US2709577A - Oxygen therapy humidifier - Google Patents

Oxygen therapy humidifier Download PDF

Info

Publication number
US2709577A
US2709577A US239136A US23913651A US2709577A US 2709577 A US2709577 A US 2709577A US 239136 A US239136 A US 239136A US 23913651 A US23913651 A US 23913651A US 2709577 A US2709577 A US 2709577A
Authority
US
United States
Prior art keywords
gas
water
cover
tube
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US239136A
Inventor
Henry L Pohndorf
George L Hammon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Welding Equipment Co
Original Assignee
National Welding Equipment Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Welding Equipment Co filed Critical National Welding Equipment Co
Priority to US239136A priority Critical patent/US2709577A/en
Application granted granted Critical
Publication of US2709577A publication Critical patent/US2709577A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • A61M16/106Filters in a path
    • A61M16/107Filters in a path in the inspiratory path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • A61M16/209Relief valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/06Sprayers or atomisers specially adapted for therapeutic purposes of the injector type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • A61M2205/183General characteristics of the apparatus with alarm the sound being generated pneumatically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/65Vaporizers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7904Reciprocating valves
    • Y10T137/7922Spring biased
    • Y10T137/7924Spring under tension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • Y10T137/8326Fluid pressure responsive indicator, recorder or alarm

