US2819569A - Automatic abrasive liquid distributing device for optical lens polishing machines - Google Patents

Automatic abrasive liquid distributing device for optical lens polishing machines Download PDF

Info

Publication number
US2819569A
US2819569A US490350A US49035055A US2819569A US 2819569 A US2819569 A US 2819569A US 490350 A US490350 A US 490350A US 49035055 A US49035055 A US 49035055A US 2819569 A US2819569 A US 2819569A
Authority
US
United States
Prior art keywords
abrasive liquid
liquid
optical lens
abrasive
distributing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US490350A
Inventor
Angenieux Pierre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierre Angenieux SA
Original Assignee
Pierre Angenieux SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierre Angenieux SA filed Critical Pierre Angenieux SA
Application granted granted Critical
Publication of US2819569A publication Critical patent/US2819569A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents

Definitions

  • This invention relates to machines for polishing optical lenses and more particularly to a device for automatically distributing an abrasive, liquid in machines of the type comprising a concave part-spherical member and a convex part-spherical member contacting each other, one of these members consisting of the optical surfaces to be polished and the other of the polishing tool proper, both members being imparted an adequate relative movement with respect to each other.
  • the abrasive liquid employed in machines of this type consists of a pulverulent abrasive, generally a metal oxide, preferably a rare metal oxide, in suspension in a liquid medium such as water.
  • a pulverulent abrasive generally a metal oxide, preferably a rare metal oxide
  • the abrasive powder distribution and film thickness vary from the point of impingement of the abrasive liquid to the point remotest therefrom.
  • this solution is extremely costly in that it involves an important consumption of the abrasive product.
  • the recovery of the liquid implies a closed-circuit operation with all the detrimental consequences resulting from the pollution of the liquid by many foreign substances deriving partly from the abrasion work proper.
  • the device comprises a closed-circuit arrangement in which the abrasive liquid is caused to flow with a relatively large output, the relatively small amount of liquid required for treating the common contact surfaces of the co-acting part-spherical members being taken automatically and intermittently from this circuit and distributed inbetween these co-acting surfaces, the installation being adapted to supply a plurality of polishing machines.
  • Figure 1 is a comprehensive, part-sectional view of the device
  • Figure 2 is an elevational sectional view of the electromagnet valve effecting the intermittent distribution of the abrasive liquid
  • Figure 3 is a part-sectional, fragmentary view of a detail variant.
  • Fig. 1 of the drawings 1 is the concave part-spherical member acting as a polishing tool, which rests on the lenses 2 to be polished, the latter constituting together the convex part-spherical member and being secured on a support 3 to which a combined rotational and oscillating motion about the common centre of both members may be impressed, according to the known technique.
  • the concave member I is held by a tubular rod 4 formed with a substantially spherical end portion 5 and suitably guided in vertical guiding means (not shown) and engaging a cavity 6 formed in the aforesaid concave member to form a ball-and-socket coupling.
  • the liquid distributing device comprises a reservoir 7 containing the liquid to be distributed 8, which consists for example of cerium oxide particles in suspension in a suitable liquid, for example water.
  • a centrifugal pump 9 driven from a motor 10 forcesthis liquid through pipings 1 1, 12, 13, 14, 15 and 16; the pipe sections 14 to 16 ensuring the return flow to the reservoir 7, as shown.
  • This liquid circulation occurs with a large output to maintain the oxide particles in suspension in the liquid medium.
  • the flow occurs in closedcircuit fashion through valves 17 and 13; the number of these valves is equal to that of the polishing stations to be supplied with abrasive liquid through the pipe portion 13.
  • the valve 17 shown in vertical section overlies the part-spherical members 1, 2, whereas the other polishing station corresponding to the valve 18 is not shown.
