New! View global litigation for patent families

US2861401A - Brush and brush material - Google Patents

Brush and brush material Download PDF

Info

Publication number
US2861401A
US2861401A US52135655A US2861401A US 2861401 A US2861401 A US 2861401A US 52135655 A US52135655 A US 52135655A US 2861401 A US2861401 A US 2861401A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
material
brush
abrasive
cord
fig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Ruben O Peterson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSBORN Manufacturing Co
Original Assignee
OSBORN Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46DMANUFACTURE OF BRUSHES
    • A46D1/00Bristles; Selection of materials for bristles
    • A46D1/02Bristles details
    • A46D1/0238Bristles with non-round cross-section
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46DMANUFACTURE OF BRUSHES
    • A46D1/00Bristles; Selection of materials for bristles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S15/00Brushing, scrubbing, and general cleaning
    • Y10S15/03Matrix

Description

Nov. 25, 1958 R. o. PETERSON BRUSH AND BRUSH MATERIAL Original Filed Sept. 6. 1952 2 Sheets-Sheet 1 INVENTOR. RUBEN 0. PE'7ER5ON BY a a. q ofr g! ATTORNEYS Nov. 25, 1958 R. o. PETERSON BRUSH AND BRUSH MATERIAL Original Filed Sept. 6. 1952 2 Sheets-Sheet 2 INVENTOR. RUBEN O. PETERSON AT O EYJ.

United States Patent BRUSH AND BRUSH MATERIAL Ruben O. Peterson, University Heights, Ohio, assignor to The Osborn Manufacturing Company, Cleveland, Ohio, a corporation of Ohio Ori al application September 6 1952, Serial No. 8 ,243. Divided and this application July 11, 1955, Serial No. 521,356

11 Claims. (Cl. 51193.5)

This invention relates as indicated to brushes and brush material, and more particularly to brush material designed for very hard usage. This application is a division of my co-pending application Serial No. 308,243, filed September 6, 1952, in turn a continuation-in-part of copending application Serial No. 760,847 (now Patent No. 2,609,642), filed July 14, 1947, in turn a continuationin-part of co-pending application Serial No. 427,466, filed January 20, 1942, and abandoned in favor of said Serial No. 760,847.

Brushes, and especially rotary brushes, have long been employed to apply abrasive, polishing, and bufling materials to clean, smooth, polish and refine the finish of metallic surfaces and the like. wheels and Tampico fiber brushes, for example, are commonly employed for this purpose but are not satisfactory for all the various types of jobs which might very satisfactorily be done by methods employing such tools. For some purposes they not only wear more rapidly in use than is desirable but also Waste an unnecessarily large proportion of the abrasive material supplied to them. There is a tendency for these tools to generate a great amount of heat when doing work with resultant burning of the fibrous material. With an excessively small area at the working end or edge of the fabric or fiber, the abrasive particles may not be properly applied to the work-piece. The resultant uneven application of the abrasive causes work to be done at an uneven rate. An excessive amount of lint may be cast off by the ordinary fabric buff or string brush to become a fire hazard. Other causes tending to shorten the lives and reduce the effectiveness of such brushes include the indefinite, irregular and sometimes limp character of natural individual brush fibers. e

It is, therefore, a primary object of this invention to provide brushes and brushing material which will be improved in effectiveness in cleaning, scouring, polishing and refining the finish of metallic surfaces and the like and which will also have a greatly increased useful life.

A further object is to provide such material and brushes comprising the same which will be resistant to the action of acids and/ or alkalis.

Still another object is to provide brushing material which will carry and apply abrasive or polishing materials in a manner to achieve improved working relationship with the work-piece and with a minimum of Waste. 1

Other objects of the invention will appear as the description proceeds.

To the accomplishment of the foregoing and related ends, said invention then comprises the features hereinafter fully described and particularly pointed out in the claims, the following description and the annexed drawing setting forth in detail certain illustrative embodiments of theinvention, these being indicative, however, of but a few of the various ways in which the principle of; the invention may be employed.

