US2784153A - Electrodeposition of chromium - Google Patents

Electrodeposition of chromium Download PDF

Info

Publication number
US2784153A
US2784153A US497429A US49742955A US2784153A US 2784153 A US2784153 A US 2784153A US 497429 A US497429 A US 497429A US 49742955 A US49742955 A US 49742955A US 2784153 A US2784153 A US 2784153A
Authority
US
United States
Prior art keywords
ion
solution
anode
concentrations
grams per
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US497429A
Inventor
Rose Arthur H Du
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harshaw Chemical Co
Original Assignee
Harshaw Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harshaw Chemical Co filed Critical Harshaw Chemical Co
Priority to US497429A priority Critical patent/US2784153A/en
Priority to GB7340/56A priority patent/GB788584A/en
Application granted granted Critical
Publication of US2784153A publication Critical patent/US2784153A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium

Definitions

  • This invention relates to electrodeposition of chromium and more specifically to the prevention of anode sludging in chromium plating processes utilizing lead anodes and an aqueous solution principally consisting of chromic acid and a catalytic agent containing an anion the lead salt of which is soluble.
  • catalytic agents such as acetate ions, fiuosilicate ions or fiuoborate ions are useful but tend to increase lead anode sludging.
  • the basic bath in which it is contemplated the invention will be realized is one containing in addition to water, chromic acid and the catalyst.
  • Sulfate ion may also be present but it is not essential.
  • Chromic acid may be present to the extent of from 100 to 700 grams per liter, the sulfate ion may be present in concentration from zero to about 1.0% preferably from 0.1% to 1.0% of the chromic acid by weight and the catalyst may be an anion whose lead salt is soluble in the bath and may be present in concentration from about 0.7% to about 40% of the weight of the chromic acid.
  • To the basic solution is added a cobaltous compound supplying cobaltous ion in concentration from about 0.4 to about grams per liter.
  • catalyst which may be utilized are acetate ion, fluosilicate ion and fiuoborate ion. These various ions may be supplied by addition of various salts. In the case of acetate, fluosilicate and fiuoborate ions, the sodium salts are convenient. In the case of the cobaltous ion, it is desirable to use the cobalt salt of one of the ions already in the bath. Specific examples of cobaltous compounds which may be employed are the acetate, sulfate, fiuoborate, fluosilicate and carbonate. Nickel acetate was tried and found not to be efifective. The temperature of operation preferably is 60 F. to 145 F., and the cathode current density preferably is from 90 to 600 amperes per square foot.
  • Catalyst ion From 3% to 20%- of the weight of the'CrOs.
  • Cobaltous ion From 1.0 to 3.0 grams per liter.
  • Example I CrO3 g./l 250 HBF4 (47%) cc./l 6 CoCOa g./l 2.42 H2O Remainder
  • Example III CrOa g./l 250 S04 g./l 1.5 NaCzHsOz g./l 55 C0(C2H3O2)2 g./l.. 5 H2O Remainder Electrolyzing the above solution under the conditions indicated above, good deposits can be produced consistently and lead anode sludging is at a minimum.
  • the term lead anode as used herein includes pure lead anodes and anodes principally composed of lead but containing minor quantities of other elements.
