends radially outward therefrom as shownin Fig. 1.
  • the portion of the collar resting on the screw is a 90 segment cut out of the underside of the collar to form stop shoulders 46b and 46c limiting the swinging of arm 46 to a 90 arc about the post as an axis.
  • cup 44 is clamped securely between the rest 52 and the underside of cover 36, its rim being seated against the gasket 42 and the cup being concentric with shaft 22a.
  • knob 50 By turning knob 50 in a direction to relieve the clamping pressure, arm 46 can 'be swung to a position out of register with the bottom of the cup, whereupon the cup can be withdrawn downwardly from cover 36 to remove the cutter blade 40 therefrom.
  • the cover plate 36 may be provided with a depending annular heating jacket or cooling jacket as shown in Figs. 1 and 3, or the jacketing may be omitted as shown in Fig. 4 where no such temperature control is required.
  • the cover plate is provided with a depending annular iiange 36a which encircles the margin of the cup to hold same coaxial with the shaft 22a.
  • the cover plate also is provided with aiilling tube 56 having a removable cap 58.
  • Shaft 22a is driven at high speed-preferably of the order of 14,000 to 16,000 R.V l.A M.-and in a typical milling operation after the shaft has come up to full speed, a measured quantity of the grain or other material to be milled is introduced into the cup gradually through the filling tube in order to avoid throwing a heavy load suddenly onto the motor.
  • the cutter blade 40 has sharpened edges and its direction of travel (as indicated by the arrow) is such as to propel the material downwardly toward the cup bottom 44a; material below the blade travels back upwardly along the walls of the cup past the tips of the blade (see Fig. 4), so there is continuous circulation of the material within the cup.
  • the cutting or comminuting action takes place, of course, principally in the region near the tips of the blade.
  • this switch is of known construction, and is so connected in the motor supply circuit (not shown) as to cut off the motor when the preset time has elapsed, thereby to terminate the milling operation.
  • the construction shown in Fig. 3 is essentially like that of Fig. 4 except that the cover plate 36 is larger in diameter and has a depending annular cooling jacket 60 secured to its marginal portion by means of screws 62 or otherwise.
  • the cooling jacket comprises a hollow housing having a cylindrical inner wall 60a, a concentric outer wall 60b, a top wall 60C, and a bottom wall 60d.
  • inner wall V60a is shown spaced slightly from the exterior wall of cup 44, but it should be understood that in order to obtain a good heat exchange between the two, they should lit together as snugly as is possible without interferring with the removal of the cup when arm 46 is swung away from the bottom of the cup, as has been explained hereinbefore.
  • the jacket serves always to center cup 44 relative to shaft 22a during insertion and removal of the cup and of course maintains it coaxial with the shaft during milling. Accordingly, it is unnecessary that the underside of cover 36 have a central locating recess like that provided in the Fig. 4 embodiment for receiving the rim of the cup. However the central portion of cover 36 in Fig. 3 can be similarly recessed if desired, in which case the gasket 42 will be positioned in the recess.
  • the outer wall 60b of the jacket has nipples to which fluid inlet and outlet lines 64 and 66 are connected; by this means water or any other suitable coolant 68 may be continuously circulated through the hollow interior of the jacket during the milling operation. Obviously, should it be desired to supply additional heat to the cup during milling, steam or other heated uid can be supplied to the jacket in place of the coolant. v
  • Fig. 1 An alternative way of heating the cup during milling is shown in Fig. 1 and this construction is preferred where heating is desired.
  • the cover plate 36 has a depending annular jacket 70 which is fundamentally like the jacket 60 already described except that it has no inlet or outlet for fluid and insid is provided with an electrical resistance heating coil 72 -betwe'en the inner and Iouter walls. Electrical current for energizing the cod 1s supplied through the conductors 74.
  • a rtemperature sensing element 76 extends into the upper portion of the cup through an aperture in the cover plate 36 and actuates a 'gauge 78 to indicate the ltemperature within the cup.
  • thermostatic control 80 of conventional character for turning the current to the resistance heater 72 on or olf as may be needed in order to maintain the temperature within the cup at a selected value; the thermostatic control has an adjustment knob 82 for regulating the temperature at which the cup is to be maintained.V
  • a'vapor discharge tube 84 extending to a condenser of -any suitable character, this having for convenience been illustrated in the drawing as a jacket 86 surrounding a portion of the tube with a cooling water inlet 88 and a 'water outlet 90 connected thereto; the condensed vapor may be collected in a conventional volumetric measuring device, for example, the graduate 92.