Insaid annexed drawing:

Cotton fabric bufiing' "ice Fig. 1 is a side elevational view, partly cut away, of a rotary brush section employing brush material in accord ance with my invention;

Fig. 2 is an enlarged view of one type of material treated in accordance with my inv'en'tion; a

Fig. 3 is a view of similar material illustrating one manner in which the same may be rendered acid and alkali proof;

Fig. 4 is a sectional view of the material of Fig. 2;

Fig. 5 is a sectional view taken through a rotary brush section as illustrated in Fig. 1;

Fig. 6 is a fragmentary view of a brush section illustrating an embodiment-employing an alternative form of brushing material; I

Fig. 7 is a view of the braided strip or tape employe as brushing material in the brush of Fig. 6;

Fig. 8 shows a sheet of plastic in which abrasive is embedded from which stranded brush material may be produced in accordance with my invention;

Fig. 9 shows a brush strand produced from the sheet of Fig. 8; c

Fig. 10 is an enlarged sectional view taken on the line 1010 on Fig. 9; v

Fig. 11 shows .a strip of sheet material such as pape or fabric to which abrasive particles have been adhered except for a portion of one side, and from which stranded brush material may be produced;

Fig. 12 is a fragmentary view of a composite strand of brush material comprising a porous inner core of fine filaments and an outer sheath; and

Fig. 13 is a side view, on a reduced scale, of the entire brush of which a portion is shown in Fig. 1.

In one embodiment of my invention I employ abraid of tightly twisted strands such as braided tire cord cable-cord since the tightly twisted strands do not 'unravel in use with nearly the rapidity of loosely twisted strands, and the braiding introduces a porous internal structure, and also, when braided and treated as explained below, are relatively stiff enabling the brush to retain its form much better than when limper sorts of cordage and the like are employed. Referring now more particularly to the drawing, a brush formed in accordance with this invention may comprise a circularized channelform brush back 1 in which brushing material 2 is held by a retaining member such as Wire 3. 'It will, of course, be

understood that the material of this invention may beemployed in other than annular or helical brush backs although it is primarily in the field of rotary brushes that there is the greatest need for the novel qualities of such material. The brush back may desirably be indented as: at 4 to prevent displacement and packing of the brush its tendency to form excellent abrasive carrying open tufts 5 of considerable end area making an ideal working surface to the finished brush. This is particularly striking when compared to Tampico fiber brushes now generally. employed which permit powdered abrasive to filter down.

between the fibers in addition to dropping a good deal of it, rather than holding it in working position. It has been found possible to remove marks from steel surfaces by "employing brushes made in accordance with my invention and to do this with improved economy and satisfaction.

The material of this invention may also be stiffened by impregnating with a hardening and stiffening agent such as glue 6 (see Figs. 2 and 4) which will desirably be set and toughened by subsequent treatment with an agent such as formaldehyde and, optionally, a solution of sodium silicate, (water glass). Such age htpen'etrates between and thoroughly wets the fibers in addition to coating the surface of the cord or like material. The resultant product is hard and tough, relatively waterproof, and is capable of considerable abrasive action of its own. Such abrasive action maybe further enhanced by applying an abrasive substance such as powderous alumina, emery dust or the like prior to the hardening step and preferably prior to or at the same time that the glue is applied. A superficial coating of the brush material with a soft material, as with rubber, is ineffective for this purpose, it being necessary to; employ a stiffening agent and'one' which will penetrate between and wet the fibers as do glue base materials. For this reason it is often desirable that a wetting agent be present if an aqueous solution of glue be employed as a stiffening agent. The above treatmentnot only produces a hard; tough brush material but also aids in preventing unraveling of the strands. Instead of braided cord of the generally circular form illustrated in Figs. 1 to 5 inelusive, flat braided strips 7 of fabric, as shown in Fig. 5, may be treated in a similar manner and employed as shown in Fig. 6. The term cord as employed herein and in the claims is to be understood as including both s'uch forms of brush material; Other embodiments of the invention are obvious to those skilled in the art. When the fabric is to be impregnated with the stiffening agent, it is generally not necessary to employ tightly braided material and a relatively soft braid is entirely satisfactory and sometimes preferable.

