US2862359A - Fuel manifold and flameholder in combustion apparatus for jet engines - Google Patents

Fuel manifold and flameholder in combustion apparatus for jet engines Download PDF

Info

Publication number
US2862359A
US2862359A US317221A US31722152A US2862359A US 2862359 A US2862359 A US 2862359A US 317221 A US317221 A US 317221A US 31722152 A US31722152 A US 31722152A US 2862359 A US2862359 A US 2862359A
Authority
US
United States
Prior art keywords
conduits
fuel
radial
flameholder
afterburner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US317221A
Inventor
Jr Esten W Spears
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Priority to US317221A priority Critical patent/US2862359A/en
Application granted granted Critical
Publication of US2862359A publication Critical patent/US2862359A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • F23R3/20Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants incorporating fuel injection means

Definitions

  • the exhaust gases of a gas turbine jet engine contain large quantitiesof free oxygen, and the thrust of the engine may be very considerably increased by burning fuel in these exhaust gases so as to increase the temperature and thereby the velocity of the exhaust gases.
  • afterburner presents problems of great difficulty. Since the gases entering the afterburner may be at temperatures of the order of 1300 F;; and the afterburner structure is subjected to heatradiation from the flame in the burner, many failures of afterburner structures have been experienced in practice. Troubles with afterburner failures arise not jonlyfrom the high temperatures but from rapid temperature changes .-as the engine goes into or out of service, or when flameouts occur. These radical temperature changes are particularly pronounced in the fuel manifold, as will be apparent when it is considered thatcold fuel is suddenly poured into a manifold atperhaps 1300 F. when the afterbur ner is put into operation.
  • the invention is particularly concerned with the provision of a structure such that the parts are free to expand relatively as such temperature changes occur and in which destructive stresses are avoided.
  • This invention is directed to an afterburner which is highly advantageous from the standpoint of good combustion, long life, and light weight, and which oifers a minimum of obstruction to gas flow.
  • the principal objects of the invention are to improve the performance of jet propulsion engines and to provide an improved combustion apparatus adapted for jet propulsion power plants, particularly as an afterburner for turbojet engines. More specific objects are to provide such an apparatus which opposes a minimtun resistance to gas flow,'whicli is light in weight, and which is particularly adapted to withstand the high temperatures, rapid temperature changes, and vibration encountered.
  • FIG. 1 is a partial side elevation of a turbojet engine illustrating the installation and environment of the afterburnen l H 1,
  • a turbojet engine 10 is illustrated'as' comprising a cylindrical duct 11 within which is mounted a turbine wheel 12 on a shaft 13.
  • Combustiongases are supplied to the turbine from a suitable combustion apparatus through an annular duct including a outerwall 14 and an inner wall 15.
  • an afterburner or reheat burner generallyiridicated at"1 9 is provided to introduce and burn fuel introduced by the zafterburner 19 is burned, and terminates in a jet exhaust nozzle 22.
  • Hinged valves 23 or other means are provided in accordance with known practice tovai y the effective area of the exhaust nozzle to accommodate the engineto normal operation or afterburning operation.
  • the casings 20 and 21 are seen to be circular, which is the preferred form.
  • the flanges of the casing 20 not only serve as means for mounting the afterburner in the exhaust ducting but also strengthen the casing, which is of large diameter, usually of the order of two or three feet.
  • the afterburner 19 includes a fuel manifold 25 secured to the casing 20 and a flalmeholder secured thereto, the fuel manifold being so constructed and supported by the casing as to have free differential thermal expansion and contraction relative thereto and the flameholder being similarly supported by thefuel manifold.
  • the fuel manifold 25 primarily comprises fourregularly'spaced radial conduits 26 through 29 which are fixed together at their 2,862,859 a a s inner ends by Welds 30: for fuel transfer therebetween, and
  • conduits 60 interconnect the radial conduits near their common center, and twelve short radial.
  • conduits 70 interconnect the arcuate conduits 31 to 38 without any special provision for differential thermal expansion therebetween, such special provision having been found unnecessary by actual test.
  • the radial and arcuate conduits are provided with a multiplicity of drilled passages or outlet orifices 72 through their upstream and downstream walls so that fuel may be sprayed over substantially the entire flow area of the turbine exhaust.
  • Fuel is introduced into the afterburner through a threaded coupling 74 formed on the outer end of the radial conduit 29 which extends through the wall of casing 20 as best seen in Figs. 3 and 4.
