US2838714A - Igniting and operating circuit for discharge tubes - Google Patents

Igniting and operating circuit for discharge tubes Download PDF

Info

Publication number
US2838714A
US2838714A US455121A US45512154A US2838714A US 2838714 A US2838714 A US 2838714A US 455121 A US455121 A US 455121A US 45512154 A US45512154 A US 45512154A US 2838714 A US2838714 A US 2838714A
Authority
US
United States
Prior art keywords
tube
voltage
stabilized
current
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US455121A
Inventor
Moerkens Jozef Cornelis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
North American Philips Co Inc
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Application granted granted Critical
Publication of US2838714A publication Critical patent/US2838714A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/16Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies
    • H05B41/20Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch
    • H05B41/23Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch for lamps not having an auxiliary starting electrode
    • H05B41/232Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch for lamps not having an auxiliary starting electrode for low-pressure lamps
    • H05B41/2325Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch for lamps not having an auxiliary starting electrode for low-pressure lamps provided with pre-heating electrodes

Definitions

  • the present invention relates to an igniting and operating circuit for a pair of gas or vapor discharge tubes.
  • One circuit of the foregoing type comprises two gaseous or vapor discharge tubes stabilized capacitively and inductively, respectively, the tubes including thermionic electrodes connected to secondary windings of a transformer, of which the primary winding is connected in series with the series-impedance of the tube stabilized inductively.
  • This arrangement affords the advantages of a satisfactory power factor, a small stroboscopic effect and a common heating-current transformer which cannot be overloaded by a direct-current component of the tube stabilized capacitively.
  • the seriesimpedance of the tube stabilizedinductively and the primary winding of the heating-current transformer, which are connected in series constitute an inductive voltage-divider.
  • the voltage set up across the primary winding is smaller than the supply voltage, so that the tube stabilized inductively, which is connected in parallel therewith, is ignited less readily than at the full supply voltage.
  • the voltage set up at the inductively-stabilized tube may be increased by transformation, but in this case the discharge current of the tube traverses the heating-current windings and this implies an undesirable overload thereof.
  • the chief object of the invention is to provide a circuit obviating the above-mentioned difiiculties.
  • of the present invention exhibits the characteristic that the circuit of the tube stabilized capacitively is connected, in series with part of the series-impedance of the tube stabilized inductively, to the terminals of the source of potential, and that the heating-current windings of the tube stabilized capacitively are connected in such manner that, when potential is applied to the circuit, the voltage set up at the tube stabilized capacitively is higher than the voltage of the source, whereas the heating-current windings of the tube stabilized inductively are connected in such manner that, when the potential is applied, the voltage set up at the tube stabilized inductively is not higher than the voltage across the primary winding of the heating-current transformer.
  • This arrangement results in an increased voltage for the ignition of the tube stabilized capacitively, so that this tube is ignited first. After the ignition thereof, its discharge current traverses part of the series-impedance of the tube stabilized inductively and this part constitutes the primary winding of a transformer which supplies an increased voltage for the ignition of the tube stabilized inductively.
  • the discharge current of a discharge tube flows via those extremities of the thermionic electrodes which exhibit, relatively, the highest potential difference.
  • the primary winding of the common heating-current transformer is connected in parallel with the tube stabilized inductively, the voltages of all the heating-current windings during normal operation are in phase with the operating voltage of said tube. Conse- The circuit qucntly, the heating-current windings of the tube stabilized capacitively no longer bring about an increase in the voltage on this tube during normal operation, so that neither the heating-current windings of the capacitivelystabilized tube nor those of the tube stabilized inductively are traversed by the discharge current.
  • the number of heating-current turns of this tube may be larger than that of the tube stabilized inductively.
  • Fig. l is a schematic circuit diagram of an embodiment of the arrangement of the present invention.
  • Fig, 2 is a voltage diagram of the circuit of Fig. l during normal operation.