  • valve 17 comprises a chamber 19 connected to the pipe 13 and having formed in its bottom wall a port 20 normally closed by a needle valve 21, of the needle type regularly and intermittently raised to its open position to allow a few drops of abrasive liquid to flow through the port 20; These drops are received in a funnel-shaped member 22 mounted on top of the tubular rod 4 holding the concave member 1, and a duct 23 coaxial with the rod 4 directs the drops into the space formed between the two part-spherical members to wet by capillarity and centrifugal action the concave surface of the polishing tool 1 (both part-spherical members being driven for rotation during the polishing operation, whilst the holding rod 4 is stationary).
  • This valve is of the electromagnetically controlled type. To avoid the formation of oxide deposits the port 20 of the valve chamber should be as close as possible to the liquid stream, as shown in the drawing.
  • the upward movement of the needle valve 21 is controlled through an electromagnet coil 24 which, when energized, attracts the armature 25 rigid with the valve member 21.
  • a spring 26 returns the valve member 21 to its seated position to close the port 20.
  • the stroke of the needle valve 21 is a function of the gap d between the valve armature 25 and the coil core 27. This gap may be adjusted by removing the cover member 28 from the valve body 17 to which the coil is attached by nuts 29.
  • the end or operative portion 30 of the needle valve 21 is made of rubber or like resilient material.
  • the energizing impulses are fed to the coil 24 from a so-called microswitch device 31 controlled by a cam disc 32 rotatably driven from a slow-running motor (not shown).
  • Current flows through the circuit connecting the microswitch 31 to the winding 24 each time the notch 33 formed in the cam disc 32 moves past the actuating pin 34 of the microswitch.
  • a suitable frequency of operation of the microswitch 31 is of the order of one impulse per minute.
  • a main switch 35 is provided to short-circuit the microswitch 31 when it is desired to effect a supply of abrasive liquid at any time.
  • the device illustrated in Fig. 3 is designed for those cases wherein it is desired to polish a separate concave lens, in this case, the lens constitutes the concave partspherical member and the polishing tool 38 constitutes the convex part-spherical member of the assembly.
  • a funnel-shaped member 22 is also pro-y Patented Jan. 14, 1958 3 vided for collecting the drops of abrasive liquid, but the holding rod 4 is not tubular but solid, the axial aperture being replaced by a lateral pipe section 39 conducting the liquid from the bottom portion of the funnel 22, clear of the lens, to the convex surface of the polishing tool.
  • Lens polishing machine comprising a concave upper spherical member acting as a polishing device and a convex spherical member consisting of the optical surfaces, sa-id concave spherical member bearing on said convex spherical member and being held by a stud occupying thereabove a fixed vertical position, the geometrical axis of said stud passing through the common centre of said spherical members, said concave spherical member being adapted to rotate freely about said geometrical axis, said stud comprising an axial duct having an extension passing through the top of said upper spherical member so as to open inbetween said concave and convex spherical members, a funnel disposed at the upper end of said duct, and means for feeding said funnel with the abrasive liquid to be distributed over the contact surface of said spherical members.
  • said means for feeding said funnel with abrasive liquid comprise a closed circuit in which a relatively large output of abrasive liquid is circulated continuously, said closed circuit having inserted therein a distributor comprising a body provided with an abrasive-liquid distributing orifice positioned vertically above said funnel, a valve member adapted to obturate said orifice, and control means for periodically unseating said valve member to allow a small amount of abrasive liquid to flow directly into said funnel.
  • said means for feeding said funnel with abrasive liquid comprise a closed circuit in which a relatively large output of abrasive liquid is circulated, said closed circuit having inserted therein a distributor comprising a body provided with an abrasive-liquid distributing orifice, a valve member adapted to obturate said orifice, control means for periodically unseating said valve member to allow a small amount of abrasive liquid through said orifice, and a flexible hose connecting said orifice with said funnel.