The material of this invention may be further treated, if desired, to render the same water-, acidand alkaliproof. This may be done by coating the cord or other material with a thin film of certain synthetic plastics, such as Pliofilm. One method-of thus coating braided tire cord, for example, is illustrated in Fig. 3 where a narrow strip 8 of Pliofilm isv wrapped in slightly overlapping spirals about the cord'.. Heat and pressure are then applied to weld the strip into a continuousimpervious coat in'g. Obviously, this treatment may be applied to the tightly braided cord or the soft-braided but impregnated cord, etc., as desired. 1

Another .way would be to extrude over the surface a thin coating of plastic material such as nylon. If-the nylonis applied in molten condition, as is preferred, it Willbe of relatively low viscosity and may be flowed on with relatively lowpressures although delivered to the cord by extrusion, methods.

In each of the above-described forms of my improved stranded brush material it will be noted that the individual strands comprise smaller strands or fibers assem-- bled in general criss-cross relation, specifically to form a braided cord in contradistinction to twisted and other types of cord in which the fibers are arranged in general parallel relation. As is well known, the latter types of cord are structurally the stronger since the slippage between the individual fibers permits an adjustment to allow the aggregate strength of the fibers to resist a given stress. However, what has not been heretofore recognized in attempting to use such cord as brush material where the component strands are subjected to severe flexing as well as terminal and side wearing action when in use, is that when the cord is treated with a material of low limit of resilience such as aplasticized glue compound, this adjustability is reduced or eliminated. In other words, the impregnated and stiffened cord is only as strong as the impregnating material plus the strength of the few fibers that happen to be in a position to function when a stress is applied. The foregoing explanation, it is believed, accounts forthe fact that cords treated in the manner described are weaker than the untreated cord, unless the lat-, ter be held under tension while being treated. It is for this reason that for some uses it has been found desirable to hold the cord under tension while being treated with a" binding material so as to add the strength of the latter to that of the aggregate strength of the fibers (cf. Patent No. 2,220,958 to Jennings).

In eo-ntradistinction to the foregoing, I have found that increased tensile strength is not a chief requisite in brush material made from cord, but'that it is very important that such material be capable of withstanding the wear, and particularly the heating and flexing, that it will encounter when made into a brush. Actually such cord will stand up better if the outer fibers composing the same are not under tension but somewhat loosely looped so that flexing will not overstrain them. For this reason, a braided cord, for example, while not a good construction for attaining maximum tensile strength, has been found highly satisfactory for the purpose in hand, in that it has an open porous structure, is very wellsuited to withstand flexing after the described treatment and has greater nonraveling characteristics than a twisted cord. Furthermore, since the component strands or fibers of such braided cord lie at angles to each other, i. e. in general criss-cross relation, rather than in general parallel relation, the'cord' is provided with uniformly distributed pocket-like interstices which receive and retain an adequate amount of the treating material. Moreover, where the latter contains a finely ground abrasive, the latter will be retained in such interstices despite absorption by the fibers of the cord of a portion' of the treating agent which serves as the vehicle for introducing such abrasive.

The ideal abrasive-carrying brush material requires to have several rather conflicting characteristics which have in the past prevented any really satisfactory solution. The abrasive should be incorporatedir'ito the brush material instead of being fed thereto since such latter method is messy and wasteful, and does not provide a uniform concentration ofabrasive at the work-pieee. Loose abrasive particles between the strands of the brush material and abrasive which is superficially exposed onthe lateral surfaces contribute to the generation" of excess'ive heat and useless wearing of such strands. on the other hand, if the abrasive particles are to have an efficient cutting action they should not ordinarily be entirely embedded or submerged in a solid supporting medium" or matrix. A continuous non-porous abrasive-containing strandsnch as might be made inaccordance" with the teachings of Radford Patent No. 2,328,998, for example,

does' not leave the edges and points of the abrasive particlesfree to act. The more loosely boundporous structure here contemplated can release contained abrasive particles in a way to give their points and edges freedom to cut, scratch or otherwise perform their function. More over, the openshort fiber tuft which forms in use at the end of the material of this invention can receive and make effective the abrasive grains of externally applied abrasive compound. U