  • reference numerals 1 and 2 indicate two gaseous or vapor-discharge tubes, for example, 40 watt fluorescent lamps; that is to say, low-pressure mercuryvapor discharge tubes of about 120 ems. in length and about 4 cms. in diameter, which tubes also contain a rare gas, for example, argon, at a few millimeters pressure and of which the walls are coated with materials by which the radiation produced in the discharge are converted into radiation of longer wavelength.
  • the operating voltage of such tubes is about volts and the discharge current is about 0.43 ampere.
  • Tube 1 is connected to terminals 3 and 4 of a suitable source of potential via the series-combination of an inductance 5, a capacitor 6 and a part of an inductance 7.
  • the capacitative reactance of the capacitor 6 is higher than the total inductive reactance of the inductance coil 5 and that portion of the inductance coil 7 which is located between the points 3 and 71, so that the tube 1 is stabilized capacitively; that is to say, its discharge current leads with respect to a supply voltage or" 220 volts,
  • Tube 2 is stabilized inductively by means of the inductance 7.
  • Each of the tubes 1 and 2 comprise thermionic electrodes 11, 12 and 21, 22, respectively, which are connected to secondary windings 13, 14 and 23, 24, respectively, of a transformer 8, of which the primary winding 9 is connected via inductance 7 to the terminals 3 and 4.
  • the primary winding 9 is connected directly in parallel with the tube 2.
  • the ends of the primary winding 9 also constitute the heating-current windings 23 and 24.
  • the windings 23 and 24 could alternatively be formed as separate windings which are so connected to the primary winding that the maximum voltage set up across tube 2 is not higher than the voltage across the primary winding 9.
  • the heating-current windings 13 and 14 are formed as separate windings and are connected to the capacitor 6 and the terminal 4, respectively, in such manner that the voltage set up at the tube 1, which has not yet ignited, is higher than the applied voltage between the terminals 3 and 4.
  • the circuit was proportioned as follows for a supply voltage of 220 volts, 50 cycles per second, and the use of two 40 watt fluorescent lamps.
  • the inductance 5 had an impedance of about 250 ohms at 0.44 ampere
  • the capacitor 6 had an impedance of about 630 ohms at 0.44 ampere
  • the inductance 7 had an impedance of about 420 ohms at 0.44 ampere with a total number of 1530 turns, of which 300 were located between the points 3 and 71.
  • the heating-current transformer 8 comprised 1720 primary turns, of which 60 turns at each extremity served as the heating-current windings 23 and 24, respectively.
  • the transformer also included two separate windings 13 and 14, each of 100 turns.
  • the voltage set up at tube 1 is about 232 volts and that at tube 2 is about 196 volts.
  • the device then absorbs only the primary current of about 0.1 ampere of the heating-current transformer, the heating current of the electrodes 11, 12 being about 0.43 ampere, and that of the electrodes 21, 22 being about 0.35 ampere.
  • the tube 1 is ignited first. Its discharge current flows via the part of inductance 7 located between the points 3 and '71 thus causing the voltage across winding 9 and tube 2 to be increased up to about 236 volts and the heating current traversing the electrodes 21 and 22 to be increased up to about 0.42 ampere. This leads to ignition of tube 2.
  • only the operating voltage of about 110 volts of tube 2 is set up across primary winding 9, so that the heating currents of the electrodes also decrease proportionally.
  • Fig. 2 shows the voltage diagram of this device during normal operation. For the sake of simplicity, it is assumed that point 71 coincides with point 3.
  • the supply voltage E lags by about 60 with respect to the operating voltage E of the'tube 1 stabilized capacitively, and leads by about 60 with respect to the operating voltage E of the tube 2 stabilized inductively.
  • E and E indicate the voltages across the elements 5, 6 and across the inductance 7, respectively.
  • the voltages E E E E of the corresponding heatingcurrent windings are directed in the same sense as the operating voltage E of the tube stabilized inductively.
  • the tubes 1 and 2 may have provided on their walls ignition electrodes (not 4 shown) which are electrically connected, if desired, to ground or to a thermionic electrode.
  • An igniting and operating circuit arrangement for two discharge tubes each having an ionizable medium and a pair of thermionic electrodes said circuit arrangement comprising input means for a source of potential, an inductive impedance connected in series with a first of said tubes to said input means, a capacitative impedance connected in series with the second of said tubes and a portion or" said inductive impedance to said input means, said portion of said inductive impedance comprising less than the whole of the said inductive impedance, a transformer having a primary winding and having a plurality of secondary windings each connected to and energizing a respective one of said thermionic electrodes, said primary winding being connected in shunt with said first tube and in series with said inductive impedance to said input means, the secondary windings energizing the thermionic electrodes of said first tube being poled to produce across said first tube a voltage having a value not higher than the voltage across said primary winding, and the secondary windings en