  • the radial conduits 26 through 29 are slidably supported at their outer ends by casing 20 for free differential thermal expansion relative thereto so that they may expand and contract radially, the radial conduits forming a cross that will remain centered in the casing.
  • the radial conduit 29 is slidably supported in a boss 75 on the casing by a ring 76, asbestos crush seal 78, and a threaded sleeve 80 while the radial conduits 26 through 28 are slidably supported in the casing by radial pins 82 (Fig. 7) which are provided with flanged ends 84 secured to the casing by bolts 86.
  • the radial conduits 26 through 28 are closed at their outer ends by the outer arcuate conduits or sockets 50 to prevent fuel leakage at the slidable pin support.
  • the fiameholder 90 is located in the casing 20 immediately downstream of the fuel manifold 25 and is of substantially the same configuration including radial channels 92 and concentric ring channels 94.
  • the channels 92 and 94 are of substantially U or W-shaped section with the closed side of the channel section facing upstream and the channels create sufficient turbulence behind the fuel manifold conduits to hold combustion.
  • An auxiliary ring channel 96 (Fig. 1) of V-shaped or similar section may be supported from the radial channels 92 by brackets 97 to promote additional downstream turbulence if desired.
  • the flameholder 90 is slidably supported .by the fuel manifold 25 for free differential thermal expansion rela tive thereto, the flameholder beingsupported by the radial conduits 26 through 29.
  • the fiameholder includes extensions 99'secured to the radial conduits by radially extending straps 98 and bolts 100 as best seen in Figs. 3 through 5.
  • the straps 9 8 are loose enough to permit free radial expansion and contraction of the flameholder while maintaining it centered in the turbine exhaust duct.
  • the operation of the afterburner is as follows: With the gas turbine engine in operation and the exhaust gases flowing through the afterburner, and with the jet nozzle flaps in their small area position, fuel under pressure is introduced to the fuel manifold and sprayed therefrom. The fuel is ignited by the heat of the turbine exhaust gases or a suitable igniter, the fiameholder creating turbulence to hold the flame which burns rearwardly thereof. Immediately upon initiation of afterburner combustion, the jet nozzle flaps are opened by suitable means to their full area position. The added energy imparted by the afterburner combustion increases the thrust of the jet propulsion engine.
  • the fuel supply is shut off and. the jet nozzle flaps, are returned to their minimum area position.
  • the aftenburner may be constructed of stainless steel or similar high strength and temperature resistant material such as are generally employed in jet engine construction.
  • a combustion apparatus comprising, in combination, an annular duct adapted for flow of combustion-- supporting gas, a fuel manifold in said duet comprising a plurality of regularly spaced radial conduits welded together for fuel transfer therebetween at their inner ends, said radial conduits being slidably supported at their outer ends by said duct for free differential thermal expansion relative thereto so that said radial conduits may expand and contract radially, said radial conduits forming a cross in said duct, at least one.
  • a combustion apparatus comprising, in combination, an annular duct adapted for flow of combustionsupporting gas, a fuel manifold in said duct comprising a plurality of regularly spaced radial conduits welded together for fuel transfer therebetween at their inner ends, said radial conduits being slidably supported at theirouter ends by said duct for free differential thermal expansion relative thereto so that said radial conduits may expand and contract radially, said radial conduits forming a cross in said duct, at least one of said outer ends extending slidably through said duct and open for fuel introduction and the remaining outer ends being closed and being slidably supported by radial pins extending inwardly from said duct, a plurality of concentric arcuate conduitseach having an open end welded to an intermediate portion of one of said radial conduits for fuel transfer therefrom and a closed end slidably supported by the next of said radial conduits.
  • said arcuate conduits in a circumferential sense whereby said arcuate conduits may expand and contract transversely of said radial conduits and thus have free differential thermal expansion relative thereto despite said rigid open end weldments with said radial conduits, said arcuate conduits forming a pair of radially spaced rings in said duct, means defining fuel outlets on each said conduits, and a flameholder in said duet immediately downstream of said fuel manifold, said fiameholder being of U-shaped channel section with the closed side of said channel section facing upstream, said flameholder being aligned with said fuel manifold and of substantially the same configuration including radial channels and ring channels, said flameholder being slidably supported by straps on said radial conduits for free differential thermal expansion relative thereto so that said flameholder may expand and contract radially.