Definitions

  • humidifiers are important use in connection with oxygen treatment for hospital patients.
  • Commercial tanks of oxygen normally maintain the gas under extremely high pressures and with no contained moisture. When the pressure of the humidity, and if administered that way to the patient, it will tend to dry out the lung tissues. Prolonged breathing of dry oxygen can be quite harmful; so it has become accepted practice to humidity the oxygen before the patient breathes it.
  • bubblers Another problem with bubblers has been that their efiiciency decreased with increase in the pressure of the gas.
  • a humidifier which will produce substantially humid oxygen, free from droplets of water. It can be used with jars of relatively large volume and makes use of substantially all the water in the jar; so the humidifier does not require frequent attention. Moreover, its efficiency will not drop as the water level drops, and the humidity will remain substantially constant so long as there is any water in the jar. Further, a unique warning system is provided that sends out an audible signal when the gas pressure in the jar reaches a predetermined amount so that the nurse is called automatically and the patient is given more oxygen to breathe. At the same time, a relief valve permits escape of excess gas and thereby prevents explosions from occurring.
  • the orifice opens into, or near to, a venturi chamber.
  • the passage of oxygen through the venturi sucks water into the chamber through a long, flexible tube which may extend as long as necessary, up to the atmospheric limit for sucking water.
  • the Water is apparently broken up into millions of tiny droplets which are then introduced into the oxy gen stream. This stream issues against a novel baffle that breaks up the bubbles and aids their evaporation and prevents the stream from striking directly against the surface of the water. This keeps the oxygen free of any unabsorbed water or residual droplets.
  • the bathe in combination with a somewhat labyrinthine pathway which the humidified gas must travel in its way to the outlet serves to shake out all of the few such droplets that might remain in the gas.
  • Gas is prevented from building up to high pressures by a safety relief valve that is provided in the cover to the jar.
  • a reed in the relief valve sounds a musical tone to give audible warning that the pressure is excessive.
  • Fig. l is a view in elevation showing an oxygen tank, a regulator, gauges, and a humidifier connected thereto.
  • Fig. 2 is a View in elevation and in section of a humidifier embodying the principles of this invention.
  • Fig. 3 is a view on a reduced scale of a portion of the humidifier adjacent the venturi chamber, looking from the left side in Fig. 2.
  • Fig. 4 is a view in section of a portion of the safety valve, looking at right angles to Fig. 2 along the line 4-4.
  • Fig. 5 is a view in section looking up from the bottom of Fig. 4, along the line 5-5.
  • Fig. 6 is a view in section of the venturi and baffle of a modified form of the invention.
  • Fig. 7 is a View taken along the line 7-7 of Fig. 6.
  • Fig. 1 shows an assembly employing a humidifier em bodying the principles of this invention.
  • the dry gas is usually supplied at high pressure from a cylinder 10 filled with oxygen, and its pressure is reduced by a regulator 11.
  • a gauge 12 may indicate the pressure of the gas as it issues from the regulator 11, while a flow measuring device 13 may indicate the volume of the gas being humidified, usually expressed in liters per minute.
  • a humidifier 15 that embodies the present invention may be located adjacent the flow measuring device '13.
  • the humidifier 15 appears in greater detail in Fig. 2. It includes a housing 16 with an inlet 17 for the dry gas and an outlet 13 for the humidified gas.
  • the housing 16 comprises a jar 20 and a cover 21.
  • the jar 20 will usually be made of glass or other transparent material so that the water level and the operation of the vaporizer can be watched.
  • the jar is of the mason-type, having a flat shoulder 22 at the lower end of a threaded neck 23.
  • a rubber gasket 24 rests on the shoulder 22 and effects a seal between the jar 20 and the lower lip 25 of the cover 21. in this manner there is no dependence on the top edge 26 of the jar to effect a seal.
  • the cover 21 supports the working parts of the humidifier 15.
  • a central tapped hole 27 in its upper surface holds a threaded inlet fitting 28 in the upper end of which is the humidifier inlet 17.
  • a filter screen 29 may fit in the inlet 17 to remove any foreign matter from the incoming gas.
  • a central bore 3t extends through the cover 21 from the lower end of the hole 27, the bore 36 being flared out at its lower end to provide a socket 31 for a purpose to be explained.
  • An interiorly-threaded annular rim 32 depends from the lower surface of the cover 21, concentric with the socket 31. From a point inside this rim 32 a passageway 33 is bored through the cover 21 to the outlet 18.
  • a hollow cylindrical sleeve or muffler tube 35 is threaded into the rim 32.
  • the sleeve 35 has perforations 36 through which the humidified gas passes on its way to the outlet passageway 33, as shown by the direction of the arrows.
  • The'humidification is done in a vaporizer assembly 37 that is threaded into the lower end of the sleeve 35.
  • the assembly 37 comprises a lower member 38 into which an upper member 39 is threaded.
  • the dry gas from the inlet fitting 28 is conducted to the vaporizer 37 by means of a tube 41 held between the socket 31 and a socket 42 in the upper member 35.
  • An O-ring 43 seals the reduced upper end of the tube 41 at the socket 31 and another O-ring 44 seals the reduced lower end of the tube 41 in the socket 42. This type of fitting makes it easy to disassemble the pieces to sterilize them.
  • the dry oxygen issues from the upper vaporizer member 39 through a relatively long, narrow, and restricted orifice 45, of a size compatible with the flow measuring device 13.
  • the importance of relating the size of the orifice 45 to the fiow measuring device 13 will be explained later.
  • the orifice 45 extends deep into a substantially annular chamber 46 that is formed in the lower vaporizer member 38.
  • the orifice 45 is spaced a short distance from a wider nozzle 47 that leads out from the chamber 46 through the lower wall of the member 33.
  • This combination of orifice 45, chamber 46, and nozzle 47 forms a venturi whose sucking action is used to draw water up into the chamber 46, where it is broken up into very small particles and is then mixed with the gas.
  • the water may be drawn inthrough a flexible tube 50 secured around the projecting lower end of a metal tube 51 which is joined to the chamber 46 by a passageway 52.
  • the proper length of the flexible tube 50 depends on the height of the jar 20, so that it may vary from a few inches to several feet. However, because of its flexibility, a relatively long piece of tubing 50 may be used inside relatively short jars, so that a single tube 50 may be used for several ditferent sizes of jars 20.
  • an intake fitting 53 preferably of ball shape so that it'may lie in the lowest rim of the jar 20 and suck up water so long as there is water in the jar.
  • the fitting 53 may be provided with a-filter 54 adjacent the narrow passageway 55.
  • the water and oxygen mixed in the chamber 46 are ejected from the nozzle 47 against a stream divcrter member or baffie 6b.
  • a stream divcrter member or baffie 6b This may comprise a cusp-shaped metallic member 61 supported below the assembly 37 by the metal tube 51 and a solid standard 62.
  • the stream is spread outwardly by the cusp 61, which breaks up its concentration into thin sheet form, prevents the water surface from rippling, and also breaks up any stray water droplets, any remaining free droplets dripping down the member 6i and off it into the water below.
  • the cusp shape efiects a very even distribution of the humidified stream of gas, at the same time causing the stream to turn outwardly and upwardly without striking the water below.