Description

June 10, 1958 J. c. MOERKENS 2,838,714
IGNI TING AND OPERATING CIRCUIT FOR DISCHARGE TUBES Filed Sept. 10. 1954 v INVENTOR- JOZE F CO RNELIS MOERKENS BY v ATTORNEY Unite 2,838,714 Patented June 10, 1958 IGNITING AND OPERATING CIRCUIT FOR DISCHARGE TUBES Jozef Cornelis Moerkens, Eindhoven, Netherlands, as-
signor, by mesne assignments, to North American Philips Company, Inc., New York, N. Y., a corporation of Delaware Application September 10, 1954, Serial No. 455,121
Claims] priority, application Netherlands September 28, 1953 3 Claims. (Cl. 315-97) The present invention relates to an igniting and operating circuit for a pair of gas or vapor discharge tubes.
, One circuit of the foregoing type comprises two gaseous or vapor discharge tubes stabilized capacitively and inductively, respectively, the tubes including thermionic electrodes connected to secondary windings of a transformer, of which the primary winding is connected in series with the series-impedance of the tube stabilized inductively. This arrangement affords the advantages of a satisfactory power factor, a small stroboscopic effect and a common heating-current transformer which cannot be overloaded by a direct-current component of the tube stabilized capacitively. The seriesimpedance of the tube stabilizedinductively and the primary winding of the heating-current transformer, which are connected in series, constitute an inductive voltage-divider. Consequently, when potential is applied to the circuit, the voltage set up across the primary winding is smaller than the supply voltage, so that the tube stabilized inductively, which is connected in parallel therewith, is ignited less readily than at the full supply voltage. As a matter of fact, the voltage set up at the inductively-stabilized tube may be increased by transformation, but in this case the discharge current of the tube traverses the heating-current windings and this implies an undesirable overload thereof.
The chief object of the invention is to provide a circuit obviating the above-mentioned difiiculties. of the present invention exhibits the characteristic that the circuit of the tube stabilized capacitively is connected, in series with part of the series-impedance of the tube stabilized inductively, to the terminals of the source of potential, and that the heating-current windings of the tube stabilized capacitively are connected in such manner that, when potential is applied to the circuit, the voltage set up at the tube stabilized capacitively is higher than the voltage of the source, whereas the heating-current windings of the tube stabilized inductively are connected in such manner that, when the potential is applied, the voltage set up at the tube stabilized inductively is not higher than the voltage across the primary winding of the heating-current transformer.
This arrangement results in an increased voltage for the ignition of the tube stabilized capacitively, so that this tube is ignited first. After the ignition thereof, its discharge current traverses part of the series-impedance of the tube stabilized inductively and this part constitutes the primary winding of a transformer which supplies an increased voltage for the ignition of the tube stabilized inductively.
Further, the discharge current of a discharge tube flows via those extremities of the thermionic electrodes which exhibit, relatively, the highest potential difference. Now, due to the fact that the primary winding of the common heating-current transformer is connected in parallel with the tube stabilized inductively, the voltages of all the heating-current windings during normal operation are in phase with the operating voltage of said tube. Conse- The circuit qucntly, the heating-current windings of the tube stabilized capacitively no longer bring about an increase in the voltage on this tube during normal operation, so that neither the heating-current windings of the capacitivelystabilized tube nor those of the tube stabilized inductively are traversed by the discharge current.
In order to ensure that the tube stabilized capacitively is ignited first, the number of heating-current turns of this tube may be larger than that of the tube stabilized inductively.
In order that the invention may be readily carried into etfect it will now be described with reference to the accompanying drawing, wherein:
Fig. l is a schematic circuit diagram of an embodiment of the arrangement of the present invention; and
Fig, 2 is a voltage diagram of the circuit of Fig. l during normal operation.
In Fig. 1, reference numerals 1 and 2 indicate two gaseous or vapor-discharge tubes, for example, 40 watt fluorescent lamps; that is to say, low-pressure mercuryvapor discharge tubes of about 120 ems. in length and about 4 cms. in diameter, which tubes also contain a rare gas, for example, argon, at a few millimeters pressure and of which the walls are coated with materials by which the radiation produced in the discharge are converted into radiation of longer wavelength. During normal operation, the operating voltage of such tubes is about volts and the discharge current is about 0.43 ampere.
Tube 1 is connected to terminals 3 and 4 of a suitable source of potential via the series-combination of an inductance 5, a capacitor 6 and a part of an inductance 7. The capacitative reactance of the capacitor 6 is higher than the total inductive reactance of the inductance coil 5 and that portion of the inductance coil 7 which is located between the points 3 and 71, so that the tube 1 is stabilized capacitively; that is to say, its discharge current leads with respect to a supply voltage or" 220 volts,
50 cycles, of which 3.and 4 represent the terminals. It is to be noted that the mutual sequence of the elements 5 and 6 is immaterial. Tube 2 is stabilized inductively by means of the inductance 7.
Each of the tubes 1 and 2 comprise thermionic electrodes 11, 12 and 21, 22, respectively, which are connected to secondary windings 13, 14 and 23, 24, respectively, of a transformer 8, of which the primary winding 9 is connected via inductance 7 to the terminals 3 and 4. The primary winding 9 is connected directly in parallel with the tube 2. The ends of the primary winding 9 also constitute the heating- current windings 23 and 24. However, if desired, the windings 23 and 24 could alternatively be formed as separate windings which are so connected to the primary winding that the maximum voltage set up across tube 2 is not higher than the voltage across the primary winding 9.