Description

Jan. 14, 1958 P. ANGENIEUX 2,819,569
' AUTOMATIC ABRASIVE LIQUID DISTRIBUTING DEVICE FOR OPTICAL LENS POLISHING MACHINES Filed Feb. 24, 1955 2 Sheets-Sheet l Mn uentor:
j ferre, flngenieux 7 M 5. muw
Jan. 14, 1958 P. ANGENIEUX 2,319,569
AUTOMATIC ABRASIVE LIQUID DISTRIBUTING DEVICE FOR OPTICAL LENS POLISHING MACHINES Filed Feb. 24, 1955 2 Sheets-Sheet 2 $1 8 l'l'e nnyenfeu V 1am I. 9711' Km United States AUTOMATIC ABRASIVE LIQUID DISTRIBUTING DEVICISl FOR OPTICAL LENS POLISHING MA- CHINE Pierre Angenieux, Paris, France, assi'gnor to Etablissements Pierre Angenieux (Societe a Responsabilite Limitee), Paris, France, a corporation This invention relates to machines for polishing optical lenses and more particularly to a device for automatically distributing an abrasive, liquid in machines of the type comprising a concave part-spherical member and a convex part-spherical member contacting each other, one of these members consisting of the optical surfaces to be polished and the other of the polishing tool proper, both members being imparted an adequate relative movement with respect to each other.
It is known that the abrasive liquid employed in machines of this type consists of a pulverulent abrasive, generally a metal oxide, preferably a rare metal oxide, in suspension in a liquid medium such as water. As a substitute for manual distribution, it has already been proposed to provide a continuous feed of the abrasive liquid, but experience proved that it was hardly possible to obtain and maintain a homogeneous and uniform film all over the surface of the polishing tool. Briefly, the abrasive powder distribution and film thickness vary from the point of impingement of the abrasive liquid to the point remotest therefrom. Moreover, this solution is extremely costly in that it involves an important consumption of the abrasive product. The recovery of the liquid implies a closed-circuit operation with all the detrimental consequences resulting from the pollution of the liquid by many foreign substances deriving partly from the abrasion work proper.
It is the essential object of this invention to provide an intermittently operating automatic abrasive liquid distributing device designed to avoid the inconveniences broadly set forth hereinabove.
According to this invention the device comprises a closed-circuit arrangement in which the abrasive liquid is caused to flow with a relatively large output, the relatively small amount of liquid required for treating the common contact surfaces of the co-acting part-spherical members being taken automatically and intermittently from this circuit and distributed inbetween these co-acting surfaces, the installation being adapted to supply a plurality of polishing machines.
The attached drawings forming part of this specification illustrate diagrammatically by way of example one form of embodiment of the device constructed in accordance with the teachings of this invention.
In the drawings:
Figure 1 is a comprehensive, part-sectional view of the device;
Figure 2 is an elevational sectional view of the electromagnet valve effecting the intermittent distribution of the abrasive liquid;
Figure 3 is a part-sectional, fragmentary view of a detail variant.
In Fig. 1 of the drawings; 1 is the concave part-spherical member acting as a polishing tool, which rests on the lenses 2 to be polished, the latter constituting together the convex part-spherical member and being secured on a support 3 to which a combined rotational and oscillating motion about the common centre of both members may be impressed, according to the known technique. The concave member I is held by a tubular rod 4 formed with a substantially spherical end portion 5 and suitably guided in vertical guiding means (not shown) and engaging a cavity 6 formed in the aforesaid concave member to form a ball-and-socket coupling.
According to this invention the liquid distributing device comprises a reservoir 7 containing the liquid to be distributed 8, which consists for example of cerium oxide particles in suspension in a suitable liquid, for example water. A centrifugal pump 9 driven from a motor 10 forcesthis liquid through pipings 1 1, 12, 13, 14, 15 and 16; the pipe sections 14 to 16 ensuring the return flow to the reservoir 7, as shown. This liquid circulation occurs with a large output to maintain the oxide particles in suspension in the liquid medium. The flow occurs in closedcircuit fashion through valves 17 and 13; the number of these valves is equal to that of the polishing stations to be supplied with abrasive liquid through the pipe portion 13. In Fig. l the valve 17 shown in vertical section overlies the part-spherical members 1, 2, whereas the other polishing station corresponding to the valve 18 is not shown.
As illustrated in the drawing the valve 17 comprisesa chamber 19 connected to the pipe 13 and having formed in its bottom wall a port 20 normally closed by a needle valve 21, of the needle type regularly and intermittently raised to its open position to allow a few drops of abrasive liquid to flow through the port 20; These drops are received in a funnel-shaped member 22 mounted on top of the tubular rod 4 holding the concave member 1, and a duct 23 coaxial with the rod 4 directs the drops into the space formed between the two part-spherical members to wet by capillarity and centrifugal action the concave surface of the polishing tool 1 (both part-spherical members being driven for rotation during the polishing operation, whilst the holding rod 4 is stationary).
