US2820221A - Directional aerials - Google Patents

Directional aerials Download PDF

Info

Publication number
US2820221A
US2820221A US534116A US53411655A US2820221A US 2820221 A US2820221 A US 2820221A US 534116 A US534116 A US 534116A US 53411655 A US53411655 A US 53411655A US 2820221 A US2820221 A US 2820221A
Authority
US
United States
Prior art keywords
discs
plate
plane
wave
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US534116A
Inventor
Broussaud Georges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
CSF Compagnie Generale de Telegraphie sans Fil SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSF Compagnie Generale de Telegraphie sans Fil SA filed Critical CSF Compagnie Generale de Telegraphie sans Fil SA
Application granted granted Critical
Publication of US2820221A publication Critical patent/US2820221A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/28Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric

Definitions

  • a directional antenna in accordance with the invention comprises a solid metal plate and one or more arrays of coplanar metal discs, all the dimensions of which are equal or substantially equal, located in planes parallel to the solid plates, on the same side thereof, and whose centers form a regular square mesh. These discs are centrally supported on the plate by metal rods extending perpendicular thereto.
  • Figure 1 shows schematically a perspective view of an array of discs according to the invention
  • Figure 2 shows a perspective view of an embodiment of the aerial according to the invention
  • Figures 3 and 4 shows, in front elevation and in plan respectively a preferred embodiment of the invention
  • Figures 5 and 6 show, side elevation and in front elevation respectively, another embodiment of the invention more particularly adapted to metric waves.
  • a solid plate 1 supports circular discs 2, all located in a plane parallel to plate 1, through the medium of metal rods 3. These discs form an array, the centers of which define a square mesh. If a wave is propagated horizontally between discs 2 and plate 1 in the direction T0, parallel to the latter, with its magnetic field H0 normal to said plate, the aerial radiates a diracted wave in free space, and this wave has a maximum radiation direction OD located in the plane NOT formed by ON normal to plane 1 and the straight line OT parallel to the direction T0.
  • the wave thus radiated is polarized normally to said plane NOT; conversely, a plane wave polarized normally to the plane NOT and propagating in the direction DO of said plane will give rise to a ditracting wave, propagated in a direction parallel to the plane of the discs between plate 1 and discs 2. It has been found that the direction OD is such that this diiracted wave is in phase with the incident wave in front of each disc.
  • the angle ICC of incidence formed by the favored direction OD with ON is given by the formula:
  • )t sin x/f-nZp 1
  • x1 the wave length of the wave propagated between the discs and plate 1, which, for a given frequency, is smaller than A
  • 2p is the distance between the centers of two consecutive discs
  • n is a whole number.
  • the aerial is constituted by a solid metal plate 1 and coplanar metal discs 2 carried by rods 3.
  • This aerial is excited by a dipole 4 fed by a coaxial 5; this dipole is located between the plane of plate 1 and the plane of discs 2 at the focus of a parabolic cylinder 6 completed by two metal plane sections, normal to the cylinder axis.
  • Rods 3 being normal to the electric field of the applied wave, do not take part in the radiation. It is possible to vary the density of the energy radiated from the array by varying the diameter of the discs.
  • Figures 3 and 4 represent a V-shaped aerial constituted by two solid plates 1 and 1 which support discs 2 and together form an angle 1r-230.
  • the wave is applied by a wave-guide located in the plane of symmetry of the aerial.
  • the radiation diagram is shown at L. In the example given all the discs have the same diameter.
  • Figures 5 and 6 represent an aerial similar to that of Figure 2, but comprising two parallel disc arrays. This aerial is secured to a support 8 and is so mounted that the direction of maximum radiation D is horizontal. 'The system is fed at 7, for instance through a wave-guide provided with suitable radial slits.
  • Directive aerial for ultra short waves comprising: at least one solid plane metal plate, said plate having edges; at least one array of coplanar metal discs parallel to said plate, the respective centers of said discs of one array forming a square mesh; thin metal rods carried by said plate and perpendicular thereto, each supporting one dise of each array by its center and means positioned at one of the edges of said plate, for feeding wave energy between said plate and said array of coplanar metal discs to excite the aerial.
  • Directive aerial for ultra short waves comprising: at least one solid plane metal plate having rst and second sides and on said first side a plurality of arrays of coplanar metallic discs parallel thereto, thin metal rods carried by said plate and perpendicular thereto for carrying said discs at their respective centers; the respective centers of each array forming a square mesh and means, positioned at one of the edges of said plate, for exciting the aerial between said plate and at least one plane of said coplanar metallic discs.
  • Directive aerial for an ultra short wave having a wavelength 7i comprising: at least one solid plane metal plate; at least one array of coplanar metal discs parallel thereto, the respective centers of said discs of one array forming a square mesh; thin metal rods carried by said plate and perpendicular thereto, each supporting one disc of each array by its center, the distance between the respective centers of two neighbouring discs being comprised between A and 0.4 and means, positioned at one of the edges of said plate, for exciting the aerial between said plate and at least one of said coplanar metal discs.
  • Directive aerial for ultra short waves comprising first and second solid plane metal plates, symmetrical to each other about a plane; iirst and second pluralities of arrays of coplanar metal discs respectively parallel to said first and second plates and symmetrical to each other about the same plane, the respective centers of said discs of said arrays forming respectively square meshes; thin metal rods carried by said plates and perpendicular there to for carrying respectively each of said discs at its respective center; and guiding means located in the symmetry plane for guiding a wave propagating between said first and said second plates and said rst and said second pluralities of arrays.
  • Directive aerial for ultra short waves comprising a plane metal plate, an array of coplanar metal discs parallel to said plate, a thin metal rod perpendicular to said plate supporting each disc of said array at its respective center in a pattern dening a square mesh, and wave guide means positioned at an edge of said plate to guide a wave propagating betweenand parallel to said plate and array.