  • a novel pressure-relief valve is also provided, for the prevention of excessive pressures within the jar 20 and for giving an audible warning when the outlet of gas from the normal outlet is blocked and the pressure builds up.
  • a recess 66 is provided in the upper surface of the cover 21, and openings 67 and 68 extend all the way through the cover.
  • the upper portion of the recess 66 is a generally vertical cylindrical wall 71, while the lower portion 72 slopes inwardly to a flat web 73 that forms the bottom of the recess 66 and is perforated at its center by the opening 67 and bordering it by the openings 68.
  • the moving part of the valve 70 comprises a disc 74 that fits in the recess 66 and has a rubber O-ring 75 around its periphery, preferably on the lower side so as to seat against the sloping wall 73. When seated, the disc 74 closes the path to gas entering through any of the openings 68.
  • a stem 76 depends from the disc 74 down through the central opening 67, a nut '77 being threaded on its lower end.
  • a spring 73% held in tension between the nut 77 and the web 73, normally retains the disc 74 in its lower position, where it prevents leakage of gas.
  • the pressure of the gas inside the jar 20 exceeds the tension of the spring 78, the spring 73 is compressed, the disc 74 is lifted, and gas passes between the rubber ring 75 and the walls of the recess 66.
  • a hollow cap fill has at its lower end a rubber O-ring 81 that fits in a groove 82 in the recess 66. All the gas escaping past the disc valve 74 goes up through the cap 80.
  • a plate 83 Just below the caps upper end is a plate 83, having a small outlet opening 84 and a generally rectangular opening 85.
  • a reed 86 lies across the opening 85, one end being secured to the plate 33 so that its other end can vibrate freely in the opening 35.
  • An opening 87 through the top of the cap permits escape of the gas after it has passed through the openings 84 and 85.
  • the top of the plate 83 which shows through the opening 87, may be colored red to discourage tampering. However, there is a further safety feature that comes into play if anyone should tape over the opening 87 or otherwise obstruct it.
  • the O ring 81 connection is air tight, but if the escape opening 87 is blocked, excess pressure will eject the entire cap by lifting it and its 0 ring 81 out of the recess 32.
  • the gas enters at the inlet 17, goes through the tubes 28 and 41 to the vaporizer assembly 37 and issues from the orifice 45 into the chamber 46.
  • the venturi sucks water in through the ball inlet 53 via the tubes 55) and 51 into the chamber 46. There the water is broken up into infinitesimal portions and mixed with the dry gas to produce gas having up to humidity.
  • the humidified gas issues from the nozzle 47 and its stream is then spread by the cusp 61, which breaks up any droplets and prevents any disturbance of the surface of the water.
  • the gas then goes up into the interior of the jar 20 above the ballle 63, passes through the holes 36 in the sleeve or muffler tube 35, into the passageway 33, and goes to the outlet 1%.
  • An advantage of this device is that the gas will hu midify with equal eificiency, no matter what the water level is, and the gas will be humidified so long as there is water in the jar 29. The water level can always be observed through the transparent jar 20 and water added when it is needed.
  • the safety valve 70 operates only from the gas pressure inside the jar 20. Then, when the gas pressure exceeds the tension of the spring 78, the disc 74 is raised and gas enters the cap 80. It passes through the plate openings 3 's and 85 out the cap opening 8'/, sounding the warning reed 85 as it does so. If someone carelessly tapes over the opening 87, the whole cap 80 will be ejected, and the gas will still escape.
  • the structure of the humidifier makes possible the use of either of two types of fiow measuring devices and makes it possible to use them on the dry gas before humidification.
  • One such device is usually termed a fiow gauge.
  • a fiow gauge In reality it is a pressure gauge that is used in conjunction with an orifice of known size, the gauge being calibrated to read in terms of the quantity per unit time (e. g. liters per minute) of gas which the pressure would cause to flow through the orifice.
  • a flow gauge may be used with the present invention, because the humidifier 15 is of the jet type, and its orifice 45 can be standardized, and the gauge calibrated to it.
  • the second type of flow measuring device that is in common use is usually termed a flow meter and is illustrated by the floating ball type of meter.
  • gas flows from bottom to top through a vertical tube with conical walls that widen gradually toward the upper end. In its flow the gas lifts a light ball to a height that depends on the rate of flow. The ball will drop when there is no fiow, even though the pressure of the gas increases. Consequently the flow meter is more accurate than the flow gauge. For example, if the orifice became stopped up, flow would stop, and pressure would build up; the flow gauge would then falsely indicate an increase in flow, whereas the flow meter would correctly indicate a cessation of flow.
  • Flow meters have heretofore been used only at atmospheric pressures, or at least where the outlet end is at atmospheric pressure. With humidifiers this has two principal disadvantages. Wet gas fogs the tube and makes it difiicult to read, and if water has collected on and around the ball, it weighs it down and makes it stick to the walls, so the reading is inaccurate. With this invention, the flow meter can be placed on the input side of the humidifier, where the gas is dry, and where these ditliculties are prevented. This is possible, because the orifice 45 is standardized, making it possible to calibrate the tube for operation under the flow valves cor responding to the orifice. Also, the warning reed 86 in dicates when the outlet tube from the humidifier is clogged. When the warning system is silent, gas is flowing out from the humidifier at substantially the same rate it is flowing in.
  • a modified form of the invention is shown.
  • the gas stream entering the vaporizer assembly 140 flows through two orifices 145 of identical size. This enables the use of the same flow meter or flow gauge to indicate a stream of twice as much gas, either by new calibration or by a corrected reading of the 01d scale.
  • the gas mixes with the water vapor in the venturi chamber 146 and flows out through two noz zles 147.
  • the baffie includes a knife-edge cusp memher 161 (instead of the point-cusp member 61) so as to take care of both nozzles 147. Otherwise, operation is identical with the form described in Figs. l-4.
  • a humidifier for gas under pressure including in combination: a container body adapted to be partially filled with water; a cover adapted to seal said container, said cover having a vertical inlet for dry gas and a radial horizontal outletfor humidified gas connected to a conduit through said cover leading from a cover opening inside said container near said vertical inlet; a hollow mufiler tube depending from said cover and surrounding both said vertical inlet and said cover opening, said muffier tube having radial perforations spaced downwardly a substantial distance from said cover; a vaporizer as sembly supported below said perforations by said mufiier tube, said assembly including a housing defining a venturi chamber having orifice means for dry gas, an inlet opening for water, and nozzle means in line with said orifice means through which a mixture of gas and water issues; an imperforate tube connecting said orifice means with said dry gas inlet means; a tube for water leading from the lower part of said container body to said water inlet opening; and a cusp'shaped
  • the orifice means comprises a plurality of aligned orifices, the nozzle means a corresponding plurality of similarly aligned nozzles; and said bafiie means a member having a relatively sharp upper edge aligned with said nozzles, a cusped surface curving downwardly and outwardly from said edge.