  • v p v p
  • tube 84 and the associated condenser can be omitted, in which case the vapor will discharge to atmosphere through the opening left in cover 36 by the removal of tube 84; or, if desired, this opening can be plugged to keep the vapor within the sample cup 44.
  • the arrangement, as illustrated, however, is particularly useful in making determinations of the moisture content of grain or like substances, the procedure being as follows:
  • a known quantity of grain is placed in the sample cup along with a quantity of a liquid which is immiscible with water but which has a boiling point slightly above, but not too far removed from, that of water', for the latter I iind it convenient to use orthodichlorobenzene or a blend of other naphtha solvents having a boiling point of the order of 140 C.
  • the quantity of liquid used is not critical but I prefer to use an amount approximately equal to the amount of grain.
  • the cup is installed in my apparatus shown in Fig. l and the mill is placed in operation to comminute the grain and generate heat therein as has been previously described.
  • the boiling point of the immiscible liquid should be at least as hgh and preferably a little higher than that of water in order that it will vaporize after all of the moisture in the grain has reached the condenser.
  • the moisture content determination may be made with dry milling if the residual moisture remaining in the condenser is too little to affect the accuracy of the fnalmeasurement of the water collected in the graduate 92, or if 'mathematical compensation is made for failure of any moisture vapor to reach the graduate.
  • a cup for receiving the material to be tested a cover for the cup detachably connected thereto to close the open top of the cup, a stationary support for said cover, a vertical power-driven shaft journaled in said support and extending downwardly through said cover with its lower portion received in said cup, a milling blade on said lower portion of the shaft, said cover containing an aperture offset from said shaft, a vapor discharge duct outside said cup having one end communicating with the interior of said cup via said aperture, said cover being effective to hermetically seal said cup against the escape of moisture except through said duct, and means for cooling a portion of said duct.
  • a device as in claim 1 having means outside said cup for heating the interior thereof.
  • a device as in claim 2 wherein said heating means comprises a heating jacket embracing the walls of said cup.
  • an open bottorn housing having an apertured top, a suitable support for said housing positioned above the top thereof, a cup received in said housing, clamping means applying an upward thrust on said cup thereby to urge the rim there* of into seating engagement with the underside of said top, a vertical power-driven shaft journaled in said support and extending downwardly through the aperture in said top with its lower portion received in said cup, a milling blade on said lower portion of the shaft, the side wall of said housing comprising an annular skirt depending from said top and closely embracing the sides of the cup, means in the side wall of the housing for heating said cup, said top containing an aperture offset from said shaft by a distance less than the radius of the cup, a vapor discharge duct communicating with the interior of said,
  • the top of said housing effective when seated against the rim of said cup to hermetically seal same against the escape of moisture except through said duct, means for cooling a portion of said duct outside o f said housing, and said'clamping means being releasable to permit removal of the cup through the bottom opening of the housing.
  • the method of determining the moisture content of grain or a like moisture-containing material comprising the steps of vigorously milling a measured quantity of the material in the presence of ,a liquid immiscible with water but having a boiling point of the same order as that of water, continuing saidmilling until it has raised the temperature of said material and liquid above the boiling point of water and saidvliquid, collecting the vapor produced by said milling, condensing said vapor, separating the water condensate from the condensate of said liquid, and measuring the water condensate.
  • a device for testing the moisture content of grain or a like -moisture-containing' material a vessel for receiving the material to lbe tested, a vapor discharge duct extending from the upper portion of the vessel, means hermetically sealing said vessel against the escape of mois,- ture except through said duct, a rotary milling blade in said vessel, power-operated means for rotating said blade aboutv a verticalA axis, said blade comprising a unitary member having a plurality of arms extending radially said vessel as the same is comminuted and has the contained moisture driven therefrom by said blade, means for cooling a portion of said duct to condense moisture discharged therethrough, and means for measuring the condensate.
  • a vessel for receiving the material tobe tested a vapor discharge duct extending from the upper portion of the vessel, means hermetically sealing said vessel against the escape of moisture except through said duct, power-operated milling means in saidl vessel for comminuting the material therein and driving out its moisture via said duct, means for cooling a portion of said duct to condense the moislure discharged therethrough and means for measuring the condensate.