Description

Dec. 2, 1958 w. SPEARS. JR 2,862,359
FUEL MAN AND FLAMEHOLDER IN COMBUSTION v R JE INES Filed Oct. 28, 1952 P ARATUS F0 T ENG 3 Sheets-Sheet 1 Inventor Dec. 2, 1958 E SPE 5, JR 2,862,359
FUEL MANIF FLAM LDER IN COMBUSTION AP ATUS FOR JET ENGINES Filed Oct. 28, 1952 5 sheets sheet 2 Inventor Attorneys Dec. 2, 1958 w SPEARS, JR 2,862,359
FUEL MANIFOLD AND FLAMEHOLDER IN COMBUSTION APPARATUS FOR JET ENGINES Filed Oct. 28, 1952 3 Sheets-Sheet 3 Inventor United States Patent FUEL MANIFOLD AND FLAMEHOLDER IN COM- BUSTION APPARATUS FOR JET ENGINES Esten W. Spears, Jr., Indianapolis, Ind., assignor to General Motors Corporation, Detroit, Mich., a corporation of Delaware Application October 28, 1952, Serial No. 317,221
2 Claims. (Cl. 60-53952) This invention relates to combustion apparatus and is particularly adapted for use in afterburners for gas turbine jet propulsionengines. The invention will be described in terms of its embodiment in an afterburner although the invention is not limited to this field of application. V r
The exhaust gases of a gas turbine jet engine contain large quantitiesof free oxygen, and the thrust of the engine may be very considerably increased by burning fuel in these exhaust gases so as to increase the temperature and thereby the velocity of the exhaust gases.
The provision of suitable afterburners presents problems of great difficulty. Since the gases entering the afterburner may be at temperatures of the order of 1300 F;; and the afterburner structure is subjected to heatradiation from the flame in the burner, many failures of afterburner structures have been experienced in practice. Troubles with afterburner failures arise not jonlyfrom the high temperatures but from rapid temperature changes .-as the engine goes into or out of service, or when flameouts occur. These radical temperature changes are particularly pronounced in the fuel manifold, as will be apparent when it is considered thatcold fuel is suddenly poured into a manifold atperhaps 1300 F. when the afterbur ner is put into operation. The invention is particularly concerned with the provision of a structure such that the parts are free to expand relatively as such temperature changes occur and in which destructive stresses are avoided.
This invention is directed to an afterburner which is highly advantageous from the standpoint of good combustion, long life, and light weight, and which oifers a minimum of obstruction to gas flow.
The principal objects of the invention are to improve the performance of jet propulsion engines and to provide an improved combustion apparatus adapted for jet propulsion power plants, particularly as an afterburner for turbojet engines. More specific objects are to provide such an apparatus which opposes a minimtun resistance to gas flow,'whicli is light in weight, and which is particularly adapted to withstand the high temperatures, rapid temperature changes, and vibration encountered.
The manner in which these objects are accomplished and the advantages of the invention will be apparent to those skilled in the art from the succeeding detailed description of the preferred embodiment of the invention.
Referring to the drawings:
I Fig. 1 is a partial side elevation of a turbojet engine illustrating the installation and environment of the afterburnen l H 1,
2,862,359 Patented Dec. 2, 1958 ice " Figs. 6,7 and 8 are enlarged partial elevations partially broken away of Fig. 2.
Referring first to Fig. 1, a turbojet engine 10 is illustrated'as' comprising a cylindrical duct 11 within which is mounted a turbine wheel 12 on a shaft 13. Combustiongases are supplied to the turbine from a suitable combustion apparatus through an annular duct including a outerwall 14 and an inner wall 15.
7 The gases exhaust from the turbine through an exhaustjduct including an annular outer wall 16 and an inner conical wall 17 supported therefrom by radial stru'ts'18. The exhaust passage thus increases in area downstream of the turbine to decelerate the exhaust ases; In a turbojet engine without an afterburner the exhaust duct ordinarilyterminates in a fixed converging nozzle from which the propulsive jet issues. 7
In order to augment the thrust of the engine for emergency conditions, an afterburner or reheat burner generallyiridicated at"1 9 is provided to introduce and burn fuel introduced by the zafterburner 19 is burned, and terminates in a jet exhaust nozzle 22. Hinged valves 23 or other means are provided in accordance with known practice tovai y the effective area of the exhaust nozzle to accommodate the engineto normal operation or afterburning operation. j r l I Since this general configuration is known to those skilled in the art and the details of the structuresillustrated in Fig. 1 other than the afterburner assembly-are immaterial to the invention, they will not be further described.
As is" understood by those skilled in the art, the afterburnei' operates on-'hot turbine exhaust gases; only a small part of the oxygen of which has" been combined with fuel, which gases are flowing at a relatively rapid rate such as to requirespecial provisions for the maintenance of a flame in the exhaust. While various structures for maintaining combustion in turbine exhaust have been proposedfl believe that to be described to be par ticularly advantageous for this purpose. 1