Description

W 31, 1955 H. L. POHNDORF ET AL 2,709,577
OXYGEN THERAPY HUMIDIFIER Filed July 28, 1951 INVENTORR/ GEORGE L HAM/H0 lE/WPY L. POI/NDORF w vim ATTORNEY 2,709,577 oxvonn THERAPY HUMIDIFIER Henry L. Pohndorf, El Cerrito, and George L. Hammon,
Oakland, Calif., assignors to National Welding Equip- ;nent (10., San Francisco, Calif., a corporation of Callornia Application July 28, 1951, Serial No. 239,136 i Claims. (Cl. 26I--2) This invention relates to an improved humidifier.
One important use of humidifiers is in connection with oxygen treatment for hospital patients. Commercial tanks of oxygen normally maintain the gas under extremely high pressures and with no contained moisture. When the pressure of the humidity, and if administered that way to the patient, it will tend to dry out the lung tissues. Prolonged breathing of dry oxygen can be quite harmful; so it has become accepted practice to humidity the oxygen before the patient breathes it.
It is often desirable to saturate the oxygen, that is, to wet the gas to a humidity of approximately 100%. This makes it possible to produce gas of any desired humidity by mixing a known amount of the saturated gas (100% humidity) with a known amount of the dry gas humidity). One trouble with humidifiers which have heretofore been used has been that they were not able to wet the dry gas to 100% humidity. Most of these prior art humidifiers have been mere bubb1ersi. e., they operated by bubbling the dry gas through a jar of water. Only the oxygen near the surface of the bubble came in contact with the water, and the balance of the oxygen inside the bubble remained relatively dry.
Another problem with bubblers has been that their efiiciency decreased with increase in the pressure of the gas. The higher the pressure of the gas introduced into the humidifier, the larger the bubbles, and the larger the bubbles, the less gas that comes in contact with the water so the gas that goes out the outlet is less humid than desired.
Another fault with humidifiers of the bubbler type has been that the gas often carried over small droplets of water which were never evaporated. It is believed that such droplets, when carried into the lungs, sometimes induced pneumonia and aggravated the disease which the treatment was intended to cure.
Still another disadvantage of the humidifiers that have heretofore been in use is that they have required almost constant watching. The jars held a relatively small amount of water, and only a small proportion of this small amount was available for humidification. When the water level dropped, the bubbles traveled a shorter distance through the water, less gas came into contact with the water, and the humidity of the outgoing gas dropped. Also when the water level dropped only a short distance, it would fall below the gas inlet of the bubbler; so there was no humidification. This meant that the nurse had to watch the water level closely and had to add water frequently.
A more serious problem was the fact that many of such humidifiers were dangerous. The humidified oxygen has usually been conducted away from the jar by a flexible rubber hose, and this is usually the most desirable way to do it. However, when such a hose became kinked, or was stepped on, or otherwise collapsed, two dangers were present: First, the patient would not get enough oxygen to breathe so that he might suffocate. Second, the
gas is reduced, the gas remains at zero iftates Patent 0 pressure of the gas would build up inside the jar, so that it was not uncommon for the jar to explode and scatter broken glass.
All these problems, and several others which will become apparent from this description, have been solved by the present invention. It provides a humidifier which will produce substantially humid oxygen, free from droplets of water. It can be used with jars of relatively large volume and makes use of substantially all the water in the jar; so the humidifier does not require frequent attention. Moreover, its efficiency will not drop as the water level drops, and the humidity will remain substantially constant so long as there is any water in the jar. Further, a unique warning system is provided that sends out an audible signal when the gas pressure in the jar reaches a predetermined amount so that the nurse is called automatically and the patient is given more oxygen to breathe. At the same time, a relief valve permits escape of excess gas and thereby prevents explosions from occurring.
The structure which has solved these problems, and which has many other advantages that will be taken up in connection with the illustrative description, includes a sealed jar having an outlet and an inlet with a fixed orifice. The orifice opens into, or near to, a venturi chamber. The passage of oxygen through the venturi sucks water into the chamber through a long, flexible tube which may extend as long as necessary, up to the atmospheric limit for sucking water. Inside the venturi chamber, the Water is apparently broken up into millions of tiny droplets which are then introduced into the oxy gen stream. This stream issues against a novel baffle that breaks up the bubbles and aids their evaporation and prevents the stream from striking directly against the surface of the water. This keeps the oxygen free of any unabsorbed water or residual droplets. Moreover, the bathe, in combination with a somewhat labyrinthine pathway which the humidified gas must travel in its way to the outlet serves to shake out all of the few such droplets that might remain in the gas. Gas is prevented from building up to high pressures by a safety relief valve that is provided in the cover to the jar. When the pressure reaches a value somewhat above normal but still well within the limits of safe operation, a reed in the relief valve sounds a musical tone to give audible warning that the pressure is excessive.
Further features of the invention will be understood from a detailed description and illustration of one form of the device that embodies the principles of the invention, but the scope of the invention is not intended to be limited thereby except as provided by the appended claims.
In the drawings:
Fig. l is a view in elevation showing an oxygen tank, a regulator, gauges, and a humidifier connected thereto.
Fig. 2 is a View in elevation and in section of a humidifier embodying the principles of this invention.
Fig. 3 is a view on a reduced scale of a portion of the humidifier adjacent the venturi chamber, looking from the left side in Fig. 2.
Fig. 4 is a view in section of a portion of the safety valve, looking at right angles to Fig. 2 along the line 4-4.
Fig. 5 is a view in section looking up from the bottom of Fig. 4, along the line 5-5.
Fig. 6 is a view in section of the venturi and baffle of a modified form of the invention.
Fig. 7 is a View taken along the line 7-7 of Fig. 6.
Fig. 1 shows an assembly employing a humidifier em bodying the principles of this invention. The dry gas is usually supplied at high pressure from a cylinder 10 filled with oxygen, and its pressure is reduced by a regulator 11. A gauge 12 may indicate the pressure of the gas as it issues from the regulator 11, while a flow measuring device 13 may indicate the volume of the gas being humidified, usually expressed in liters per minute. A humidifier 15 that embodies the present invention may be located adjacent the flow measuring device '13.