Reference will now be made to Fig. 2 showing the constructional details of a valve and its operation.
This valve is of the electromagnetically controlled type. To avoid the formation of oxide deposits the port 20 of the valve chamber should be as close as possible to the liquid stream, as shown in the drawing. The upward movement of the needle valve 21 is controlled through an electromagnet coil 24 which, when energized, attracts the armature 25 rigid with the valve member 21. When the electric pulse is terminated a spring 26 returns the valve member 21 to its seated position to close the port 20. The stroke of the needle valve 21 is a function of the gap d between the valve armature 25 and the coil core 27. This gap may be adjusted by removing the cover member 28 from the valve body 17 to which the coil is attached by nuts 29. To ensure the fluid-tight closing of the port 20 the end or operative portion 30 of the needle valve 21 is made of rubber or like resilient material.
The energizing impulses are fed to the coil 24 from a so-called microswitch device 31 controlled by a cam disc 32 rotatably driven from a slow-running motor (not shown). Current flows through the circuit connecting the microswitch 31 to the winding 24 each time the notch 33 formed in the cam disc 32 moves past the actuating pin 34 of the microswitch. A suitable frequency of operation of the microswitch 31 is of the order of one impulse per minute. A main switch 35 is provided to short-circuit the microswitch 31 when it is desired to effect a supply of abrasive liquid at any time.
The device illustrated in Fig. 3 is designed for those cases wherein it is desired to polish a separate concave lens, in this case, the lens constitutes the concave partspherical member and the polishing tool 38 constitutes the convex part-spherical member of the assembly. Under these conditions, a funnel-shaped member 22 is also pro-y Patented Jan. 14, 1958 3 vided for collecting the drops of abrasive liquid, but the holding rod 4 is not tubular but solid, the axial aperture being replaced by a lateral pipe section 39 conducting the liquid from the bottom portion of the funnel 22, clear of the lens, to the convex surface of the polishing tool.
Of course, if the upper concave member holding rod were oscillated instead of being stationary, the device would operate in the same manner but a flexible hose connection or the like should be provided between the value port 20 and the funnel 22.
What I claim as new is:
1. Lens polishing machine comprising a concave upper spherical member acting as a polishing device and a convex spherical member consisting of the optical surfaces, sa-id concave spherical member bearing on said convex spherical member and being held by a stud occupying thereabove a fixed vertical position, the geometrical axis of said stud passing through the common centre of said spherical members, said concave spherical member being adapted to rotate freely about said geometrical axis, said stud comprising an axial duct having an extension passing through the top of said upper spherical member so as to open inbetween said concave and convex spherical members, a funnel disposed at the upper end of said duct, and means for feeding said funnel with the abrasive liquid to be distributed over the contact surface of said spherical members.
2. Lens polishing machine as set forth in claim 1, wherein said means for feeding said funnel with abrasive liquid comprise a closed circuit in which a relatively large output of abrasive liquid is circulated continuously, said closed circuit having inserted therein a distributor comprising a body provided with an abrasive-liquid distributing orifice positioned vertically above said funnel, a valve member adapted to obturate said orifice, and control means for periodically unseating said valve member to allow a small amount of abrasive liquid to flow directly into said funnel.
3. Lens polishing machine as set forth in claim 1, wherein said means for feeding said funnel with abrasive liquid comprise a closed circuit in which a relatively large output of abrasive liquid is circulated, said closed circuit having inserted therein a distributor comprising a body provided with an abrasive-liquid distributing orifice, a valve member adapted to obturate said orifice, control means for periodically unseating said valve member to allow a small amount of abrasive liquid through said orifice, and a flexible hose connecting said orifice with said funnel.
References Cited in the file of this patent UNITED STATES PATENTS 1,409,888 Taylor Mar. 14, 1922 1,513,813 Hill et a1. Nov. 4, 1924 1,619,344 Hill Mar. 1, 1927 1,620,021 Hitchcock Mar. 8, 1927 1,625,197 Eisenhauer Apr. 19, 1927 1,800,743 Morris Apr. 14, 1931 2,069,261 Cassity Feb. 2, 1937 FOREIGN PATENTS 215,661 Great Britain May 15, 1924
US490350A 1954-07-28 1955-02-24 Automatic abrasive liquid distributing device for optical lens polishing machines Expired - Lifetime US2819569A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2819569X 1954-07-28