Referring now to'Figs. '1 and 2, the casings 20 and 21 are seen to be circular, which is the preferred form. The flanges of the casing 20 not only serve as means for mounting the afterburner in the exhaust ducting but also strengthen the casing, which is of large diameter, usually of the order of two or three feet. The afterburner 19 includes a fuel manifold 25 secured to the casing 20 and a flalmeholder secured thereto, the fuel manifold being so constructed and supported by the casing as to have free differential thermal expansion and contraction relative thereto and the flameholder being similarly supported by thefuel manifold. The fuel manifold 25 primarily comprises fourregularly'spaced radial conduits 26 through 29 which are fixed together at their 2,862,859 a a s inner ends by Welds 30: for fuel transfer therebetween, and
eight concentric arcuate conduits 31 through. 38. each. of
which is welded at one end by welds 30 to one of the radial conduits for fuel transfer therefrom and each of which is slidably supported at its other end by a socket 50 welded on an adjacent one of the radial conduits for free differential thermal expansion and contraction relative thereto. The free ends of the arcuate conduits are sealed by welding in plugs 52 (Figs. 4, 6 and 8). A loose-slip fit is provided between the free ends and the sockets 50-, and an expansion clearance is provided between the free endsand theradial conduits. The arcuate conduits are thus; free to expand and contract but will not be bent out of the plane of themanifold due to the gas load. Four small arcuate conduits 60 interconnect the radial conduits near their common center, and twelve short radial. conduits 70 interconnect the arcuate conduits 31 to 38 without any special provision for differential thermal expansion therebetween, such special provision having been found unnecessary by actual test.
The radial and arcuate conduits are provided with a multiplicity of drilled passages or outlet orifices 72 through their upstream and downstream walls so that fuel may be sprayed over substantially the entire flow area of the turbine exhaust. Fuel is introduced into the afterburner through a threaded coupling 74 formed on the outer end of the radial conduit 29 which extends through the wall of casing 20 as best seen in Figs. 3 and 4. The radial conduits 26 through 29 are slidably supported at their outer ends by casing 20 for free differential thermal expansion relative thereto so that they may expand and contract radially, the radial conduits forming a cross that will remain centered in the casing. The radial conduit 29 is slidably supported in a boss 75 on the casing by a ring 76, asbestos crush seal 78, and a threaded sleeve 80 while the radial conduits 26 through 28 are slidably supported in the casing by radial pins 82 (Fig. 7) which are provided with flanged ends 84 secured to the casing by bolts 86. The radial conduits 26 through 28 are closed at their outer ends by the outer arcuate conduits or sockets 50 to prevent fuel leakage at the slidable pin support.
Referring to Figs. 1 and 2, the fiameholder 90 is located in the casing 20 immediately downstream of the fuel manifold 25 and is of substantially the same configuration including radial channels 92 and concentric ring channels 94. The channels 92 and 94 are of substantially U or W-shaped section with the closed side of the channel section facing upstream and the channels create sufficient turbulence behind the fuel manifold conduits to hold combustion. An auxiliary ring channel 96 (Fig. 1) of V-shaped or similar section may be supported from the radial channels 92 by brackets 97 to promote additional downstream turbulence if desired. The flameholder 90 is slidably supported .by the fuel manifold 25 for free differential thermal expansion rela tive thereto, the flameholder beingsupported by the radial conduits 26 through 29. The fiameholder includes extensions 99'secured to the radial conduits by radially extending straps 98 and bolts 100 as best seen in Figs. 3 through 5. The straps 9 8 are loose enough to permit free radial expansion and contraction of the flameholder while maintaining it centered in the turbine exhaust duct.
The operation of the afterburner is as follows: With the gas turbine engine in operation and the exhaust gases flowing through the afterburner, and with the jet nozzle flaps in their small area position, fuel under pressure is introduced to the fuel manifold and sprayed therefrom. The fuel is ignited by the heat of the turbine exhaust gases or a suitable igniter, the fiameholder creating turbulence to hold the flame which burns rearwardly thereof. Immediately upon initiation of afterburner combustion, the jet nozzle flaps are opened by suitable means to their full area position. The added energy imparted by the afterburner combustion increases the thrust of the jet propulsion engine.
To'terminate afterburning, the fuel supply, is shut off and. the jet nozzle flaps, are returned to their minimum area position.