  • Example I Using the bath of Example I and a lead alloy anode containing minor quantities of antimony, tin and tellurium which sludges less than pure lead, the amount of sludge formation per 336 ampere hours was 0.1 gram. Omitting cobalt, the amount was 1.75 grams. Utilizing the bath of Example H with the same alloy anode, the sludge forma tion was 0.2 gram per 336 ampere hours. Omitting the cobalt, the sludge formation was 1.7 grams per 336 ampere hours.
  • Example III Utilizing the bath of Example III, with the same alloy anode, the sludging was 1.6 grams per 336 ampere hours. Omitting the cobalt, it was 36. 1 grams per 336 ampere hours. With a chemical (pure) lead anode, the sludging amounted to 59.3 grams per 336 ampere hours.
  • the standard chromium plating bath not containing the catalysts such as acetate ion, iluosilicate ion or fiuoborate ion does not sludge badly with chemical lead anodes. Omitting the cobalt and the catalyst from Example I and using a chemical lead anode, the sludging amounted to 1.1 grams per 336 ampere hours. A leadsilver anode containing 2% silver was found to be very resistant to sludging, yielding with the bath of Example III only 0.55 gram of sludge per 336 ampere hours, but far more expensive than the use of cobalt.
  • catalyst catalytic agent and catalytic ion and similar terms employed herein will be understood as having reference to acid radicals customarily employed in chromic acid plating solutions to permit the plating of chromium from the solution without themselves being consumed by the reaction.
  • chromic acid in concentrations from about 100 to about 700 grams per liter and a catalytic ion of the class consisting of acetate, fiuosilicate and fluoborate ions in concentrations from about-27% to about 40% by weight of the chromic acid
  • the method of reducing the quantity of anode sludge formation when centrations from about 3.0% to about 20% by weight of the chromic acid the method of reducing the quantity of anode sludge formation when electrolyzing said solution between a lead anode and a cathode to be coated comprising incorporating cobaltous ion in said solution in concentrations from about 1.0 to about 3.0 grams per liter.
  • a process of chromium plating from a solution comprising water, chromic acid, sulfate ion and a catalytic ion selected from the group consisting of acetate, fiuosilicate and fluoborate ions the method of reducing the quantity of anode sludge formation when electrolyzing said solution between a lead anode and a cathode to be coated comprising incorporating cobaltous ion in said solution in concentrations from about 1.0 to about 3.0 grams per liter.
  • a process of chromium plating from a solution comprising Water, chromic acid in concentrations from about 200 to about 400 grams per liter, sulfate ion in concentrations from about 0.5% to about 1.0% by 7 weight of the chromic acid, and a catalytic ion of the class consisting of acetate, fluosilicate and fluoborate ions in concentrations from about 3% to about 20% by weight of the chromic acid
  • the method of reducing the anode sludge formation when electrolyzing said solution bea tween alead anode and a cathode to be coated comelectrolyzing said solution between a lead anode and i a cathode to be coated comprising incorporating cobaltous ion in said solution in concentrations from about 0.4 to about 5.0 grams per liter.
  • chromium plating from a solution comprising water, chromic acid in concentrations from about 200 to about 400 grams per liter, sulfate ion in concentration from about 0.5% to about 1.0% by weight of the chromic acid, and a catalytic acetate ion in conprising incorporating cobaltous ion in said solution in concentrations from about 1.0 to about 3.0 grams per liter.