Publications (1)

Publication Number Publication Date
US2819569A true US2819569A (en) 1958-01-14

Family

ID=9689050

Family Applications (1)

Application Number Title Priority Date Filing Date
US490350A Expired - Lifetime US2819569A (en) 1954-07-28 1955-02-24 Automatic abrasive liquid distributing device for optical lens polishing machines

Country Status (1)

Country Link
US (1) US2819569A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2997827A (en) * 1958-07-30 1961-08-29 Corning Glass Works Precision grinding
US3094814A (en) * 1960-11-21 1963-06-25 Barke Vladimir Nikolaevich Ultrasonic abrasive machining apparatus
US4254586A (en) * 1979-03-30 1981-03-10 King-Seeley Thermos Co. Time cycle control system for vibratory finishing machines
US4766875A (en) * 1982-11-22 1988-08-30 Stanford University Endless wire saw having material recovery capability
WO1993017829A2 (en) * 1992-02-27 1993-09-16 Oliver Design, Inc. System and method for texturing magnetic data storage disks
US5957759A (en) * 1997-04-17 1999-09-28 Advanced Micro Devices, Inc. Slurry distribution system that continuously circulates slurry through a distribution loop
US6386956B1 (en) * 1998-11-05 2002-05-14 Sony Corporation Flattening polishing device and flattening polishing method
DE19905583B4 (en) * 1999-02-11 2004-11-25 Loh Optikmaschinen Ag Device for the supply of liquid aids with abrasive components in the fine machining of optical surfaces
US20100151772A1 (en) * 2008-12-16 2010-06-17 Schneider Gmbh & Co. Kg Polishing head for the zonal machining of optical spectacle surfaces