The humidifier 15 appears in greater detail in Fig. 2. It includes a housing 16 with an inlet 17 for the dry gas and an outlet 13 for the humidified gas. The housing 16 comprises a jar 20 and a cover 21. The jar 20 will usually be made of glass or other transparent material so that the water level and the operation of the vaporizer can be watched. Preferably the jar is of the mason-type, having a flat shoulder 22 at the lower end of a threaded neck 23. A rubber gasket 24 rests on the shoulder 22 and effects a seal between the jar 20 and the lower lip 25 of the cover 21. in this manner there is no dependence on the top edge 26 of the jar to effect a seal.
The cover 21 supports the working parts of the humidifier 15. A central tapped hole 27 in its upper surface holds a threaded inlet fitting 28 in the upper end of which is the humidifier inlet 17. A filter screen 29 may fit in the inlet 17 to remove any foreign matter from the incoming gas.
A central bore 3t extends through the cover 21 from the lower end of the hole 27, the bore 36 being flared out at its lower end to provide a socket 31 for a purpose to be explained. An interiorly-threaded annular rim 32 depends from the lower surface of the cover 21, concentric with the socket 31. From a point inside this rim 32 a passageway 33 is bored through the cover 21 to the outlet 18.
A hollow cylindrical sleeve or muffler tube 35 is threaded into the rim 32. The sleeve 35 has perforations 36 through which the humidified gas passes on its way to the outlet passageway 33, as shown by the direction of the arrows.
The'humidification is done in a vaporizer assembly 37 that is threaded into the lower end of the sleeve 35. The assembly 37 comprises a lower member 38 into which an upper member 39 is threaded. The dry gas from the inlet fitting 28 is conducted to the vaporizer 37 by means of a tube 41 held between the socket 31 and a socket 42 in the upper member 35. An O-ring 43 seals the reduced upper end of the tube 41 at the socket 31 and another O-ring 44 seals the reduced lower end of the tube 41 in the socket 42. This type of fitting makes it easy to disassemble the pieces to sterilize them.
The dry oxygen issues from the upper vaporizer member 39 through a relatively long, narrow, and restricted orifice 45, of a size compatible with the flow measuring device 13. The importance of relating the size of the orifice 45 to the fiow measuring device 13 will be explained later.
The orifice 45 extends deep into a substantially annular chamber 46 that is formed in the lower vaporizer member 38. The orifice 45 is spaced a short distance from a wider nozzle 47 that leads out from the chamber 46 through the lower wall of the member 33. This combination of orifice 45, chamber 46, and nozzle 47, forms a venturi whose sucking action is used to draw water up into the chamber 46, where it is broken up into very small particles and is then mixed with the gas.
The water may be drawn inthrough a flexible tube 50 secured around the projecting lower end of a metal tube 51 which is joined to the chamber 46 by a passageway 52. The proper length of the flexible tube 50 depends on the height of the jar 20, so that it may vary from a few inches to several feet. However, because of its flexibility, a relatively long piece of tubing 50 may be used inside relatively short jars, so that a single tube 50 may be used for several ditferent sizes of jars 20.
At the lower end of the tube 50 there may be secured an intake fitting 53, preferably of ball shape so that it'may lie in the lowest rim of the jar 20 and suck up water so long as there is water in the jar. To prevent the introduction of foreign particles, the fitting 53 may be provided with a-filter 54 adjacent the narrow passageway 55.
The water and oxygen mixed in the chamber 46 are ejected from the nozzle 47 against a stream divcrter member or baffie 6b. This may comprise a cusp-shaped metallic member 61 supported below the assembly 37 by the metal tube 51 and a solid standard 62. The stream is spread outwardly by the cusp 61, which breaks up its concentration into thin sheet form, prevents the water surface from rippling, and also breaks up any stray water droplets, any remaining free droplets dripping down the member 6i and off it into the water below. The cusp shape efiects a very even distribution of the humidified stream of gas, at the same time causing the stream to turn outwardly and upwardly without striking the water below.
From the battle 68 the humidified oxygen follows a labyrinthine path to the outlet, going from the jar interior through the holes 36 and the passageway 33 to the outlet 18.
A novel pressure-relief valve is also provided, for the prevention of excessive pressures within the jar 20 and for giving an audible warning when the outlet of gas from the normal outlet is blocked and the pressure builds up. For this purpose a recess 66 is provided in the upper surface of the cover 21, and openings 67 and 68 extend all the way through the cover. The upper portion of the recess 66 is a generally vertical cylindrical wall 71, while the lower portion 72 slopes inwardly to a flat web 73 that forms the bottom of the recess 66 and is perforated at its center by the opening 67 and bordering it by the openings 68.
The moving part of the valve 70 comprises a disc 74 that fits in the recess 66 and has a rubber O-ring 75 around its periphery, preferably on the lower side so as to seat against the sloping wall 73. When seated, the disc 74 closes the path to gas entering through any of the openings 68.
A stem 76 depends from the disc 74 down through the central opening 67, a nut '77 being threaded on its lower end. A spring 73%, held in tension between the nut 77 and the web 73, normally retains the disc 74 in its lower position, where it prevents leakage of gas. When the pressure of the gas inside the jar 20 exceeds the tension of the spring 78, the spring 73 is compressed, the disc 74 is lifted, and gas passes between the rubber ring 75 and the walls of the recess 66.
A hollow cap fill has at its lower end a rubber O-ring 81 that fits in a groove 82 in the recess 66. All the gas escaping past the disc valve 74 goes up through the cap 80. Just below the caps upper end is a plate 83, having a small outlet opening 84 and a generally rectangular opening 85. A reed 86 lies across the opening 85, one end being secured to the plate 33 so that its other end can vibrate freely in the opening 35.
An opening 87 through the top of the cap permits escape of the gas after it has passed through the openings 84 and 85. The top of the plate 83, which shows through the opening 87, may be colored red to discourage tampering. However, there is a further safety feature that comes into play if anyone should tape over the opening 87 or otherwise obstruct it. The O ring 81 connection is air tight, but if the escape opening 87 is blocked, excess pressure will eject the entire cap by lifting it and its 0 ring 81 out of the recess 32.