Description

United States. Patent ELECTRODEPOSITION OF CHROMIUM Arthur H. Du Rose, Euclid, Ohio, assignor to The Harshaw Chemical Company, Cleveland, Ohio, a corporation of Ohio No Drawing. Application March 28, 1955, Serial No. 497,429
7 Claims. (Cl. 204-51) This invention relates to electrodeposition of chromium and more specifically to the prevention of anode sludging in chromium plating processes utilizing lead anodes and an aqueous solution principally consisting of chromic acid and a catalytic agent containing an anion the lead salt of which is soluble.
It has been found in practice that catalytic agents such as acetate ions, fiuosilicate ions or fiuoborate ions are useful but tend to increase lead anode sludging.
It has now been discovered in accordance with the present invention that such tendency to lead anode sludging can be reduced by the inclusion of a cobaltous compound in the plating solution. The tendency to increased lead anode sludging results from the fact that the lead salts of the catalytic agents are soluble. Surprisingly, the cobalt is not deposited on the cathode in the presence of the other bath constituents, even when much larger concentrations are added than are contemplated by the present invention. Relatively small concentrations of cobalt are thus able to contact the anode and exert the beneficial effect. It is not know how the cobalt acts but it is thought probable that the co'baltous ion is oxidized at the anode and forms a protective, thin film of insoluble cobaltic compound.
The basic bath in which it is contemplated the invention will be realized is one containing in addition to water, chromic acid and the catalyst. Sulfate ion may also be present but it is not essential. Chromic acid may be present to the extent of from 100 to 700 grams per liter, the sulfate ion may be present in concentration from zero to about 1.0% preferably from 0.1% to 1.0% of the chromic acid by weight and the catalyst may be an anion whose lead salt is soluble in the bath and may be present in concentration from about 0.7% to about 40% of the weight of the chromic acid. To the basic solution is added a cobaltous compound supplying cobaltous ion in concentration from about 0.4 to about grams per liter. Examples of catalyst which may be utilized are acetate ion, fluosilicate ion and fiuoborate ion. These various ions may be supplied by addition of various salts. In the case of acetate, fluosilicate and fiuoborate ions, the sodium salts are convenient. In the case of the cobaltous ion, it is desirable to use the cobalt salt of one of the ions already in the bath. Specific examples of cobaltous compounds which may be employed are the acetate, sulfate, fiuoborate, fluosilicate and carbonate. Nickel acetate was tried and found not to be efifective. The temperature of operation preferably is 60 F. to 145 F., and the cathode current density preferably is from 90 to 600 amperes per square foot.
ICC
Very excellent bath formulations are those falling in the following ranges:
ClOs From 200 to 400 grams per liter.
Catalyst ion From 3% to 20%- of the weight of the'CrOs.
Sulfate ion From 0.5% to 1.0% of the weight of the CrOs.
Cobaltous ion From 1.0 to 3.0 grams per liter.
Temperature F. to F.
Cathode current density 200 to 250 A. S. F. Anode Lead.
1 For example, acetate, fiuoborate, fluosilicate.
Specific examples of solutions in accordance with the invention are as follows:
Example I CrO3 g./l 250 HBF4 (47%) cc./l 6 CoCOa g./l 2.42 H2O Remainder Example If CIOa g./l 250 HzSiFs (30%) cc./l 20 CoCOs g./l 2.42 H2O Remainder Example III CrOa g./l 250 S04 g./l 1.5 NaCzHsOz g./l 55 C0(C2H3O2)2 g./l.. 5 H2O Remainder Electrolyzing the above solution under the conditions indicated above, good deposits can be produced consistently and lead anode sludging is at a minimum. The term lead anode" as used herein includes pure lead anodes and anodes principally composed of lead but containing minor quantities of other elements.
The following tests indicate the degree of reduction of sludging by the use of the invention. Using the bath of Example I and a lead alloy anode containing minor quantities of antimony, tin and tellurium which sludges less than pure lead, the amount of sludge formation per 336 ampere hours was 0.1 gram. Omitting cobalt, the amount was 1.75 grams. Utilizing the bath of Example H with the same alloy anode, the sludge forma tion was 0.2 gram per 336 ampere hours. Omitting the cobalt, the sludge formation was 1.7 grams per 336 ampere hours. Utilizing the bath of Example III, with the same alloy anode, the sludging was 1.6 grams per 336 ampere hours. Omitting the cobalt, it was 36. 1 grams per 336 ampere hours. With a chemical (pure) lead anode, the sludging amounted to 59.3 grams per 336 ampere hours.