Description

Jan. 14, 1958 G. BRoussAUD 2,820,221
DIRECTIONAL AERIALS v Filed Sept. 15. 1955 y 2 Sheets-Sheet l N H El n FIG.3
OOOO'OOOO ,OOOOOOOHO ooooooooooo'o ooooooooooo o Jann 14, T958? G. BRoUssAUD 2,820,221
DIRECTIONAL AERIALS Filed Sept. 13, 1955 2 Sheets-Sheet 2 United States Patent dO DIRECTIONAL AERIALS Georges Bronssaud, Paris, France, assignor to Compagnie Generale de Telegraphie Sans Fil, a corporation of France Application September 13, 1955, Serial No. 534,116 Claims priority, application France September 18, 1954 6 Claims. (Cl. 343-753) The present invention relates to directional antennas for ultra short waves.
The applicant has proved by theory, confirmed by experiment, that the direction of maximum radiation of a wave, propagated between a plane solid metal plate and an array of coplanar discs parallel thereto, is located in a plane normal to the plane of the array and parallel to the direction of propagation of the applied waves between the plate and the array. In the same way, a plane wave propagated in the direction of maximum radiation and incident upon the array of discs, will generate a wave which will be propagated between the array and the plate in a direction parallel to the array and in the direction opposite to that of the applied wave previously mentioned.
A directional antenna in accordance with the invention comprises a solid metal plate and one or more arrays of coplanar metal discs, all the dimensions of which are equal or substantially equal, located in planes parallel to the solid plates, on the same side thereof, and whose centers form a regular square mesh. These discs are centrally supported on the plate by metal rods extending perpendicular thereto.
The invention will be more clearly understood from the ensuing description with reference to the appended drawings, which illustrate some non restrictive embodiments of the invention, and in which:
Figure 1 shows schematically a perspective view of an array of discs according to the invention;
Figure 2 shows a perspective view of an embodiment of the aerial according to the invention;
Figures 3 and 4 shows, in front elevation and in plan respectively a preferred embodiment of the invention;
Figures 5 and 6 show, side elevation and in front elevation respectively, another embodiment of the invention more particularly adapted to metric waves.
In all these gures, like references designate like elements.
In Fig. 1, a solid plate 1 supports circular discs 2, all located in a plane parallel to plate 1, through the medium of metal rods 3. These discs form an array, the centers of which define a square mesh. If a wave is propagated horizontally between discs 2 and plate 1 in the direction T0, parallel to the latter, with its magnetic field H0 normal to said plate, the aerial radiates a diracted wave in free space, and this wave has a maximum radiation direction OD located in the plane NOT formed by ON normal to plane 1 and the straight line OT parallel to the direction T0. The wave thus radiated is polarized normally to said plane NOT; conversely, a plane wave polarized normally to the plane NOT and propagating in the direction DO of said plane will give rise to a ditracting wave, propagated in a direction parallel to the plane of the discs between plate 1 and discs 2. It has been found that the direction OD is such that this diiracted wave is in phase with the incident wave in front of each disc. The angle ICC of incidence formed by the favored direction OD with ON is given by the formula:
)t sin x/f-nZp 1 where )t is the wave length in free space; x1 the wave length of the wave propagated between the discs and plate 1, which, for a given frequency, is smaller than A; 2p is the distance between the centers of two consecutive discs; n is a whole number. The main lobe is obtained for n=l, the second lobe corresponds to 11:2, and so on. In practice, it is generally desired to obtain a field pattern having only the main lobe, which implies the condition n=1, hence 7\ 2p, and as formula giving the angle 1,!1, valid for a variety of disc arrays, will be:
sin :F-1, 1
which implies that:
In Figure 2, the aerial is constituted by a solid metal plate 1 and coplanar metal discs 2 carried by rods 3. This aerial is excited by a dipole 4 fed by a coaxial 5; this dipole is located between the plane of plate 1 and the plane of discs 2 at the focus of a parabolic cylinder 6 completed by two metal plane sections, normal to the cylinder axis. Rods 3 being normal to the electric field of the applied wave, do not take part in the radiation. It is possible to vary the density of the energy radiated from the array by varying the diameter of the discs.