Description

F. W.y STEIN Jan. 20,- 1959 METHOD-OF AND APPARATUS FOR TREATING MATERIALS original Filed Aug. 4, 1954 United States Patent O METHOD F AND APPARATUS FOR TREATING MATERIALS Frederick W. Stein, Atchison, Kans.
Original application August 4,1954, Serial No. 447,877,
now Patent No. 2,843,169, dated July 15, 1958. Divided and this application `lune 23, 1955, Serial No. 517,483
9 Claims. (Cl. 73-76) The `present invention relates in general to a method of and apparatus for treating materials; more particularly, it deals with the construction of a mill for comminuting materials to small particle size and with the use of the mill in processing materials of vegetable or animal origin. a
This application isa division of my copending application Serial No. 447,877, led August 4, 1954, now Patent No. 2,843,169.
In laboratory analysis or experimental treatment of various solids and semisolids it often proves necessary or desirable to comminute a sample of the material under consideration to small particlel size for the purpose of making certain tests, or determining certain physical or chemical properties of the material or otherwise facilitating the analytical procedure. Such a need frequently arises, for example, in the agricultural research laboratory, the cereal chemistry research laboratory and, considering the industrial field, in laboratories serving the food canning industry, the grain milling industry and the meat packing or processing industry, to mention a few.
While my invention has many applications, it can be mentioned by Way of illustration that determination of the moisture content of various grains and legumes, determination of the oil content of such vegetable materials as ax seed and soybeans, and determination of the fat content of such animal materials as hamburger meat, pork sausage and other dried and fresh'meats are greatly facilitated by comminution; moreover, in connection with certain tests on vegetable and animal materials, it sometimes is desirable not only to reduce the material to fine particle size but also to thoroughly mix the particles with anotherrsubstance of liquid or semiliquid character in order to form a homogeneously blended slurry. Y
An object of the invention, then, isV to provide, for such uses as have been mentioned as well as others Vthat Willoccur to those vversed in the art, a laboratorymill capable of very quickly reducing to small particle size a given sample of material and, when the occasion arises, forming homogeneous blends or slurries of `semiliquid consistency. l
Another objectis to provide a unit ofthe character indicated which is capable of performingthe desired milling and/or blending operation under conditions which prevent loss of any portion of the test material to the atmosphere, as is very important in making accurate quantitative analyses in the laboratory.
Still another object is to provide a device of the character-indicated which, if necessary, is capable of performing the desired mixing or blending operations under controlled conditions of'time and/or temperature.
A further object is to provide a laboratory mill which is extremely reliable in operation; which is sturdy Vand long lived; which is versatile `as regards its ability to processa wide variety of'materials and its ability tomeet a wide range of vconditions reilecting the varying laboratory needs in'experim'ental work; whichis'smple and 2,869,360 Patented Jan. 20, 1959 convenient to use; and which requires little or no maintenance.
Yet another object is to provide a laboratory mill capable of processing solid or semisolid materials of either fluent or non-fluent character and which by its action generates in the material being treated heat which is useful in carrying out certain experimental tests on the material; a feature of the invention resides in the prof vision of means for adding additional heat when such will facilitate the procedure, or removing heat from the test Vspecimen during the milling operation when such is desirable or necessary to the test procedure.
A further object is to provide an apparatus for rapidly extracting moisture from seeds, grains, legumes and other moisture-containing materials (or extracting other heatvolatile liquids from such materials) for the purpose of determining the moisture or liquid content thereof or for other purposes that Vwill be self-evident to those versed in the art.
Still another object is to provide an improved method of and apparatus for making rapid determinations of the moisture content of grains or like substances.
@ther and further objects of the invention, together with the features of novelty whereby the objects are achieved, will appear in the course of the following description.
-In the drawings which form a part of the specification and are to be read in conjunction therewith, and wherein like reference numerals are used to indicate like parts of the various views:
Fig. l is a side elevational View of apparatus for extracting moisture from vegetable material or the like for the purpose of determining moisture content, which apparatus includesrny improved milling unit; for purposes of illustration certain parts are broken away and others are shown in cross section;
Fig. 2 is a fragmentary cross-sectional view taken along the line 2-2 of Fig. l;
Fig. 3 is a sectional elevation of a portion of my milling unit illustrating a modified form thereof;
Pig. 4 is a sectional elevation of a portion of my milling unit illustrating another modified form thereof; and
Fig. 5 is an enlarged cross section of the milling blade taken along the line 5--5 of Fig. 4 in the direction of the arrows.