I have successfully solved this problem, as shown by actual tests, by providing stranded brush material having a relatively smooth exterior surface but with abrasive contained internally thereof. As the ends of the strands wear down additional abrasive is exposed in position to contact the work but there is little friction between thestrands themselves as they are flexed, greatly reducing heat generation and resulting tendency to self-destruction. It will be seen, therefore, that I have produced stranded brush material which has increased abrasive actionat its endsbut minimized abrasive action along its .length.

Referring nowsmore particularly to Figs. 8 1-1- inelu- 'siv e, such figures illustrate.one embodirnent of my in ventionjwhereby such result may be achieved, A thin film or strip 9 ofa plastic such as Pliofilm (rub'ber hydro; chloride-rubber derivatives and rubber-like resins) or nylon (a polyamide resin) serves as the base in which particles of abrasive 10 may be embedded asbyrollings 0r such particles may be cemented in place either by means of an adhesiveor by use of a little' solvent effective to render the surface of the sheet gummy-and which then evaporates. In whatever manner the abrasive particles are embedded or adhered they will in effect be mounted on the surface where they are enabled to exert full cutting action. The strip 9 will then be rolled or twisted as shown in Fig. 9 to form a strand useful as brush material. Obviously this may be carried out -as a continuous process employing a long strip of plastic, and the resultant strand cut into desired lengths.

As shown in Fig. 10, the particles of abrasive 10 project into the interstices between the convolutions of the twisted strip where they will be exposed at theends of the strands for effective cutting action. The overlapping seams 11 may be heat-treated to weld the same or cemented by treatment .with solvent or adhesive, thereby providing a smooth exterior surface affording a minimum of frictional resistance to relative movement of the strands in the rapidly rotating brush.

As shown in Fig. 11, the plastic strip 9, instead of having abrasive particles secured to one side only, may have such particles on both sides except, preferably, for an area 12 which will form the exterior surface of the strand when the strip is rolled as above. In this way it is possible to greatly increase the abrasive content of the finished strand.

Instead of using a strip of plastic, paper, preferably of super-kraft strength, may be employed, the abrasive particles being cemented thereto and the strand formed by twisting or rolling. Such strand may be treated to secure the same in twisted condition as by means of adhesive or a wax coating. Various fabrics such as cotton cloth may be similarly employed. Care should be taken that adhesives and the like are of a type which will havelittle or no tendency to smudge the surface of the work-piece to be brushed, and such smudge as may be produced should be easily removable by ordinary cleaning methods.

It has been found that for many purposes relatively fine filaments or fibers provide a more satisfactory result than fibers of larger diameter. In particular, brush material made up of small filaments of a diameter less than ten one-thousandths of an inch (cotton fibers are about four ten-thousandths) will give a fine surface on metal parts for plating, for example. However, the smaller the composite strands of the brush material the greater is the total surface area which, by action within a brush may increase the tendency of the brush to generate frictional heat. Also, most very small diameter fibers of practical lengths for brush purposes are not sufficiently stiif to stand up and act individually. I therefore prefer to assemble a body of such small filaments to form a porous composite strand and to encase the same in a sheath which has the advantages above described and additionally substantially reduces relative movement of the individual filaments. A sliver of such fine filaments 13 may be passed through a bath or slurry containing adhesive and abrasive material 14 and then twisted, dried and encased in a sheath 15 of plastic, paper or fabric (see Fig. 12). The tuft 16 of fine filaments formed at the end of the strand provides an excellent polishing and is an example of a wax-like coatingmate'rial whichis" suitable for thus coating the strands of brushes designed for certain uses.

A great advantage of this type of strand is that short (and therefore-cheap) fibers may .be employed which are not otherwise useful since twisting of the filaments together provides a strand of indefinite length and the sheath of plastic or other coating confines the fibers and prevents loosening thereof with resultant disintegration of the strand. The bonding agent such as glue also assists in securing the fibers together.

