US2730642A - Device comprising a cathode-ray tube - Google Patents

Device comprising a cathode-ray tube Download PDF

Info

Publication number
US2730642A
US2730642A US264985A US26498552A US2730642A US 2730642 A US2730642 A US 2730642A US 264985 A US264985 A US 264985A US 26498552 A US26498552 A US 26498552A US 2730642 A US2730642 A US 2730642A
Authority
US
United States
Prior art keywords
ray tube
cathode
coils
magnetic
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US264985A
Inventor
Grosjean Johan Adriaan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hartford National Bank and Trust Co
Original Assignee
Hartford National Bank and Trust Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hartford National Bank and Trust Co filed Critical Hartford National Bank and Trust Co
Application granted granted Critical
Publication of US2730642A publication Critical patent/US2730642A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements
    • G01S7/06Cathode-ray tube displays or other two dimensional or three-dimensional displays
    • G01S7/10Providing two-dimensional and co-ordinated display of distance and direction
    • G01S7/12Plan-position indicators, i.e. P.P.I.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/72Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
    • H01J29/76Deflecting by magnetic fields only
    • H01J29/762Deflecting by magnetic fields only using saddle coils or printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/70Electron beam control outside the vessel
    • H01J2229/703Electron beam control outside the vessel by magnetic fields
    • H01J2229/7031Cores for field producing elements, e.g. ferrite

Definitions

  • This invention relates to devices comprising a cathoderay tube, more particularly of the kind used for plan position indication P. P. I. in radar systems and its object is to provide means for adjusting the image.
  • a cathode-ray tube for plan position indication generally comprises a set of revolving magnetic deflection coils, to which sawtooth deflection currents are supplied.
  • image-focussing may be eiiected with the use of a stationary coil system by means of which a focussing magnetic field is produced.
  • Both the rotary and the stationary coil systems are generally arranged as close to the cone of the cathode-ray tube and hence as close to one another as possible in order to avoid the deflected electrons striking the neck of the cone.
  • a device comprising a cathode-ray tube and one or more deflection coils for the magnetic deflection of the electron beam, is characterized in that one or more substantially non-conductive permanent magnets are arranged adjacent the deflection coil for providing an additional magnetic field, the ratio between the remanent induction Br and the coercive field strength BHC of the material of the permanent magnet being at the most 4.
  • a cathode-ray tube 31 com prises an electron-accelerating and density modulating system 2 and deflecting coils 3 arranged adjacent the be ginning of the cone of the tube 1 and rotated with the use of a motor (not shown).
  • a magnetic system 5 which produces a diametrically directed additional magnetic field H and which is preferably constituted, as shown in the side elevation of Fig. 2, by a ring 6 of ferromagnetic material having a high permeability and on which are arranged two magnets 7 and 8 magnetized in the direction N-S of their smallest dimension. Magnetisation of the bodies 7 and 8 is thus considerably more simple than if the system 5 were made entirely from permanent magnetic material.
  • the ring 6 may be made of ferrite or laminated sheet iron and hence constitute a high impedance for eddy currents due to the field produced by the coils 3.
  • a permanent magnetic material which satisfies these requirements is, for example, cobalt ferrous ferrite, which has a specific resistance of 225 ohm/ems. and a ratio Bruslllc::1.8-:l.
  • a particularly-favourable material for the said purpose isthat described in British Patent No. 708,127, which is constituted substantially by non-cubic crystals of polyoxidesof iron and. at least one of the metals barium, strontium and lead and, if desired, calcium and hence can be manufactured from comparatively plentiful raw materials.
  • This material may have a ratio BrIBIIC from 1.2 to 1.5 and a specific resistance exceeding l0 ohm/ems.
  • a comparatively high maximum value 'of (B-H) is found, with the result that the required volume of permanent magnetic material for producing a given field may remain comparatively small.
  • the permanent magnetic material is substantially non-conductive but it is also necessary for the ratio between the remanent inducticn and the coercive field strength of the permanent magnetic material to be smaller than 4.
  • the ratio between the remanent induction Br and the coercive field strength BHC is, for example, equal to 12, so that the hysteresis loop which is described with a given field strength and induction of the material, has a slope which is appreciably smaller than the ratio BrZBHC, with the result that the said hysteresis loop may have a comparatively large area.
  • Fig. 3 In order to provide variation of the magnetic field it is possible to arrange in succession two magnetic systems as is shown in Fig. 3 comprising two permeable rings 6 and 6' respectively, and permanent magnets 7, 8 and 7 8', respectively as shown in Fig. 3, said magnets being adapted to be rotated relatively to one another about the axis 10.
  • the deflection to which the electron beam is then subjected is determined approximately by the vector composition of the magnetic fields H and H, respectively, developed by the bodies 7, 8 and 7, 8', respectively, and is therefore adapted to be varied within wide limits.
  • the invention may also be employed, for example, for image-adjustment or image correction with a cathode-ray tube for television purposes but in this case it is of less importance to arrange the deflecting coils and the permanent magnets adjacent one another.
  • a device for plan position indication comprising a cathode ray tube including an envelope having a conical portion and a neck portion, deflection coils rotatably mounted on said neck portion adjacent said conical portion, and a magnetic system surrounding said deflection coils, said magnetic system including a pair of arcuate substantially non-conductive permanent magnet segments positioned opposite one another and concentric with the coils and oriented to produce a diametrically directed magnetic field, each of said permanent magnets exhibiting a ratio of remanent induction Br and coercive field strength 3H0 of less than four.
  • a device for plan position indication comprising a cathode ray tube including an envelope having a conical portion and a neck portion, deflection coils rotatablymounted on said neck portion adjacent said conical portion, and an adjustable magnetic systemsurrounding said coils, said system including a pair of relatively rotatablymounted permeable rings surrounding said coils, each of said rings embracing a pair of arcuate substantially non.