Figures 3 and 4 represent a V-shaped aerial constituted by two solid plates 1 and 1 which support discs 2 and together form an angle 1r-230.
The wave is applied by a wave-guide located in the plane of symmetry of the aerial. The radiation diagram is shown at L. In the example given all the discs have the same diameter.
Figures 5 and 6 represent an aerial similar to that of Figure 2, but comprising two parallel disc arrays. This aerial is secured to a support 8 and is so mounted that the direction of maximum radiation D is horizontal. 'The system is fed at 7, for instance through a wave-guide provided with suitable radial slits.
It has been found that in all these aerials, the directivity increases, in direct proportion to their lengths, in the direction of propagation within the array. The aerial shown in Figures 3 and 4 will be highly directive in the horizontal plane and will radiate much less in the vertical plane. The aerial shown in Figures 5 and 6 will be practically omni-directional.
Very long aerials of these types are very easily built, since they comprise only plane elements; they are particularly suitable for highly directive systems, such as, for instance, their use in connection with radio-astronomy.
I claim:
l. Directive aerial for ultra short waves comprising: at least one solid plane metal plate, said plate having edges; at least one array of coplanar metal discs parallel to said plate, the respective centers of said discs of one array forming a square mesh; thin metal rods carried by said plate and perpendicular thereto, each supporting one dise of each array by its center and means positioned at one of the edges of said plate, for feeding wave energy between said plate and said array of coplanar metal discs to excite the aerial.
2. Directive aerial for ultra short waves comprising: at least one solid plane metal plate having rst and second sides and on said first side a plurality of arrays of coplanar metallic discs parallel thereto, thin metal rods carried by said plate and perpendicular thereto for carrying said discs at their respective centers; the respective centers of each array forming a square mesh and means, positioned at one of the edges of said plate, for exciting the aerial between said plate and at least one plane of said coplanar metallic discs.
3. Directive aerial for an ultra short wave having a wavelength 7i comprising: at least one solid plane metal plate; at least one array of coplanar metal discs parallel thereto, the respective centers of said discs of one array forming a square mesh; thin metal rods carried by said plate and perpendicular thereto, each supporting one disc of each array by its center, the distance between the respective centers of two neighbouring discs being comprised between A and 0.4 and means, positioned at one of the edges of said plate, for exciting the aerial between said plate and at least one of said coplanar metal discs.
4. Directive aerial as claimed in claim 3, in which all the discs have the same diameter.
5. Directive aerial for ultra short waves, comprising first and second solid plane metal plates, symmetrical to each other about a plane; iirst and second pluralities of arrays of coplanar metal discs respectively parallel to said first and second plates and symmetrical to each other about the same plane, the respective centers of said discs of said arrays forming respectively square meshes; thin metal rods carried by said plates and perpendicular there to for carrying respectively each of said discs at its respective center; and guiding means located in the symmetry plane for guiding a wave propagating between said first and said second plates and said rst and said second pluralities of arrays.
6. Directive aerial for ultra short waves comprising a plane metal plate, an array of coplanar metal discs parallel to said plate, a thin metal rod perpendicular to said plate supporting each disc of said array at its respective center in a pattern dening a square mesh, and wave guide means positioned at an edge of said plate to guide a wave propagating betweenand parallel to said plate and array.
No references cited.
US534116A 1954-09-18 1955-09-13 Directional aerials Expired - Lifetime US2820221A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR961899X 1954-09-18