Any suitable manual or automatic control means for the fuel supply, ignition, and variable area nozzle may be employed. My invention is not concerned with such controls. The aftenburner may be constructed of stainless steel or similar high strength and temperature resistant material such as are generally employed in jet engine construction.
While the invention has been specifically described as an afterburner for a turbojet engine, it will be apparent that the principles, and, to a large extent, the structure illustrated, may be applied to other combustion apparatus. Fields for which the invention seems particularly suited include combustion apparatus for industrial gas turbines employing combustion chambers of large diameter, and ramjet aircraft engines.
It will be apparent that the invention, and particularly the preferred embodiment described above, is particularly well suited to Withstand temperature changes in gas turbine engines and the like and to provide efficient combustion with a minimum of interference to gas flow.
While the preferred embodiment of the invention has been described fully in order to explain the principles of the invention, it is to be understood that modifications in structure may be made by the exercise of skill in the art within the scope of the invention, which is not to be regarded as limited by the detailed description of the preferred embodiment.
I claim:
1. A combustion apparatus comprising, in combination, an annular duct adapted for flow of combustion-- supporting gas, a fuel manifold in said duet comprising a plurality of regularly spaced radial conduits welded together for fuel transfer therebetween at their inner ends, said radial conduits being slidably supported at their outer ends by said duct for free differential thermal expansion relative thereto so that said radial conduits may expand and contract radially, said radial conduits forming a cross in said duct, at least one. of said outer ends extending slidably through said duct and open for fuel introduction and the remaining outer ends being closed and being slidably supported by radial pins extending inwardly .from said duct, a plurality of concentric arcuate conduitseach having an open end welded to an intermediate portion of one of said radial conduits for fuel transfer therefrom and a closed end slidably supported by the next of said radial conduits in a circumferential sense whereby said arcuate conduits may expand and contract transversely of said radial conduits and thus have free differential thermal expansion relative thereto despite said rigid open end weldments with said radial conduits, said arcuate conduits forming a pair of radially spaced rings in said duct, and means defining fuel outlets on said conduits.
2. A combustion apparatus comprising, in combination, an annular duct adapted for flow of combustionsupporting gas, a fuel manifold in said duct comprising a plurality of regularly spaced radial conduits welded together for fuel transfer therebetween at their inner ends, said radial conduits being slidably supported at theirouter ends by said duct for free differential thermal expansion relative thereto so that said radial conduits may expand and contract radially, said radial conduits forming a cross in said duct, at least one of said outer ends extending slidably through said duct and open for fuel introduction and the remaining outer ends being closed and being slidably supported by radial pins extending inwardly from said duct, a plurality of concentric arcuate conduitseach having an open end welded to an intermediate portion of one of said radial conduits for fuel transfer therefrom and a closed end slidably supported by the next of said radial conduits. in a circumferential sense whereby said arcuate conduits may expand and contract transversely of said radial conduits and thus have free differential thermal expansion relative thereto despite said rigid open end weldments with said radial conduits, said arcuate conduits forming a pair of radially spaced rings in said duct, means defining fuel outlets on each said conduits, and a flameholder in said duet immediately downstream of said fuel manifold, said fiameholder being of U-shaped channel section with the closed side of said channel section facing upstream, said flameholder being aligned with said fuel manifold and of substantially the same configuration including radial channels and ring channels, said flameholder being slidably supported by straps on said radial conduits for free differential thermal expansion relative thereto so that said flameholder may expand and contract radially.
References Cited in the file of this patent UNITED STATES PATENTS 1,302,778 Drewry May 6, 1919 10 2,540,594 Price Feb. 6, 1951 2,701,444 Day Feb. 8, 1955 2,714,287 Carr Aug. 2, 1955
US317221A 1952-10-28 1952-10-28 Fuel manifold and flameholder in combustion apparatus for jet engines Expired - Lifetime US2862359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US317221A US2862359A (en) 1952-10-28 1952-10-28 Fuel manifold and flameholder in combustion apparatus for jet engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US317221A US2862359A (en) 1952-10-28 1952-10-28 Fuel manifold and flameholder in combustion apparatus for jet engines