The standard chromium plating bath, not containing the catalysts such as acetate ion, iluosilicate ion or fiuoborate ion does not sludge badly with chemical lead anodes. Omitting the cobalt and the catalyst from Example I and using a chemical lead anode, the sludging amounted to 1.1 grams per 336 ampere hours. A leadsilver anode containing 2% silver was found to be very resistant to sludging, yielding with the bath of Example III only 0.55 gram of sludge per 336 ampere hours, but far more expensive than the use of cobalt.
The terms catalyst catalytic agent and catalytic ion and similar terms employed herein will be understood as having reference to acid radicals customarily employed in chromic acid plating solutions to permit the plating of chromium from the solution without themselves being consumed by the reaction.
Having thus described my invention, what I claim is:
1. In a process of chromium plating from a solution comprising water, chromic acid, sulfate ion and a catalytic ion selected from the group consisting of acetate, fluosilicate and fluoborate ions, the method of reducing the quantity of anode sludge formation when electrolyzing said solution between a lead anode-and a -cathode to be coated comprising incorporating cobaltous ion in said solution in concentrations from about 0.4 to about 5.0 grams per liter.
2. In a process of chromium plating from a solution comprising water, chromic acid in concentrations from about 100 to about 700 grams per liter and a catalytic ion of the class consisting of acetate, fiuosilicate and fluoborate ions in concentrations from about-27% to about 40% by weight of the chromic acid, the method of reducing the quantity of anode sludge formation when centrations from about 3.0% to about 20% by weight of the chromic acid, the method of reducing the quantity of anode sludge formation when electrolyzing said solution between a lead anode and a cathode to be coated comprising incorporating cobaltous ion in said solution in concentrations from about 1.0 to about 3.0 grams per liter.
5. In a process of chromium plating from a solution comprising water, chromic acid, sulfate ion and a catalytic ion selected from the group consisting of acetate, fiuosilicate and fluoborate ions, the method of reducing the quantity of anode sludge formation when electrolyzing said solution between a lead anode and a cathode to be coated comprising incorporating cobaltous ion in said solution in concentrations from about 1.0 to about 3.0 grams per liter.
6. In a process of chromium plating from a solution comprising Water, chromic acid in concentrations from about 200 to about 400 grams per liter, sulfate ion in concentrations from about 0.5% to about 1.0% by 7 weight of the chromic acid, and a catalytic ion of the class consisting of acetate, fluosilicate and fluoborate ions in concentrations from about 3% to about 20% by weight of the chromic acid, the method of reducing the anode sludge formation when electrolyzing said solution bea tween alead anode and a cathode to be coated comelectrolyzing said solution between a lead anode and i a cathode to be coated comprising incorporating cobaltous ion in said solution in concentrations from about 0.4 to about 5.0 grams per liter.
3. In a process of chromium plating from a solution comprising Water, chromic acid in concentrations from about 100 to about 700 grams per liter, sulfate ion in concentrations from about 0.1 to about 1.0% by weight of the chromic acid, and a catalytic ion selected from the class consisting of acetate, fluosilicate and fluoborate ions in concentrations from about .07% to about 40% by weight of the chromic acid, the method of reducing the quantity of anode sludge formation when electrolyzing said solution between a lead anode and a cathode to be coated comprising incorporating cobaltous ion in said solution in concentrations from about 0.4 to about 5.0 grams per liter. 1
.4. In a process of chromium plating from a solution comprising water, chromic acid in concentrations from about 200 to about 400 grams per liter, sulfate ion in concentration from about 0.5% to about 1.0% by weight of the chromic acid, and a catalytic acetate ion in conprising incorporating cobaltous ion in said solution in concentrations from about 1.0 to about 3.0 grams per liter.
7. In a process of chromium plating from a solution comprising water, chromic acid in concentrations from about 200 to about 400 grams per liter, and a catalytic ion of the class consisting of acetate, fiuosilicate and fiuoborate ions in concentrations from about 3% to about 20%. by Weight of the chromic acid, the method of reducing the quantity of anode sludge formation when electrolyzing said solution between a lead anode and a cathode to be coated comprising incorporating cobaltous ion in said solution in concentrations from about 1.0 to about 3.0 grams per liter.
References Cited in the file of this patent UNITED STATES PATENTS Italy July 21, '1953