Publications (1)

Publication Number Publication Date
US2820221A true US2820221A (en) 1958-01-14

Family

ID=9499466

Family Applications (1)

Application Number Title Priority Date Filing Date
US534116A Expired - Lifetime US2820221A (en) 1954-09-18 1955-09-13 Directional aerials

Country Status (4)

Country Link
US (1) US2820221A (en)
DE (1) DE961899C (en)
FR (1) FR1111639A (en)
GB (1) GB773765A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2990545A (en) * 1958-06-17 1961-06-27 Ite Circuit Breaker Ltd Broad-band omnidirectional spherical lens antenna with rotating amplitude modulationpattern
US3015821A (en) * 1957-07-29 1962-01-02 Avien Inc End fire element array
US3111672A (en) * 1960-10-26 1963-11-19 Lockheed Aircraft Corp Backscattering antenna array
US4608572A (en) * 1982-12-10 1986-08-26 The Boeing Company Broad-band antenna structure having frequency-independent, low-loss ground plane
US4725847A (en) * 1986-06-04 1988-02-16 The United States Of America As Represented By The Secretary Of The Air Force Reflector antenna having sidelobe nulling assembly with metallic gratings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015821A (en) * 1957-07-29 1962-01-02 Avien Inc End fire element array
US2990545A (en) * 1958-06-17 1961-06-27 Ite Circuit Breaker Ltd Broad-band omnidirectional spherical lens antenna with rotating amplitude modulationpattern
US3111672A (en) * 1960-10-26 1963-11-19 Lockheed Aircraft Corp Backscattering antenna array
US4608572A (en) * 1982-12-10 1986-08-26 The Boeing Company Broad-band antenna structure having frequency-independent, low-loss ground plane
US4725847A (en) * 1986-06-04 1988-02-16 The United States Of America As Represented By The Secretary Of The Air Force Reflector antenna having sidelobe nulling assembly with metallic gratings

Also Published As

Publication number Publication date
DE961899C (en) 1957-04-11
GB773765A (en) 1957-05-01
FR1111639A (en) 1956-03-02

Similar Documents

Publication Publication Date Title
US3541559A (en) Antenna for producing circular polarization over wide angles
US3936835A (en) Directive disk feed system
US2270314A (en) Corner reflector antenna
Kock Metallic delay lenses
US2929065A (en) Surface wave antenna
US2764757A (en) Metallic lens antennas
Goebels et al. Arbitrary polarization from annular slot plannar antennas
US3045237A (en) Antenna system having beam control members consisting of array of spiral elements
US2650985A (en) Radio horn
US3553706A (en) Array antennas utilizing grouped radiating elements
US2846678A (en) Dual frequency antenna
US3757343A (en) Slot antenna array
US2692336A (en) Aperture antenna
US2870444A (en) Radiating systems
US2718592A (en) Antenna
US2820221A (en) Directional aerials
US3553692A (en) Antenna arrays having phase and amplitude control
US3078463A (en) Parallel plate waveguide with slotted array and multiple feeds
US3774223A (en) High-frequency waveguide feed in combination with a short-backfire antenna
US3680142A (en) Circularly polarized antenna
US2807800A (en) High frequency directional aerials
US2478241A (en) Flat beam antenna
US2187618A (en) Radio beacon system
US2720588A (en) Radio antennae
KR101161262B1 (en) Stacked type multi band antenna device