Description

Jan. 10, 1956 J. A. GROSJEAN 2,730,642
DEVICE COMPRISING A CATHODE-RAY TUBE Filed Jan. 4, 1952 INVENTOR Johan Adnaan Gros'ea BY %u%% AGENT 2,730,642 ie e ew 56 United States Patent-"Oflice 2,730,642 DEVICE COMPRISING A CATHODE-RAY TUBE Johan Adriaan Grosjean, I Hilversum, Netherlands, as-
signor to Hartford National Bank and Trust Company, Hartford, Conn., as trustee i 1 Application January 4, 1952, Serial No. 264,985 Claims priority, application Netherlands April 23,1951
4 Claims. (Cl. 313-46) This invention relates to devices comprising a cathoderay tube, more particularly of the kind used for plan position indication P. P. I. in radar systems and its object is to provide means for adjusting the image.
A cathode-ray tube for plan position indication generally comprises a set of revolving magnetic deflection coils, to which sawtooth deflection currents are supplied. In this case, image-focussing may be eiiected with the use of a stationary coil system by means of which a focussing magnetic field is produced. Both the rotary and the stationary coil systems are generally arranged as close to the cone of the cathode-ray tube and hence as close to one another as possible in order to avoid the deflected electrons striking the neck of the cone.
According to the invention, a device comprising a cathode-ray tube and one or more deflection coils for the magnetic deflection of the electron beam, is characterized in that one or more substantially non-conductive permanent magnets are arranged adjacent the deflection coil for providing an additional magnetic field, the ratio between the remanent induction Br and the coercive field strength BHC of the material of the permanent magnet being at the most 4.
in order that the invention may be more clearly understood and readily carried into elfect, it will now be described more fully with reference to the accompanying diagrammatic drawing, given by way of example in which Fig. discloses the application of the invention to a cathode ray tube; Fig. 2 is a side view and Fig. 3' a side view and cross-section of modifications.
Referring now to Fig. l, a cathode-ray tube 31 com prises an electron-accelerating and density modulating system 2 and deflecting coils 3 arranged adjacent the be ginning of the cone of the tube 1 and rotated with the use of a motor (not shown). In order that the plan position indication thus formed on the screen 4 of the cathode ray tube 1 may be additionally deflected, provision is made of a magnetic system 5 which produces a diametrically directed additional magnetic field H and which is preferably constituted, as shown in the side elevation of Fig. 2, by a ring 6 of ferromagnetic material having a high permeability and on which are arranged two magnets 7 and 8 magnetized in the direction N-S of their smallest dimension. Magnetisation of the bodies 7 and 8 is thus considerably more simple than if the system 5 were made entirely from permanent magnetic material.
This material of the magnets 7 and 8 is substantially not conductive and the ratio between its remanent induction and its coercive field strength is at the most 4 and with the construction shown in Fig. 2, the ring 6 may be made of ferrite or laminated sheet iron and hence constitute a high impedance for eddy currents due to the field produced by the coils 3.
A permanent magnetic material which satisfies these requirements is, for example, cobalt ferrous ferrite, which has a specific resistance of 225 ohm/ems. and a ratio Bruslllc::1.8-:l. A particularly-favourable material for the said purpose isthat described in British Patent No. 708,127, which is constituted substantially by non-cubic crystals of polyoxidesof iron and. at least one of the metals barium, strontium and lead and, if desired, calcium and hence can be manufactured from comparatively plentiful raw materials. This material may have a ratio BrIBIIC from 1.2 to 1.5 and a specific resistance exceeding l0 ohm/ems. In addition, a comparatively high maximum value 'of (B-H) is found, with the result that the required volume of permanent magnetic material for producing a given field may remain comparatively small.