Referring more particularly to Fig. l, the numeral 10 indicates an upright post supported on a suitable base 12 having feet i4. At the upper end of the post there is a rigid mount lr6 carrying `an electric motor 18, the latter being positioned so that its shaft 2l) is vertical. On the opposite side of the post from the motor the mount 16 has an integral arm 16a extending laterally and terminating in a headpiece tb.
A vertical shaft 22 is journaled in the headpiece, being carried by suitablebearings 24. On the upper end of this shaft is a pulley 26 connected via belt 2S to a pulley 30 on the motor shaft 2! whereby the motor is drivingly connected to shaft 22. lt will be noted that mount 16 extends upwardly between opposite sides of the belt, and secured thereto by means of screws 32 or otherwise is a guard or shroud 34 which covers the belt and pulleys on the top, with its depending lange v34a extending downwardly around the margin of the belt.
The headpiece 16h is generally cylindrical and at its I lower end is cut out as shown at 16C, forming opposed legs 16d. `To these legs a horizontal disc-shaped cover plate 36 is secured in any suitable fashion as, for example, by means of -bolts 33 (see Fig. 24). The cover plate is centrally apertured and shaft 22 has an extension 22a of reduced diameter extending downwardly through this aperture. A milling or cutter blade 40 is secured to the lower end of the shaft being thus spaced below the cover .3 t v36. Onthe underside of the cover is cemented or otherwise bonded aA centrally apertured vcircular gasket 42, the purpose of which will be made clear presently.
For use with my laboratory mill, I provide a generally "cylindrical cup 44'for receiving a sample of the material to be comminuted. The upper rim of the cup is adapted `to be clamped against the cover platein seating and sealing engagement with the gasket 4Z-by the following means: Extending laterally from the post is an arm 46 having at its outer end an internally threaded hole in which is 'received the externally threaded member 4S. The latter has a knob 50at its lower end to permit turning it by hand, `and at its upper end it has a circular rest `xor seat 52 to Vengage the bottom of the cup. Arm 46 is carried by a collar 46a encircling post 10 to turn thereon, and the collar is supported by means of a screw 54 received in a tapped holein the post so that it extends radially outward therefrom as shownin Fig. 1. As will jalso be clear from this ligure, the portion of the collar resting on the screw is a 90 segment cut out of the underside of the collar to form stop shoulders 46b and 46c limiting the swinging of arm 46 to a 90 arc about the post as an axis.
, With the parts shown as positioned in Figs. l, 3 and 4, cup 44 is clamped securely between the rest 52 and the underside of cover 36, its rim being seated against the gasket 42 and the cup being concentric with shaft 22a. By turning knob 50 in a direction to relieve the clamping pressure, arm 46 can 'be swung to a position out of register with the bottom of the cup, whereupon the cup can be withdrawn downwardly from cover 36 to remove the cutter blade 40 therefrom. To replace the cup preparatory to another milling operation, it is advanced upwardly about the shaft until its rim engages the gasket; then arm 46 is swung back into the position shown, and knob 50v is turned in order to cause rest 52 to urge the cup upwardly, clamping it firmly in place.
For the purpose of controlling the temperature of the contents of the cup during a given milling operation, the cover plate 36 may be provided with a depending annular heating jacket or cooling jacket as shown in Figs. 1 and 3, or the jacketing may be omitted as shown in Fig. 4 where no such temperature control is required.
Referring first to Fig. 4, since this illustrates the simplest form of construction, it will be noted that the cover plate is provided with a depending annular iiange 36a which encircles the margin of the cup to hold same coaxial with the shaft 22a. For introducing material to be milled into the cup after it is in place, the cover plate also is provided with aiilling tube 56 having a removable cap 58. Shaft 22a is driven at high speed-preferably of the order of 14,000 to 16,000 R.V l.A M.-and in a typical milling operation after the shaft has come up to full speed, a measured quantity of the grain or other material to be milled is introduced into the cup gradually through the filling tube in order to avoid throwing a heavy load suddenly onto the motor.