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1409888A (en) * 1919-05-17 1922-03-14 Taylor William Method of and appliance for polishing glass and the like substances
GB215661A (en) * 1923-07-04 1924-05-15 Ford Motor Co Improvements in apparatus for feeding abrasives or the like to glass grinding and polishing machines
US1513813A (en) * 1922-04-18 1924-11-04 American Optical Corp Lens-grinding apparatus
US1619344A (en) * 1925-05-16 1927-03-01 American Optical Corp Abrasive-supplying means
US1620021A (en) * 1925-11-25 1927-03-08 Pittsburgh Plate Glass Co Apparatus for supplying polishing material to a series of polishing machines
US1625197A (en) * 1925-07-20 1927-04-19 Duro Co Water-softening apparatus
US1800743A (en) * 1929-02-09 1931-04-14 Bausch & Lomb Polishing and grinding machine
US2069261A (en) * 1933-11-08 1937-02-02 Saint Gobain Feeding device and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1409888A (en) * 1919-05-17 1922-03-14 Taylor William Method of and appliance for polishing glass and the like substances
US1513813A (en) * 1922-04-18 1924-11-04 American Optical Corp Lens-grinding apparatus
GB215661A (en) * 1923-07-04 1924-05-15 Ford Motor Co Improvements in apparatus for feeding abrasives or the like to glass grinding and polishing machines
US1619344A (en) * 1925-05-16 1927-03-01 American Optical Corp Abrasive-supplying means
US1625197A (en) * 1925-07-20 1927-04-19 Duro Co Water-softening apparatus
US1620021A (en) * 1925-11-25 1927-03-08 Pittsburgh Plate Glass Co Apparatus for supplying polishing material to a series of polishing machines
US1800743A (en) * 1929-02-09 1931-04-14 Bausch & Lomb Polishing and grinding machine
US2069261A (en) * 1933-11-08 1937-02-02 Saint Gobain Feeding device and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2997827A (en) * 1958-07-30 1961-08-29 Corning Glass Works Precision grinding
US3094814A (en) * 1960-11-21 1963-06-25 Barke Vladimir Nikolaevich Ultrasonic abrasive machining apparatus
US4254586A (en) * 1979-03-30 1981-03-10 King-Seeley Thermos Co. Time cycle control system for vibratory finishing machines
US4766875A (en) * 1982-11-22 1988-08-30 Stanford University Endless wire saw having material recovery capability
WO1993017829A2 (en) * 1992-02-27 1993-09-16 Oliver Design, Inc. System and method for texturing magnetic data storage disks
WO1993017829A3 (en) * 1992-02-27 1993-10-28 Oliver Design Inc System and method for texturing magnetic data storage disks
US5486134A (en) * 1992-02-27 1996-01-23 Oliver Design, Inc. System and method for texturing magnetic data storage disks
US5490809A (en) * 1992-02-27 1996-02-13 Oliver Design, Inc. System and method for texturing magnetic data storage disks
US5957759A (en) * 1997-04-17 1999-09-28 Advanced Micro Devices, Inc. Slurry distribution system that continuously circulates slurry through a distribution loop
US6386956B1 (en) * 1998-11-05 2002-05-14 Sony Corporation Flattening polishing device and flattening polishing method
DE19905583B4 (en) * 1999-02-11 2004-11-25 Loh Optikmaschinen Ag Device for the supply of liquid aids with abrasive components in the fine machining of optical surfaces
US20100151772A1 (en) * 2008-12-16 2010-06-17 Schneider Gmbh & Co. Kg Polishing head for the zonal machining of optical spectacle surfaces

Similar Documents

Publication Publication Date Title
US2819569A (en) Automatic abrasive liquid distributing device for optical lens polishing machines
US2372205A (en) Dishwashing machine, primarily for household use
US2948437A (en) Automatic dispenser attachment for washing machines
US3135272A (en) Washing machine with hydraulically operated spray arm for dishes and utensils
US4336134A (en) Float-actuated level control valve
US2120784A (en) Apparatus for washing tanks and the like
CN109763284A (en) A kind of cleaning device for garment material
US2869510A (en) Electrostatic coating apparatus utilizing overflow means to facilitate constant level
GB399174A (en) Improvements relating to carpet scrubbing machines
US1800743A (en) Polishing and grinding machine
US3102666A (en) Process for the projection of water for washing dishes and a washing machine for carrying out said process
US4213544A (en) Water proportioning and delivering device particularly for coffee machines
US2797131A (en) Vehicle-windscreen washers
US3318481A (en) Devices for melting and dispensing molten thermoplastic material
US2622926A (en) Random-motion spray device
US2538720A (en) Apparatus for treating a soap bar
ES303787A1 (en) Oscillating spray devices and process of using same
US2019171A (en) Automatic feed for lens grinding and polishing compounds
GB2028160A (en) Water softening apparatus
US2504301A (en) Method of washing and cleaning engine cylinders
US4040241A (en) Device for distributing softening liquid on the yarn during the twisting process
US2793911A (en) Sprinkler, including coupling
US2508987A (en) Slurry feeding apparatus
US2420463A (en) Apparatus for washing cylinders
EP0449544A2 (en) Connective knitting method of belt-shaped knit end and belt-knit fabric having the end part linked in knit state