If image-deflection were to be performed with a permanent magnet of conductive material arranged adjacent the deflection coils 3, the field of these coils 3 would bring about eddy currents in the magnet, with the result that the deflection field would be distorted and, more particularly, the flyback time of the sawtooth increased. This disadvantage is obviated by the use of substantially non-conductive permanent magnetic material.
However, it is not sufiicient that the permanent magnetic material is substantially non-conductive but it is also necessary for the ratio between the remanent inducticn and the coercive field strength of the permanent magnetic material to be smaller than 4. With the usual permanent magnetic materials (which generally have also a high conductivity) the ratio between the remanent induction Br and the coercive field strength BHC is, for example, equal to 12, so that the hysteresis loop which is described with a given field strength and induction of the material, has a slope which is appreciably smaller than the ratio BrZBHC, with the result that the said hysteresis loop may have a comparatively large area. However, the smaller this ratio, the smaller will the said area be, since the slope of the hysteresis loop approaches more and more closely to the said ratio. With a ratio. less than 4 the hysteresis losses are generally found to be substantially negligible, it being found that the additional advantage is obtained that the reluctance to which the field of the coils 3 is subjected is substantially identical in any position of the said coils.
In order to provide variation of the magnetic field it is possible to arrange in succession two magnetic systems as is shown in Fig. 3 comprising two permeable rings 6 and 6' respectively, and permanent magnets 7, 8 and 7 8', respectively as shown in Fig. 3, said magnets being adapted to be rotated relatively to one another about the axis 10. The deflection to which the electron beam is then subjected is determined approximately by the vector composition of the magnetic fields H and H, respectively, developed by the bodies 7, 8 and 7, 8', respectively, and is therefore adapted to be varied within wide limits.
The invention may also be employed, for example, for image-adjustment or image correction with a cathode-ray tube for television purposes but in this case it is of less importance to arrange the deflecting coils and the permanent magnets adjacent one another.
What I claim is:
1. A device for plan position indication comprising a cathode ray tube including an envelope having a conical portion and a neck portion, deflection coils rotatably mounted on said neck portion adjacent said conical portion, and a magnetic system surrounding said deflection coils, said magnetic system including a pair of arcuate substantially non-conductive permanent magnet segments positioned opposite one another and concentric with the coils and oriented to produce a diametrically directed magnetic field, each of said permanent magnets exhibiting a ratio of remanent induction Br and coercive field strength 3H0 of less than four.
2. A device as claimed in claim 1 in which an annular o ring of soft ferromagnetic material embraces the permanent magnets. 7 Q
3. A device as claimed in claim 1 in which the permanent magnets each consist of hexagonal crystals composed of polyoxides of iron and a metal selectedfrom thegroup consisting of barium, strontium, and, lead.
4. A device for plan position indication comprising a cathode ray tube including an envelope having a conical portion and a neck portion, deflection coils rotatablymounted on said neck portion adjacent said conical portion, and an adjustable magnetic systemsurrounding said coils, said system including a pair of relatively rotatablymounted permeable rings surrounding said coils, each of said rings embracing a pair of arcuate substantially non.-
References Cited in the file of this patent UNITED STATES PATENTS 2,553.039 Gray May 15, 1951 2,581,657 Heppner M Jan. 8, 1952 2,594,099 Van Gilder Apr. 22, 1952
US264985A 1951-04-23 1952-01-04 Device comprising a cathode-ray tube Expired - Lifetime US2730642A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2730642X 1951-04-23

Publications (1)

Publication Number Publication Date
US2730642A true US2730642A (en) 1956-01-10

Family

ID=19875504

Family Applications (1)

Application Number Title Priority Date Filing Date
US264985A Expired - Lifetime US2730642A (en) 1951-04-23 1952-01-04 Device comprising a cathode-ray tube

Country Status (1)