As will be seen in Fig. 5, the cutter blade 40 has sharpened edges and its direction of travel (as indicated by the arrow) is such as to propel the material downwardly toward the cup bottom 44a; material below the blade travels back upwardly along the walls of the cup past the tips of the blade (see Fig. 4), so there is continuous circulation of the material within the cup. The cutting or comminuting action takes place, of course, principally in the region near the tips of the blade.
At the high rate of speed at which the blade tips travel it is found that 100 grams of whole soybeans, for example, will with as little as six minutes of milling in my unit, be lreducedto suchneness that`96% to 98% of the .solid matter will pass through a standard No. 40 sieve. If in addition to reducing the particles toV fine size it is desired to blend the particles with a solvent or liquid of any character, the latter can be introduced through the filling tube 56 while blade 40 continues to ftturn, and in a very brief interval a homogeneous mixture is obtained. YWhetherv the material is milled in dry condition or wet condition, it will be clear that there can be no loss of any portion thereof, inasmuch as the cup 44 is closed and sealed by the gasketed cover 36.
In laboratory use, different materials will require different lengths of milling time, depending upon the character of the material being processed, the neness to which it is desired to reduce the material, and various other factors. Thus a typical sample of wheat or other grain can be reduced to suitable iineness for determining its moisture content by conventional oven test methods with as little as one minutes preparatory milling in my apparatus, while other operations may require a tenminute milling period or even more. In order that the milling time can be accurately controlled, yet flexible enough to meet all requirements, I provide my apparatus Awith an automatic time switch 57 (see Fig. l) having a manually adjustable pointer-knob 54 by means of which the milling time can be preset; this switch is of known construction, and is so connected in the motor supply circuit (not shown) as to cut off the motor when the preset time has elapsed, thereby to terminate the milling operation.
Due to the impact of the cutter blade upon the material being treatedand due also to the agitation and frictional engagement of the blade with the material, a very considerable amount of heat is generated directly in said material. For instance, milling a gram sample of typical grain will raise its temperature to 100 C. in approximately two minutes and to 200 C. in approximately ive minutes. This heating is of advantage in some experimental procedures; in others-say, where the heat would cause undesirable volitalization of liquid fractions of the test specimen-the cup can be articial- 1y cooled during the milling operation, and for this I prefer to use the arrangement illustrated in Fig. 3.
The construction shown in Fig. 3 is essentially like that of Fig. 4 except that the cover plate 36 is larger in diameter and has a depending annular cooling jacket 60 secured to its marginal portion by means of screws 62 or otherwise. The cooling jacket comprises a hollow housing having a cylindrical inner wall 60a, a concentric outer wall 60b, a top wall 60C, and a bottom wall 60d. For the sake of clarity in the drawing, inner wall V60a is shown spaced slightly from the exterior wall of cup 44, but it should be understood that in order to obtain a good heat exchange between the two, they should lit together as snugly as is possible without interferring with the removal of the cup when arm 46 is swung away from the bottom of the cup, as has been explained hereinbefore. #j
The jacket serves always to center cup 44 relative to shaft 22a during insertion and removal of the cup and of course maintains it coaxial with the shaft during milling. Accordingly, it is unnecessary that the underside of cover 36 have a central locating recess like that provided in the Fig. 4 embodiment for receiving the rim of the cup. However the central portion of cover 36 in Fig. 3 can be similarly recessed if desired, in which case the gasket 42 will be positioned in the recess.