In the past, buffing operations have been performed.

almost entirely by means of bufis composed of woven fabric. Such buffs, however, suffer from several serious disadvantages. Since more than one-half of the threads or fibers of the fabric are non-radially disposed such:

threads are easily shed and the buff disintegrates and becomes irregular much more rapidly than it actually wears away. The layers of fabric afford a solid face which will not conform to a slightly uneven surface on the work-piece as do the strands of a true brush. It

will be seen that my new brushing material will surpass The exposed abrasive tends to cause development of ex finishing face to the brush. I have found that the heat generated by the interaction of the brushing material may thus be greatly reduced, and in one case found a reduction to about one-eighteenth that developed when the composite filaments were not thus encased and were about one two-hundredths the diameter of my new material.

Fibrous material such as American hemp, for example, may be passed through a slurry of abrasive while in sliverform and then twisted into abrasive-containing strands. Such strands will then be given an outer coating, as of liquid nylon or wax, and are ready to be incorporated into a rotary brush. This surface coating in effect encases the composite strand and minimizes abrasive cutting action between the strands themselves. Chlor-naphthalene cessive heat and promotes self-destruction of the material. I overcome these problems by forming the strips into strands with at least the major portion of the abrasive internally thereof. Such strands afford greater density of brush material at the brush face and avoid the difficulty of shedding threads which otherwise is so prevalent.

It will be seen that I have provided a new type of brush material and a new brush capable of greatly improvedbrushing action and a longer and more economi cal life. Such brushes may be rotated at much greater speeds than ever before without danger of burning and With a much increased production of finished workpieces. At the same time, such material and brushes may themselves be produced in large quantities and at little expense.

Certain fibrous materials such as fiber glass, for example, may themselves be quite abrasive when employed as the core material, with or without the inclusion of granular abrasive particles therewith. The glass fibers will desirably be bonded together at spaced points to leave interstices or pores therebetween to facilitate flexing and enhance the abrasive action. The outer plastic coating of the strand or bristle may be of nylon or other similar material. .-Particularly when very fine glass fibers are utilized as the core material a dual effect .is obtained:. the coated strands serve as individual flexible and resilient bristles with good snap action when mounted in a brush, and small tufts of glass fibers are formed at the working end of each such bristle which catch minute particles of abrasive (if used) or sweep clean if the brush is employed asa floor cleaning tool, for example.

As shown and described in my aforementioned prior Patent 2,303,386, the brush back in which the brush material is retained may contain a plastic material such as rubber adapted to embed the brush material and adhere the same to the back and the wire or like elongated anchoring means as well as adhering the brush material together. The stranded fibrous cord-bristles 2 are dis posed in side-by-side relationship to each other and bent intermediate their ends about the elongated anchoring strip 3 and folded back on themselves, each said cordbristle directly engaging the elongated anchoring strip about which it is bent (Figs. 1 and 5). A substantially U-shaped backing strip 1 (Fig. 5) comprising formable' metal. is pressed on the outside of the cord-"bristles. in

the region where they are bent about the elongated an-' choring strip, the side-by-side' cord-bristles forming a single layer (Figs. 1 and 5) about the elongatedanchoring strip; This single layer of cord-bristles forms a double row extending away from the elongated anchoring strip in substantially the same general direction, the backing strip directly engaging each cord-bristle and clamping the same directly against the elongated anchoring-strip. The bristles may be glued together and to the back and anchoring strip where they are bent about the latter by means of plastic material such as rubber disclosed in my patent 2,303,386;

Qther modes of applying the principle 'of the invention may be employed, change being made as regards the details described, provided the featui'es stated in any of the following claims or the equivalent of such be employed.

I therefore particularly point out and distinctly claim as my invention:

1. A brush element comprising an elongated strip of anchoring material, a plurality of stranded'fibrous cord bristles disposed in side-by-side relationship with each other and bent substantially intermediate their 'ends directly about the elongated anchoring strip and folded substantially the same general direction, said backing strip directly engaging each cord-bristle and clamping same directly against the elongated anchoring strip.