In operation, the gas enters at the inlet 17, goes through the tubes 28 and 41 to the vaporizer assembly 37 and issues from the orifice 45 into the chamber 46. The venturi sucks water in through the ball inlet 53 via the tubes 55) and 51 into the chamber 46. There the water is broken up into infinitesimal portions and mixed with the dry gas to produce gas having up to humidity. The humidified gas issues from the nozzle 47 and its stream is then spread by the cusp 61, which breaks up any droplets and prevents any disturbance of the surface of the water. The gas then goes up into the interior of the jar 20 above the ballle 63, passes through the holes 36 in the sleeve or muffler tube 35, into the passageway 33, and goes to the outlet 1%.
An advantage of this device is that the gas will hu midify with equal eificiency, no matter what the water level is, and the gas will be humidified so long as there is water in the jar 29. The water level can always be observed through the transparent jar 20 and water added when it is needed.
The safety valve 70 operates only from the gas pressure inside the jar 20. Then, when the gas pressure exceeds the tension of the spring 78, the disc 74 is raised and gas enters the cap 80. It passes through the plate openings 3 's and 85 out the cap opening 8'/, sounding the warning reed 85 as it does so. If someone carelessly tapes over the opening 87, the whole cap 80 will be ejected, and the gas will still escape.
It is worth noting that the structure of the humidifier makes possible the use of either of two types of fiow measuring devices and makes it possible to use them on the dry gas before humidification. One such device is usually termed a fiow gauge. In reality it is a pressure gauge that is used in conjunction with an orifice of known size, the gauge being calibrated to read in terms of the quantity per unit time (e. g. liters per minute) of gas which the pressure would cause to flow through the orifice. A flow gauge may be used with the present invention, because the humidifier 15 is of the jet type, and its orifice 45 can be standardized, and the gauge calibrated to it.
The second type of flow measuring device that is in common use is usually termed a flow meter and is illustrated by the floating ball type of meter. There, gas flows from bottom to top through a vertical tube with conical walls that widen gradually toward the upper end. In its flow the gas lifts a light ball to a height that depends on the rate of flow. The ball will drop when there is no fiow, even though the pressure of the gas increases. Consequently the flow meter is more accurate than the flow gauge. For example, if the orifice became stopped up, flow would stop, and pressure would build up; the flow gauge would then falsely indicate an increase in flow, whereas the flow meter would correctly indicate a cessation of flow.
Flow meters have heretofore been used only at atmospheric pressures, or at least where the outlet end is at atmospheric pressure. With humidifiers this has two principal disadvantages. Wet gas fogs the tube and makes it difiicult to read, and if water has collected on and around the ball, it weighs it down and makes it stick to the walls, so the reading is inaccurate. With this invention, the flow meter can be placed on the input side of the humidifier, where the gas is dry, and where these ditliculties are prevented. This is possible, because the orifice 45 is standardized, making it possible to calibrate the tube for operation under the flow valves cor responding to the orifice. Also, the warning reed 86 in dicates when the outlet tube from the humidifier is clogged. When the warning system is silent, gas is flowing out from the humidifier at substantially the same rate it is flowing in.
In Figs. 6 and 7 a modified form of the invention is shown. Here the gas stream entering the vaporizer assembly 140 flows through two orifices 145 of identical size. This enables the use of the same flow meter or flow gauge to indicate a stream of twice as much gas, either by new calibration or by a corrected reading of the 01d scale. The gas mixes with the water vapor in the venturi chamber 146 and flows out through two noz zles 147. The baffie includes a knife-edge cusp memher 161 (instead of the point-cusp member 61) so as to take care of both nozzles 147. Otherwise, operation is identical with the form described in Figs. l-4.
We claim:
1. A humidifier for gas under pressure, including in combination: a container body adapted to be partially filled with water; a cover adapted to seal said container, said cover having a vertical inlet for dry gas and a radial horizontal outletfor humidified gas connected to a conduit through said cover leading from a cover opening inside said container near said vertical inlet; a hollow mufiler tube depending from said cover and surrounding both said vertical inlet and said cover opening, said muffier tube having radial perforations spaced downwardly a substantial distance from said cover; a vaporizer as sembly supported below said perforations by said mufiier tube, said assembly including a housing defining a venturi chamber having orifice means for dry gas, an inlet opening for water, and nozzle means in line with said orifice means through which a mixture of gas and water issues; an imperforate tube connecting said orifice means with said dry gas inlet means; a tube for water leading from the lower part of said container body to said water inlet opening; and a cusp'shaped baffie depending from said muflier tube below and in line with said nozzle means, above the water level, whereby the dry gas draws water into said venturi chamber, issues as a stream of wet gas from said nozzle means, is deflected by said bafiie out into the space between said container walls, said muffier tube, said cover, and the water, is forced by the presusre in said container through said perforations into said mufiler tube and thence to said cover opening and said outlet, said bafiie and the subsequent labyrinthine path of the wet gas serving to shake out suspended droplets of water from the humidified gas.
2. The humidifier of claim 1 in which said orifice means comprises a plurality of orifices and said nozzle means comprises a corresponding plurality of nozzles, each in line with one said orifice.
3. The humidifier of claim 1 in which the orifice means comprises a single orifice, the nozzle means a single nozzle, and the baffie means a cusp-shaped cone-like member axially aligned with said nozzle and orifice.
4. The humidifier of claim 1 in which the orifice means comprises a plurality of aligned orifices, the nozzle means a corresponding plurality of similarly aligned nozzles; and said bafiie means a member having a relatively sharp upper edge aligned with said nozzles, a cusped surface curving downwardly and outwardly from said edge.
References Cited in the file of this patent UNITED STATES PATENTS 1,222,421 Lambert Apr. 10, 1917 1,625,419 McCaa Apr. 19, 1927 1,810,131 Daily June 16, 1931 2,049,158 Eckert July 28, 1936 2,054,850 Deming Sept. 22, 1936 2,129,482 Severin Sept. 6, 1938 2,230,201 Hermann Jan. 28, 1941 2,428,277 Heidbrink Sept. 30, 1947 2,437,526 Heidbrink et a1. Mar. 9, 1948 2,565,691 Ketelsen Aug. 28, 1951 2,588,312 Walker Mar. 4, 19'"