The outer wall 60b of the jacket has nipples to which fluid inlet and outlet lines 64 and 66 are connected; by this means water or any other suitable coolant 68 may be continuously circulated through the hollow interior of the jacket during the milling operation. Obviously, should it be desired to supply additional heat to the cup during milling, steam or other heated uid can be supplied to the jacket in place of the coolant. v
An alternative way of heating the cup during milling is shown in Fig. 1 and this construction is preferred where heating is desired. Here the cover plate 36 has a depending annular jacket 70 which is fundamentally like the jacket 60 already described except that it has no inlet or outlet for fluid and insid is provided with an electrical resistance heating coil 72 -betwe'en the inner and Iouter walls. Electrical current for energizing the cod 1s supplied through the conductors 74. A rtemperature sensing element 76 extends into the upper portion of the cup through an aperture in the cover plate 36 and actuates a 'gauge 78 to indicate the ltemperature within the cup. Associated with the gauge is a thermostatic control 80 of conventional character for turning the current to the resistance heater 72 on or olf as may be needed in order to maintain the temperature within the cup at a selected value; the thermostatic control has an adjustment knob 82 for regulating the temperature at which the cup is to be maintained.V
Also communicating with the interior of the cup when it is in place as shown in Fig. lis a'vapor discharge tube 84 extending to a condenser of -any suitable character, this having for convenience been illustrated in the drawing as a jacket 86 surrounding a portion of the tube with a cooling water inlet 88 and a 'water outlet 90 connected thereto; the condensed vapor may be collected in a conventional volumetric measuring device, for example, the graduate 92. v p
It will be understood that if it is not desired to condense and collect vapor discharge from the cup 44 during the milling operation, tube 84 and the associated condenser can be omitted, in which case the vapor will discharge to atmosphere through the opening left in cover 36 by the removal of tube 84; or, if desired, this opening can be plugged to keep the vapor within the sample cup 44. The arrangement, as illustrated, however, is particularly useful in making determinations of the moisture content of grain or like substances, the procedure being as follows:
A known quantity of grain is placed in the sample cup along with a quantity of a liquid which is immiscible with water but which has a boiling point slightly above, but not too far removed from, that of water', for the latter I iind it convenient to use orthodichlorobenzene or a blend of other naphtha solvents having a boiling point of the order of 140 C. The quantity of liquid used is not critical but I prefer to use an amount approximately equal to the amount of grain. The cup is installed in my apparatus shown in Fig. l and the mill is placed in operation to comminute the grain and generate heat therein as has been previously described. Approximately live minutes operation without use of the heating jacket and a considerably shorter period of time using the heating jacket (the precise length depending upon the ternperature maintained by means of the thermostatic control) will serve to vaporize all of the moisture originally contained in the grain and also vaporize the added immiscible liquid as well. The vapors leave the cup or test cell through the tube L84 and pass into the condenser, the condensate being collected in the graduate 92. Due to the diierence in specific gravity and immiscible character of the liquids, they will settle at different levels in the graduate, making it possible to easily determine the exact volume of water collected, and on the basis of this, it is possible to compute the moisture content `of the original grain sample.
My purpose in using the orthodichlorobenzene or equivalent immiscible liquid is to wash from the condenser any water condensate that'otherwise might remain therein in the form of dew collected on the inner wall of tube 84, thereby to remove the possibility that t the water collected in graduate 92 does not reflect the full amount of moisture contained in the grain. Thus, it will be evident that to accomplish the desired washing action the boiling point of the immiscible liquid should be at least as hgh and preferably a little higher than that of water in order that it will vaporize after all of the moisture in the grain has reached the condenser. If other means for washing residual water condensate from the condenser are used, it is of course unnecessary to add the immiscible liquid to the sample assenso cup in the 'r'st instance, and 'the grain sample e'a'n instead be milled dry. By the same token, the moisture content determination may be made with dry milling if the residual moisture remaining in the condenser is too little to affect the accuracy of the fnalmeasurement of the water collected in the graduate 92, or if 'mathematical compensation is made for failure of any moisture vapor to reach the graduate.
While I have described the operation only as applied to determination of the moisture content of grain, it should be evident that if the material to be comminuted in my mill contains a volatile liquidother than water, the amount thereof likewise can be determined by the procedure described.
From the foregoing it will be seen that this invention is one well adapted to attain all 'of the ends and objects hereinbefore set forth, together with other advantages which are obvious and which are inherent thereto.
It will be understood that certain vfeatures and subcombinations are of utility and may be employed without reference to other features and subcombinations. Thisvis contemplated by and is within the scope of the appended claims.
inasmuch as many possible embodiments of the invention may be made without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
Having thus described my invention, I claim:
l. in a device for testing the moisture content of 'grain or a like moisture-containing materlal, a cup for receiving the material to be tested, a cover for the cup detachably connected thereto to close the open top of the cup, a stationary support for said cover, a vertical power-driven shaft journaled in said support and extending downwardly through said cover with its lower portion received in said cup, a milling blade on said lower portion of the shaft, said cover containing an aperture offset from said shaft, a vapor discharge duct outside said cup having one end communicating with the interior of said cup via said aperture, said cover being effective to hermetically seal said cup against the escape of moisture except through said duct, and means for cooling a portion of said duct.