The heating-current windings 13 and 14 are formed as separate windings and are connected to the capacitor 6 and the terminal 4, respectively, in such manner that the voltage set up at the tube 1, which has not yet ignited, is higher than the applied voltage between the terminals 3 and 4.
In one specific embodiment, for example, the circuit was proportioned as follows for a supply voltage of 220 volts, 50 cycles per second, and the use of two 40 watt fluorescent lamps. The inductance 5 had an impedance of about 250 ohms at 0.44 ampere, the capacitor 6 had an impedance of about 630 ohms at 0.44 ampere, and the inductance 7 had an impedance of about 420 ohms at 0.44 ampere with a total number of 1530 turns, of which 300 were located between the points 3 and 71. The heating-current transformer 8 comprised 1720 primary turns, of which 60 turns at each extremity served as the heating- current windings 23 and 24, respectively. The transformer also included two separate windings 13 and 14, each of 100 turns.
When voltage is applied to the circuit, the voltage set up at tube 1 is about 232 volts and that at tube 2 is about 196 volts. The device then absorbs only the primary current of about 0.1 ampere of the heating-current transformer, the heating current of the electrodes 11, 12 being about 0.43 ampere, and that of the electrodes 21, 22 being about 0.35 ampere. Under these conditions, the tube 1 is ignited first. Its discharge current flows via the part of inductance 7 located between the points 3 and '71 thus causing the voltage across winding 9 and tube 2 to be increased up to about 236 volts and the heating current traversing the electrodes 21 and 22 to be increased up to about 0.42 ampere. This leads to ignition of tube 2. In the normal operating condition that now prevails, only the operating voltage of about 110 volts of tube 2 is set up across primary winding 9, so that the heating currents of the electrodes also decrease proportionally.
Fig. 2 shows the voltage diagram of this device during normal operation. For the sake of simplicity, it is assumed that point 71 coincides with point 3. The supply voltage E lags by about 60 with respect to the operating voltage E of the'tube 1 stabilized capacitively, and leads by about 60 with respect to the operating voltage E of the tube 2 stabilized inductively. E and E -indicate the voltages across the elements 5, 6 and across the inductance 7, respectively. The voltages E E E E of the corresponding heatingcurrent windings are directed in the same sense as the operating voltage E of the tube stabilized inductively.
'The discharge applies to those extremities of the electrodes between which the highest potential difference prevails. As may be seen from Fig. 2, these are in both tubes 1 and 2 those extremities which are connected directly to a series-impedance and the supply voltage,'re spectively. Consequently, there is no flow of discharge current through a heating-current winding. Furthermore, due to the fact that the heating-current windings of the tube stabilized capacitively are provided on a transformer, the primary winding of which is connected in parallel with the tube stabilized inductively, the heating-current windings may be connected in such manner that they supply an increased ignition voltage and nevertheless are not traversed by the discharge current.
In order to facilitate ignition, the tubes 1 and 2 may have provided on their walls ignition electrodes (not 4 shown) which are electrically connected, if desired, to ground or to a thermionic electrode.
While I have described my invention in connection with specific embodiments and applications, other modifications thereof will be readily apparent to those skilled in this art without departing from the spirit and scope of the invention as defined in the appended claims.
What is claimed is:
1. An igniting and operating circuit arrangement for two discharge tubes each having an ionizable medium and a pair of thermionic electrodes, said circuit arrangement comprising input means for a source of potential, an inductive impedance connected in series with a first of said tubes to said input means, a capacitative impedance connected in series with the second of said tubes and a portion or" said inductive impedance to said input means, said portion of said inductive impedance comprising less than the whole of the said inductive impedance, a transformer having a primary winding and having a plurality of secondary windings each connected to and energizing a respective one of said thermionic electrodes, said primary winding being connected in shunt with said first tube and in series with said inductive impedance to said input means, the secondary windings energizing the thermionic electrodes of said first tube being poled to produce across said first tube a voltage having a value not higher than the voltage across said primary winding, and the secondary windings energizing the thermionic electrodes of said second tube being poled to produce across said second tube a voltage having a value greater than the potential of said source.
2. A circuit arrangement as claimed in claim 1, wherein said secondary windings energizing the thermionic electrodes of said second tube'have a greater number of turns than the secondary windings energizing the thermionic electrodes of said first tube.
3. A circuit arrangement as claimed in claim 1, wherein said primary winding and the secondary windings energizing the thermionic electrodes of said first tube are windings of an autotransformer.
References Cited in the file of this patent UNITED STATES PATENTS 2,025,471 Osborne Dec. 24, 1935 2,504,549 Lemmers Apr. 18, 1950 2,505,288 Hall Apr. 25, 1950 2,683,240 Strange July 6, 1954
US455121A 1953-09-28 1954-09-10 Igniting and operating circuit for discharge tubes Expired - Lifetime US2838714A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2838714X 1953-09-28