Claims (1)

1. A HUMIDIFIER FOR GAS UNDER PRESSURE, INCLUDING IN COMBINATION: A CONTAINER BODY ADAPTED TO BE PARTIALLY FILLED WITH WATER; A COVER ADAPTED TO SEAL SAID CONTAINER, SAID COVER HAVING A VERTICAL INLET FOR DRY GAS AND A RADIAL HORIZONTAL OUTLET FOR HUMIDIFIED GAS CONNECTED TO A CONDUIT THROUGH SAID COVER LEADING FROM A COVER OPENING INSIDE SAID CONTAINER NEAR SAID VERTICAL INLET; A HOLLOW MUFFLER TUBE DEPENDING FROM SAID COVER AND SURROUNDING BOTH SAID VERTICAL INLET AND SAID COVER OPENING, SAID MUFFLER TUBE HAVING RADIAL PERFORATIONS SPACED DOWNWARDLY A SUBSTANTIAL DISTANCE FROM SAID COVER; A VAPORIZER ASSEMBLY SUPPORTED BELOW SAID PERFORATIONS BY SAID MUFFLER TUBE, SAID ASSEMBLY INCLUDING A HOUSING DEFINING A VENTURI CHAMBER HAVING ORIFICE MEANS FOR DRY GAS, AN INLET OPENING FOR WATER, AND NOZZLE MEANS IN LINE WITH SAID ORIFICE MEANS THROUGH WHICH A MIXTURE OF GAS AND WATER ISSUES; AN IMPERFORATE TUBE CONNECTING SAID ORIFICE MEANS WITH SAID DRY GAS INLET MEANS; A TUBE FOR WATER LEADING FROM THE LOWER PART OF SAID CONTAINER BODY TO SAID WATER INLET OPENING; AND A CUSP-SHAPED BAFFLE DEPENDING FROM SAID MUFFLER TUBE BELOW AND IN LINE WITH SAID NOZZLE MEANS, ABOVE THE WATER LEVEL, WHEREBY THE DRY GAS DRAWS WATER INTO SAID VENTURI CHAMBER, ISSUES AS A STREAM OF WET GAS FROM SAID NOZZLE MEANS, IS DEFLECTED BY SAID BAFFLE OUT INTO THE SPACE BETWEEN SAID CONTAINER WALLS, SAID MUFFLER TUBE, SAID COVER, AND THE WATER, IS FORCED BY THE PRESSURE IN SAID CONTAINER THROUGH SAID PERFORATIONS INTO SAID MUFFLER TUBE AND THENCE TO SAID COVER OPENING AND SAID OUTLET, SAID BAFFLE AND THE SUBSEQUENT LABYRINTHINE PATH OF THE WET GAS SERVING TO SHAKE OUT SUSPENDED DROPLETS OF WATER FROM THE HUMIDIFIED GAS.
US239136A 1951-07-28 1951-07-28 Oxygen therapy humidifier Expired - Lifetime US2709577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US239136A US2709577A (en) 1951-07-28 1951-07-28 Oxygen therapy humidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US239136A US2709577A (en) 1951-07-28 1951-07-28 Oxygen therapy humidifier