Country Link
US (1) US2730642A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2788468A (en) * 1954-08-04 1957-04-09 Marconi Wireless Telegraph Co Cathode ray tubes
US2795717A (en) * 1955-08-01 1957-06-11 Rca Corp Cathode ray beam centering apparatus
US2861209A (en) * 1953-12-14 1958-11-18 Hazeltine Research Inc Cathode-ray-tube beam-deflection system
US2882396A (en) * 1953-10-30 1959-04-14 Ernest D Courant High energy particle accelerator
US3007087A (en) * 1958-06-04 1961-10-31 Gen Dynamics Corp Electromagnetic deflection coil
US3098942A (en) * 1955-02-24 1963-07-23 Zenith Radio Corp Magnetic centering device for cathode ray tubes
US3098943A (en) * 1957-09-18 1963-07-23 Zenith Radio Corp Cathode ray permanent magnet beam positioner
US3913043A (en) * 1973-10-10 1975-10-14 Philips Corp Deflection device for a color television display tube
US4143345A (en) * 1978-06-06 1979-03-06 Rca Corporation Deflection yoke with permanent magnet raster correction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2553039A (en) * 1949-04-26 1951-05-15 Zenith Radio Corp Cathode-ray tube combined beam centering and deflection device
US2581657A (en) * 1950-07-26 1952-01-08 Myron R Heppner Focusing and centering device for cathode-ray tubes
US2594099A (en) * 1950-04-22 1952-04-22 Ite Circuit Breaker Ltd Focusing coil for cathode-ray tubes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2553039A (en) * 1949-04-26 1951-05-15 Zenith Radio Corp Cathode-ray tube combined beam centering and deflection device
US2594099A (en) * 1950-04-22 1952-04-22 Ite Circuit Breaker Ltd Focusing coil for cathode-ray tubes
US2581657A (en) * 1950-07-26 1952-01-08 Myron R Heppner Focusing and centering device for cathode-ray tubes

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882396A (en) * 1953-10-30 1959-04-14 Ernest D Courant High energy particle accelerator
US2861209A (en) * 1953-12-14 1958-11-18 Hazeltine Research Inc Cathode-ray-tube beam-deflection system
US2788468A (en) * 1954-08-04 1957-04-09 Marconi Wireless Telegraph Co Cathode ray tubes
US3098942A (en) * 1955-02-24 1963-07-23 Zenith Radio Corp Magnetic centering device for cathode ray tubes
US2795717A (en) * 1955-08-01 1957-06-11 Rca Corp Cathode ray beam centering apparatus
US3098943A (en) * 1957-09-18 1963-07-23 Zenith Radio Corp Cathode ray permanent magnet beam positioner
US3007087A (en) * 1958-06-04 1961-10-31 Gen Dynamics Corp Electromagnetic deflection coil
US3913043A (en) * 1973-10-10 1975-10-14 Philips Corp Deflection device for a color television display tube
US4143345A (en) * 1978-06-06 1979-03-06 Rca Corporation Deflection yoke with permanent magnet raster correction
FR2428321A1 (en) * 1978-06-06 1980-01-04 Rca Corp DEFLECTOR WINDING WITH WEFT CORRECTION BY PERMANENT MAGNETS

Similar Documents

Publication Publication Date Title
US2157182A (en) Cathode ray deflecting device
US2513929A (en) Beam centering device for cathode-ray tubes
US2188579A (en) Cathode ray tube, more particularly for television purposes
US2224933A (en) Magnetic distortion correcting means for cathode ray tubes
US2983840A (en) Magnetic beam-forming device
US2730642A (en) Device comprising a cathode-ray tube
US2539156A (en) Ion trap magnet
US2816244A (en) Electron beam controlling apparatus
US3191104A (en) Deflection system for television receivers
US2332881A (en) Cathode ray tube arrangement
US4310776A (en) Cathode-ray tube
US2165803A (en) Cathode ray deflecting device
US2849636A (en) Magnetic electron lens
US2195470A (en) Cathode ray tube deflection system
US2795717A (en) Cathode ray beam centering apparatus
US3098942A (en) Magnetic centering device for cathode ray tubes
US3050653A (en) Magnetic focusing device
US2834901A (en) Cathode ray tube adjunct
GB720776A (en) Improvements relating to magnetic focusing devices for electron beams
US2563525A (en) Image size control device for
US2806164A (en) Beam convergence apparatus for tri-color kinescopes
US3136910A (en) Color television tube with a magnetic focus-mask
US2898493A (en) Method and apparatus for controlling electron beams
US2553039A (en) Cathode-ray tube combined beam centering and deflection device
US3334258A (en) Apparatus for effectively reducing overscan in a cathode ray tube