Publications (1)

Publication Number Publication Date
US2838714A true US2838714A (en) 1958-06-10

Family

ID=19875969

Family Applications (1)

Application Number Title Priority Date Filing Date
US455121A Expired - Lifetime US2838714A (en) 1953-09-28 1954-09-10 Igniting and operating circuit for discharge tubes

Country Status (1)

Country Link
US (1) US2838714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987650A (en) * 1958-09-26 1961-06-06 Thorn Electrical Ind Ltd Gaseous discharge lamp circuit
US4329466A (en) * 1979-01-16 1982-05-11 Delalande S.A. Certain nor-tropan-8-amine-3-aryl or heteroaryl derivatives

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2025471A (en) * 1934-05-04 1935-12-24 Ferranti Electric Ltd Correction of power factor
US2504549A (en) * 1947-02-28 1950-04-18 Gen Electric Starting and operating circuit for electric discharge devices
US2505288A (en) * 1946-10-24 1950-04-25 Willard C Hall Static impedance and phase changing circuit
US2683240A (en) * 1949-09-20 1954-07-06 Thorn Electrical Ind Ltd Electric lamp circuits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2025471A (en) * 1934-05-04 1935-12-24 Ferranti Electric Ltd Correction of power factor
US2505288A (en) * 1946-10-24 1950-04-25 Willard C Hall Static impedance and phase changing circuit
US2504549A (en) * 1947-02-28 1950-04-18 Gen Electric Starting and operating circuit for electric discharge devices
US2683240A (en) * 1949-09-20 1954-07-06 Thorn Electrical Ind Ltd Electric lamp circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987650A (en) * 1958-09-26 1961-06-06 Thorn Electrical Ind Ltd Gaseous discharge lamp circuit
US4329466A (en) * 1979-01-16 1982-05-11 Delalande S.A. Certain nor-tropan-8-amine-3-aryl or heteroaryl derivatives

Similar Documents

Publication Publication Date Title
US2358810A (en) Apparatus for starting and controlling discharge devices
US2757318A (en) Rectifying circuit for discharge lamps
US2504548A (en) Starting and operating circuit for electric discharge devices
US2444408A (en) Electric gaseous discharge lamp circuit
US2046980A (en) Gaseous electric discharge device
US2838714A (en) Igniting and operating circuit for discharge tubes
US3178610A (en) Device for adjusting the power consumption of gaseous and/or vapourdischarge lamps
US2231584A (en) Electric discharge apparatus
US3324349A (en) Device employing two gas- and/or vapour-discharge tubes
US2417742A (en) Circuit for gaseous discharge tubes
US2644107A (en) Preheat neutralizing circuit for fluorescent lamps
US2485398A (en) Starting and operating circuit for electric discharge devices
US2056629A (en) Electric discharge device
US2351499A (en) Discharge lamp starting circuit
US2794938A (en) Low-pressure arc-discharge tube arrangement
US2565110A (en) Polyphase fluorescent lamp circuit
US3351807A (en) Gas discharge device having thermionic electrodes energized by transistor oscillator
US2523021A (en) Starting arrangement for electric discharge devices
US2719937A (en) Cathode preheat conversion unit for fluorescent lamps
US2010849A (en) Gaseous electric discharge lamp device
US2438556A (en) Circuit for electric discharge devices
US3611026A (en) Ballast circuit for low wattage gaseous discharge device
US2808540A (en) Gas or vapor discharge tube device
US2355968A (en) Starting circuit for fluorescent lamps
US3412287A (en) Electrical arrangement