2. A device as in claim 1 having means outside said cup for heating the interior thereof.
3. A device as in claim 2 wherein said heating means comprises a heating jacket embracing the walls of said cup.
4. A device as in claim 1 wherein said cover has a depending annular .tlange embracing the walls of said cup to maintain the cup coaxial with said shaft.
5. A device as in claim, l wherein said milling blade extends radially from said shaft in close proximity to the bottom of said cup, the leading edge of said blade being inclined downwardly and rearwardly with reference to the direction of travel of said edge.
6. In a device of the character described, an open bottorn housing having an apertured top, a suitable support for said housing positioned above the top thereof, a cup received in said housing, clamping means applying an upward thrust on said cup thereby to urge the rim there* of into seating engagement with the underside of said top, a vertical power-driven shaft journaled in said support and extending downwardly through the aperture in said top with its lower portion received in said cup, a milling blade on said lower portion of the shaft, the side wall of said housing comprising an annular skirt depending from said top and closely embracing the sides of the cup, means in the side wall of the housing for heating said cup, said top containing an aperture offset from said shaft by a distance less than the radius of the cup, a vapor discharge duct communicating with the interior of said,
cup via said last aperture, the top of said housing effective when seated against the rim of said cup to hermetically seal same against the escape of moisture except through said duct, means for cooling a portion of said duct outside o f said housing, and said'clamping means being releasable to permit removal of the cup through the bottom opening of the housing.
, 7. The method of determining the moisture content of grain or a like moisture-containing material, comprising the steps of vigorously milling a measured quantity of the material in the presence of ,a liquid immiscible with water but having a boiling point of the same order as that of water, continuing saidmilling until it has raised the temperature of said material and liquid above the boiling point of water and saidvliquid, collecting the vapor produced by said milling, condensing said vapor, separating the water condensate from the condensate of said liquid, and measuring the water condensate.
l 8f.` -In a device for testing the moisture content of grain or a like -moisture-containing' material, a vessel for receiving the material to lbe tested, a vapor discharge duct extending from the upper portion of the vessel, means hermetically sealing said vessel against the escape of mois,- ture except through said duct, a rotary milling blade in said vessel, power-operated means for rotating said blade aboutv a verticalA axis, said blade comprising a unitary member having a plurality of arms extending radially said vessel as the same is comminuted and has the contained moisture driven therefrom by said blade, means for cooling a portion of said duct to condense moisture discharged therethrough, and means for measuring the condensate.
9. In a device for testing the moisture content of grain or a like moisture-containing material, a vessel for receiving the material tobe tested, a vapor discharge duct extending from the upper portion of the vessel, means hermetically sealing said vessel against the escape of moisture except through said duct, power-operated milling means in saidl vessel for comminuting the material therein and driving out its moisture via said duct, means for cooling a portion of said duct to condense the moislure discharged therethrough and means for measuring the condensate.
References Cited in the tile of this patent UNITED STATES PATENTS 165,442 Goddard July 13, 1875 848,616 Brown Mar. 26, 1907 1,392,116 Chopin Sept. 27, 1921 1,415,546 Greenwood May 9, 1922 2,665,724 Lundell Jan. 12, 1954 2,714,308 Heck Aug. 2, 1955 2,828,623 Benedict Apr. 1, 1958 FOREIGN PATENTS 648,275 Germany Dec. 14, 1934
US2869360D Method of and apparatus for Expired - Lifetime US2869360A (en)

Publications (1)

Publication Number Publication Date
US2869360A true US2869360A (en) 1959-01-20

Family

ID=3447513

Family Applications (1)

Application Number Title Priority Date Filing Date
US2869360D Expired - Lifetime US2869360A (en) Method of and apparatus for

Country Status (1)

Country Link
US (1) US2869360A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183710A (en) * 1960-07-28 1965-05-18 Hobart Mfg Co Method for determining fat content in ground meat
US3546920A (en) * 1968-03-11 1970-12-15 Webb James E Apparatus for testing polymeric materials
USRE32861E (en) * 1973-07-20 1989-02-07 Cem Corporation Automatic volatility computer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US165442A (en) * 1875-07-13 Improvement in meat-cutters
US848616A (en) * 1907-03-02 1907-03-26 Edgar Brown Apparatus for the rapid determination of the moisture content of grain.