Publications (1)

Publication Number Publication Date
US2862359A true US2862359A (en) 1958-12-02

Family

ID=23232662

Family Applications (1)

Application Number Title Priority Date Filing Date
US317221A Expired - Lifetime US2862359A (en) 1952-10-28 1952-10-28 Fuel manifold and flameholder in combustion apparatus for jet engines

Country Status (1)

Country Link
US (1) US2862359A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3236048A (en) * 1963-09-25 1966-02-22 Gen Motors Corp Vaporizing manifold and flameholder for afterburners
US3270506A (en) * 1961-10-31 1966-09-06 Gen Electric Liquid-vapor fuel injector flameholder
FR2330867A1 (en) * 1975-11-04 1977-06-03 Gen Electric REMOVABLE FLAME STABILIZER
US5385015A (en) * 1993-07-02 1995-01-31 United Technologies Corporation Augmentor burner
US20050086941A1 (en) * 2003-08-05 2005-04-28 Snecma Moteurs Afterburner arrangement
US20050262847A1 (en) * 2004-05-28 2005-12-01 Koshoffer John M Method and apparatus for gas turbine engines
US20080280238A1 (en) * 2007-05-07 2008-11-13 Caterpillar Inc. Low swirl injector and method for low-nox combustor
US20110061392A1 (en) * 2009-09-13 2011-03-17 Kendrick Donald W Combustion cavity layouts for fuel staging in trapped vortex combustors
US8418468B2 (en) * 2010-04-06 2013-04-16 General Electric Company Segmented annular ring-manifold quaternary fuel distributor
US8438852B2 (en) 2010-04-06 2013-05-14 General Electric Company Annular ring-manifold quaternary fuel distributor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1302778A (en) * 1918-07-31 1919-05-06 Stone J & Co Ltd Expansion-joint.
US2540594A (en) * 1946-08-23 1951-02-06 Lockheed Aircraft Corp Ram jet engine having variable area inlets
US2701444A (en) * 1950-01-26 1955-02-08 Solar Aircraft Co Burner for jet engines
US2714287A (en) * 1950-01-03 1955-08-02 Westinghouse Electric Corp Flameholder device for turbojet afterburner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1302778A (en) * 1918-07-31 1919-05-06 Stone J & Co Ltd Expansion-joint.
US2540594A (en) * 1946-08-23 1951-02-06 Lockheed Aircraft Corp Ram jet engine having variable area inlets
US2714287A (en) * 1950-01-03 1955-08-02 Westinghouse Electric Corp Flameholder device for turbojet afterburner
US2701444A (en) * 1950-01-26 1955-02-08 Solar Aircraft Co Burner for jet engines