2. A brush element comprising elongated anchoring means, a plurality 'of bristle elements disposed in sideby-side relationship with each other and bent substantially intermediate their ends directly by about the elongated anchoring means and folded back upon themselves, each of said bristle elements directly engaging the elon-. gated anchoring means about which it. is bent, and backing means including material engaging the outside of the bristle elements in the region where they are bent about the elongated anchoring means, said side-by-side bristle elements 'forming a single layer about said elongated anchoring means, said single layer 'of bristle elements 7 forming a double row extending away from the elongated anchoriug means in substantially the same general direction, said backing means directly engaging each bristle, element and holding same directly against the elongated anchoring means.

3. The brush element of claim'2 wherein said backing means describes a 'circle with said bristle elements extendinggerrera'lly radially outwardly therefrom.

4. The brush element of claim 2 wherein said bristle elements comprise fabric cords impregnated with a hardening an'd stiffening medium, whereby the individual cords are rendered hard and self-sustaining.

5. The brush element of claim 2, wherein said bristle elements comprise fabric cords impregnated with a hardening and stiifening medium, whereby the individual cords are rendered hard and self-sustaining, such individual cords haying a superficially applied, adherent-thin nonabrasive film of an acid and alkali resistant material.

6. The brush element of claim 2 wherein said bristle elements comprise fabric cords impregnated with a hardening and stiffening medium, whereby the individual cards are rendered hard and self-sustaining, such medium carrying powdered abrasive material and such cords having individually applied a superficial adherent thin non-abra-' sive film of anacid and alkali resistant material.

7. A rotary brush element in accordance with claim 2, wherein said bristle elements comprise porous strands formed of a body of fibrous material encased in and tightly held within a smooth close outer plastic sheath, such fibrous material forming a core having open interstices between the fibers.

8. The brush element of claim 2, wherein said bristle elements comprise flexible strands formed of porous bodies of fibrous material encased in a flexible nonabrasive surrounding sheath.

9. The brush element of claim 2, wherein said bristle elements comprise flexible strands formed of porous bodies of hard-abrasive fibrous material encased in a surrounding sheath.

10. A- rotar y brush element in accordance with claim 2, wherein said bristle elements comprise porous strands formed of a brindle of abrasive fibrous material bonded together at spaced points but with open interstices therebe'tween, and encased in a flexible surrounding sheath.

11. A rotary brush element in accordance with claim 2, wherein said bristle elements comprise porous strands formed of a bundle of fine glass fibers bonded together at spaced points but with open interstices therebetween, and encased in a flexible plastic sheath.

References Cited in the file of this patent

US2861401A 1952-09-06 1955-07-11 Brush and brush material Expired - Lifetime US2861401A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US2846827A US2846827A (en) 1952-09-06 1952-09-06 Brush and brush material
US2861401A US2861401A (en) 1952-09-06 1955-07-11 Brush and brush material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2861401A US2861401A (en) 1952-09-06 1955-07-11 Brush and brush material

Publications (1)

Publication Number Publication Date
US2861401A true US2861401A (en) 1958-11-25

Family

ID=26976158

Family Applications (1)

Application Number Title Priority Date Filing Date
US2861401A Expired - Lifetime US2861401A (en) 1952-09-06 1955-07-11 Brush and brush material

Country Status (1)