Claims (1)

1. IN A PROCESS OF CHROMIUM PLATING FROM A SOLUTION COMPRISING WATER, CHROMIC ACID, SULFATE ION AND A CATALYTIC ION SELECTED FROM THE GROUP CONSISTING OF ACETATE, FLUOSILICATE AND FLUOBORATE IONS, THE METHOD OF REDUCING THE QUANTITY OF ANODE SLUDGE FORMATION WHEN ELECTROLYZING SAID SOLUTION BETWEEN A LEAD ANODE AND A CATHODE TO BE COATED COMPRISING INCORPORATING COBALTOUS ION IN SAID SOLUTION IN CONCENTRATIONS FROM ABOUT 0.4 TO ABOUT 5.0 GRAMS PER LITER.
US497429A 1955-03-28 1955-03-28 Electrodeposition of chromium Expired - Lifetime US2784153A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US497429A US2784153A (en) 1955-03-28 1955-03-28 Electrodeposition of chromium
GB7340/56A GB788584A (en) 1955-03-28 1956-03-08 Electrodeposition of chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US497429A US2784153A (en) 1955-03-28 1955-03-28 Electrodeposition of chromium

Publications (1)

Publication Number Publication Date
US2784153A true US2784153A (en) 1957-03-05

Family

ID=23976829

Family Applications (1)

Application Number Title Priority Date Filing Date
US497429A Expired - Lifetime US2784153A (en) 1955-03-28 1955-03-28 Electrodeposition of chromium

Country Status (2)

Country Link
US (1) US2784153A (en)
GB (1) GB788584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532608A (en) * 1967-09-29 1970-10-06 United States Steel Corp Method of treating steel and electrolyte therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2762695C1 (en) * 2020-11-20 2021-12-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский автомобильно-дорожный государственный технический университет (МАДИ)" Method for electrolytic chromium plating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1465173A (en) * 1920-08-05 1923-08-14 James Clarence Patten Method of electrodepositing cobalt and chromium
US1717468A (en) * 1926-05-29 1929-06-18 Allegheny Steel Co Electroplating process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1465173A (en) * 1920-08-05 1923-08-14 James Clarence Patten Method of electrodepositing cobalt and chromium
US1717468A (en) * 1926-05-29 1929-06-18 Allegheny Steel Co Electroplating process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532608A (en) * 1967-09-29 1970-10-06 United States Steel Corp Method of treating steel and electrolyte therefor

Also Published As

Publication number Publication date
GB788584A (en) 1958-01-02

Similar Documents

Publication Publication Date Title
US2355070A (en) Electrolytic deposition of metal
US4392922A (en) Trivalent chromium electrolyte and process employing vanadium reducing agent
US2750334A (en) Electrodeposition of chromium
US2318592A (en) Electrodeposition
US4157945A (en) Trivalent chromium plating baths
US4184929A (en) Trivalent chromium plating bath composition and process
US2027358A (en) Electrodeposition of metals of the platinum group
US2990343A (en) Chromium alloy plating
US2750333A (en) Electrodeposition of antimony and antimony alloys
US2784153A (en) Electrodeposition of chromium
US2750337A (en) Electroplating of chromium
US4543167A (en) Control of anode gas evolution in trivalent chromium plating bath
US2846380A (en) Chromium electroplating
US2181773A (en) Brass plating
US3522155A (en) Method of electrodepositing a tinbismuth alloy and compositions therefor
EP0088192B1 (en) Control of anode gas evolution in trivalent chromium plating bath
JPS5887291A (en) Chromium electroplating bath
US4111760A (en) Method and electrolyte for the electrodeposition of cobalt and cobalt-base alloys in the presence of an insoluble anode
US2429970A (en) Silver plating
US2729602A (en) Electrodeposition of bright zinc plate
GB2142344A (en) Gold plating baths containing tartrate and carbonate salts
US4197172A (en) Gold plating composition and method
US1681509A (en) Cadmium plating
US2973308A (en) Complexed plating electrolyte and method of plating therewith
US2866740A (en) Electrodeposition of rhodium