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3270506A (en) * 1961-10-31 1966-09-06 Gen Electric Liquid-vapor fuel injector flameholder
US3236048A (en) * 1963-09-25 1966-02-22 Gen Motors Corp Vaporizing manifold and flameholder for afterburners
FR2330867A1 (en) * 1975-11-04 1977-06-03 Gen Electric REMOVABLE FLAME STABILIZER
US5385015A (en) * 1993-07-02 1995-01-31 United Technologies Corporation Augmentor burner
US20050086941A1 (en) * 2003-08-05 2005-04-28 Snecma Moteurs Afterburner arrangement
US7287383B2 (en) * 2003-08-05 2007-10-30 Snecma Moteurs Afterburner arrangement
US20050262847A1 (en) * 2004-05-28 2005-12-01 Koshoffer John M Method and apparatus for gas turbine engines
US6983601B2 (en) * 2004-05-28 2006-01-10 General Electric Company Method and apparatus for gas turbine engines
US20080280238A1 (en) * 2007-05-07 2008-11-13 Caterpillar Inc. Low swirl injector and method for low-nox combustor
US20110061392A1 (en) * 2009-09-13 2011-03-17 Kendrick Donald W Combustion cavity layouts for fuel staging in trapped vortex combustors
US20110061391A1 (en) * 2009-09-13 2011-03-17 Kendrick Donald W Vortex premixer for combustion apparatus
US20110061395A1 (en) * 2009-09-13 2011-03-17 Kendrick Donald W Method of fuel staging in combustion apparatus
US20110061390A1 (en) * 2009-09-13 2011-03-17 Kendrick Donald W Inlet premixer for combustion apparatus
US8549862B2 (en) 2009-09-13 2013-10-08 Lean Flame, Inc. Method of fuel staging in combustion apparatus
US8689562B2 (en) 2009-09-13 2014-04-08 Donald W. Kendrick Combustion cavity layouts for fuel staging in trapped vortex combustors
US8689561B2 (en) 2009-09-13 2014-04-08 Donald W. Kendrick Vortex premixer for combustion apparatus
US8726666B2 (en) * 2009-09-13 2014-05-20 Donald W. Kendrick Inlet premixer for combustion apparatus
US8418468B2 (en) * 2010-04-06 2013-04-16 General Electric Company Segmented annular ring-manifold quaternary fuel distributor
US8438852B2 (en) 2010-04-06 2013-05-14 General Electric Company Annular ring-manifold quaternary fuel distributor

Similar Documents

Publication Publication Date Title
US5415000A (en) Low NOx combustor retro-fit system for gas turbines
US2794319A (en) Afterburner shell construction
US10584880B2 (en) Mounting of integrated combustor nozzles in a segmented annular combustion system
US2722801A (en) Exhaust ducting arrangements for gas-turbine engines
CN103201563B (en) Pulse detonation combustor
US2638745A (en) Gas turbine combustor having tangential air inlets for primary and secondary air
US10641491B2 (en) Cooling of integrated combustor nozzle of segmented annular combustion system
US3925002A (en) Air preheating combustion apparatus
US3931707A (en) Augmentor flameholding apparatus
US7506514B2 (en) Augmentor fuel conduit bushing
WO2017165876A2 (en) Segmented annular combustion system with axial fuel staging
US5421158A (en) Segmented centerbody for a double annular combustor
JPS5924331B2 (en) Catalytic combustion device for stationary combustion turbine
US2709338A (en) Double-walled ducting for conveying hot gas with means to interconnect the walls
US2862359A (en) Fuel manifold and flameholder in combustion apparatus for jet engines
US2704435A (en) Fuel burning means for a gaseous-fluid propulsion jet
US3745766A (en) Variable geometry for controlling the flow of air to a combustor
US5375420A (en) Segmented centerbody for a double annular combustor
GB894470A (en) Improvements in flame tubes for burning liquid fuel in an air stream
US4592200A (en) Turbo-jet engine afterburner system
US2793495A (en) Jet propulsion combustion apparatus with expansibly mounted fuel manifold
US4487015A (en) Mounting arrangements for combustion equipment
US2760338A (en) Annular combustion chamber for gas turbine engine
US3236048A (en) Vaporizing manifold and flameholder for afterburners
US2929211A (en) Afterburner igniter