Country Link
US (1) US2861401A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2920428A (en) * 1958-12-17 1960-01-12 F L & J C Codman Company Rotary finger buff
US3026146A (en) * 1959-12-24 1962-03-20 Szabo Gyozo Method of and apparatus for the manufacture of brushes
US4391665A (en) * 1981-08-10 1983-07-05 Mitchell Jr Paul B Method of making pile material
US5903951A (en) * 1995-11-16 1999-05-18 Minnesota Mining And Manufacturing Company Molded brush segment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US642484A (en) * 1899-08-07 1900-01-30 Arthur F Phillips Brush.
US665832A (en) * 1900-10-06 1901-01-08 Sidney H Bellows Brush.
US1152180A (en) * 1914-07-07 1915-08-31 Robert Hetherington Brush.
US1188262A (en) * 1915-10-07 1916-06-20 Claude Frederick Fountain-brush.
US1470649A (en) * 1921-08-17 1923-10-16 Severns William Mop-cutting machine
US1787965A (en) * 1929-11-13 1931-01-06 Morris L Weiss Abrasive mop
US1797249A (en) * 1926-07-07 1931-03-24 Dunlop Rubber Co Apparatus for the manufacture of cords or strings
US2351546A (en) * 1942-01-20 1944-06-13 Paul M Rogers Method and means for the manufacture of flat mops
US2363217A (en) * 1944-11-21 Process fob making brush elements
US2449668A (en) * 1943-11-09 1948-09-21 Osborn Mfg Co Method of and apparatus for making brushes
US2707247A (en) * 1951-06-05 1955-04-26 Hanovia Chemical & Mfg Co Vapor electric discharge lamp

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2363217A (en) * 1944-11-21 Process fob making brush elements
US642484A (en) * 1899-08-07 1900-01-30 Arthur F Phillips Brush.
US665832A (en) * 1900-10-06 1901-01-08 Sidney H Bellows Brush.
US1152180A (en) * 1914-07-07 1915-08-31 Robert Hetherington Brush.
US1188262A (en) * 1915-10-07 1916-06-20 Claude Frederick Fountain-brush.
US1470649A (en) * 1921-08-17 1923-10-16 Severns William Mop-cutting machine
US1797249A (en) * 1926-07-07 1931-03-24 Dunlop Rubber Co Apparatus for the manufacture of cords or strings
US1787965A (en) * 1929-11-13 1931-01-06 Morris L Weiss Abrasive mop
US2351546A (en) * 1942-01-20 1944-06-13 Paul M Rogers Method and means for the manufacture of flat mops
US2449668A (en) * 1943-11-09 1948-09-21 Osborn Mfg Co Method of and apparatus for making brushes
US2707247A (en) * 1951-06-05 1955-04-26 Hanovia Chemical & Mfg Co Vapor electric discharge lamp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2920428A (en) * 1958-12-17 1960-01-12 F L & J C Codman Company Rotary finger buff
US3026146A (en) * 1959-12-24 1962-03-20 Szabo Gyozo Method of and apparatus for the manufacture of brushes
US4391665A (en) * 1981-08-10 1983-07-05 Mitchell Jr Paul B Method of making pile material
US5903951A (en) * 1995-11-16 1999-05-18 Minnesota Mining And Manufacturing Company Molded brush segment

Similar Documents

Publication Publication Date Title
US3258805A (en) Tooth brush
US3594049A (en) Bearing liner
US3451758A (en) Trapezoidal scouring pad of non-woven fibrous material
US3308522A (en) Anti-offset roll
US2958593A (en) Low density open non-woven fibrous abrasive article
US2902395A (en) Absorbent wiping sheet
US2880080A (en) Reinforced abrasive articles and intermediate products
US4466151A (en) Applicator for applying a coating to a surface
US3166388A (en) Sandpaper
US5915436A (en) Molded brush
US5400458A (en) Brush segment for industrial brushes
US5573844A (en) Conformable surface finishing article and method for manufacture of same
US3498010A (en) Flexible grinding disc
US2391731A (en) Spliced abrasive belt, band, and the like
US3181193A (en) Floor cleaning brushes
US3327339A (en) Composite filaments
US5443906A (en) Abrasive filaments comprising abrasive-filled thermoplastic elastomer, methods of making same, articles incorporting same and methods of using said articles
US4767398A (en) Swab applicator comprising a flock swab tip
US4380092A (en) Accessory for using steel wool or other abrading materials
US5626512A (en) Scouring articles and process for the manufacture of same
US3146560A (en) Abrasive products
US4991362A (en) Hand scouring pad
USRE26688E (en) Lemelson composite filaments
US5016311A (en) Apparatus and brush segment arrangement for finishing wheel brushes; and method
US5025596A (en) Hand scouring pad