US1392116A (en) * 1919-12-20 1921-09-27 Himself And La Sa Des Grands M Automatic indicator of the proportion of moisture
US1415546A (en) * 1920-09-10 1922-05-09 Frank E Greenwood Apparatus for determining moisture
DE648275C (en) * 1934-12-14 1937-07-27 Siemens & Halske Akt Ges Method and device for determining the drying status of hygroscopic substances
US2665724A (en) * 1950-10-20 1954-01-12 Globe Slicing Machine Co Inc Refrigerated meat chopper
US2714308A (en) * 1952-01-18 1955-08-02 Alfred C Heck Mechanical mud testing device
US2828623A (en) * 1953-12-14 1958-04-01 Lloyd D Benedict Method for rapid testing moisture content of agricultural products

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US165442A (en) * 1875-07-13 Improvement in meat-cutters
US848616A (en) * 1907-03-02 1907-03-26 Edgar Brown Apparatus for the rapid determination of the moisture content of grain.
US1392116A (en) * 1919-12-20 1921-09-27 Himself And La Sa Des Grands M Automatic indicator of the proportion of moisture
US1415546A (en) * 1920-09-10 1922-05-09 Frank E Greenwood Apparatus for determining moisture
DE648275C (en) * 1934-12-14 1937-07-27 Siemens & Halske Akt Ges Method and device for determining the drying status of hygroscopic substances
US2665724A (en) * 1950-10-20 1954-01-12 Globe Slicing Machine Co Inc Refrigerated meat chopper
US2714308A (en) * 1952-01-18 1955-08-02 Alfred C Heck Mechanical mud testing device
US2828623A (en) * 1953-12-14 1958-04-01 Lloyd D Benedict Method for rapid testing moisture content of agricultural products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183710A (en) * 1960-07-28 1965-05-18 Hobart Mfg Co Method for determining fat content in ground meat
US3546920A (en) * 1968-03-11 1970-12-15 Webb James E Apparatus for testing polymeric materials
USRE32861E (en) * 1973-07-20 1989-02-07 Cem Corporation Automatic volatility computer

Similar Documents

Publication Publication Date Title
US2843169A (en) Laboratory mill for comminuting materials to fine particle size
US3860166A (en) Apparatus for separating moisture from solids
Zeisler et al. Cryogenic homogenization of biological tissues
Wrolstad et al. Handbook of food analytical chemistry, volume 1: Water, proteins, enzymes, lipids, and carbohydrates
US5918977A (en) Method and plant for mixing and analyzing unhomogeneous flowable foodstuff, fodder or pharmaceutical material
US4187992A (en) Device for reconstituting used coffee grounds
US2869360A (en) Method of and apparatus for
US4137834A (en) Cooking and mixing device for household purposes
Spiro et al. The kinetics and mechanism of caffeine infusion from coffee: hydrodynamic aspects
Karapantsios et al. Electrical conductance study of fluid motion and heat transport during starch gelatinization
CASTELL‐PEREZ et al. Evaluating shear rates for power law fluids in mixer viscometry
US3047801A (en) Moisture probe
US3813928A (en) Method of and apparatus for separating moisture from solids
US1436172A (en) Mixing device
CN108499431A (en) A kind of auger tank
US2866690A (en) Method and apparatus for making moisture content determinations
Lücker et al. Analyses of the distribution of lead and cadmium in fresh renal tissue by means of solid sampling Zeeman-AAS. Part 1
WO2007048789A1 (en) Method for the regulation of the absorption of oxygen or any other gas
US4881402A (en) Process for the determination of liquid absorption of powdery solids
Luthria et al. Effect of moisture content, grinding, and extraction technologies on crude fat assay
Hui et al. Effects of thermal treatments on texture of soy protein isolate tofu
JPH08285455A (en) Method and device for drying and processing moist material
US3627538A (en) Method of producing a sausage emulsion
JPH10229836A (en) Manufacture of powder food material, and mixer and ball mill therefor
O'Donnell et al. Viscosity of reconstituted milk protein concentrate solutions as a function of shear, temperature and concentration