Publications (1)

Publication Number Publication Date
US2709577A true US2709577A (en) 1955-05-31

Family

ID=22900762

Family Applications (1)

Application Number Title Priority Date Filing Date
US239136A Expired - Lifetime US2709577A (en) 1951-07-28 1951-07-28 Oxygen therapy humidifier

Country Status (1)

Country Link
US (1) US2709577A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2840417A (en) * 1957-02-12 1958-06-24 Gordon Armstrong Company Inc Nebulizing apparatus
US2882026A (en) * 1955-08-31 1959-04-14 Chemetron Corp Nebulizer
US2910956A (en) * 1957-02-18 1959-11-03 Scully Signal Co Whistle for signaling device for use in filling tanks
US2917386A (en) * 1955-09-09 1959-12-15 Aeroprojects Inc Homogenizing method and apparatus
US3009542A (en) * 1958-12-29 1961-11-21 Int Basic Economy Corp Liquid mist generating device
US3249553A (en) * 1963-01-28 1966-05-03 Samuel B Steinberg Smoke generator
US3282266A (en) * 1962-08-02 1966-11-01 Jr John M Walker Method and apparatus for humidifying inhalation mixtures
US3353536A (en) * 1965-04-13 1967-11-21 Forrest M Bird Nebulizer
US3512718A (en) * 1968-03-06 1970-05-19 Stile Craft Mfg Inc Nebulizer spray unit
US3515676A (en) * 1967-09-18 1970-06-02 Eaton Yale & Towne Oil fog generating device
US3667463A (en) * 1969-11-14 1972-06-06 David L Barnes Method and apparatus for treatment of respiratory disease
US3677527A (en) * 1969-04-17 1972-07-18 Aga Ab Humidification equipment for gases
US3724454A (en) * 1971-02-04 1973-04-03 Bendix Corp Humidifier - nebulizer
US3744722A (en) * 1970-12-29 1973-07-10 Cavitron Corp Nebulizer
US3791108A (en) * 1970-10-10 1974-02-12 Bischoff Gasreinigung Flow-accelerating nozzle for gas scrubber
US3806102A (en) * 1972-06-20 1974-04-23 Arirco Inc Medical humidifier
US3814091A (en) * 1972-01-17 1974-06-04 M Henkin Anesthesia rebreathing apparatus
US3852385A (en) * 1972-12-06 1974-12-03 Med Pak Corp Gas humidification apparatus
US3903216A (en) * 1969-09-10 1975-09-02 Respiratory Care Inhalation therapy apparatus
US3926280A (en) * 1974-06-21 1975-12-16 Parker Hannifin Corp Airline lubricator
US3940064A (en) * 1974-08-19 1976-02-24 Kentaro Takaoka Atomizing equipments for anesthetic liquid compounds
US4011288A (en) * 1975-03-14 1977-03-08 Baxter Travenol Laboratories, Inc. Disposable humidifier assembly
US4116387A (en) * 1976-05-11 1978-09-26 Eastfield Corporation Mist generator
US4134940A (en) * 1977-10-25 1979-01-16 Aerwey Laboratories, Inc. Humidifier adapter with audio relief valve
US4149556A (en) * 1978-09-26 1979-04-17 Respiratory Care, Inc. Tubular connector having audible relief valve
US4192836A (en) * 1977-10-22 1980-03-11 Dragerwerk Aktiengesellschaft Respiratory gas humidifier
US4299355A (en) * 1979-01-05 1981-11-10 Haekkinen Taisto Apparatus for atomizing medicaments
US4566452A (en) * 1982-07-12 1986-01-28 American Hospital Supply Corporation Nebulizer
US4921640A (en) * 1989-05-08 1990-05-01 Wu Tsann Kuen Venturi-tube bubble-forming container
US4940051A (en) * 1983-12-28 1990-07-10 Huhtamki Oy Inhalation device
US5114076A (en) * 1989-06-30 1992-05-19 Taiyo Yuden Co., Ltd. Atomizer for forming a thin film
FR2669555A1 (en) * 1990-11-27 1992-05-29 Ass Gestion Ecole Fr Papeterie DEVICE FOR CONDITIONING GAS.
US5287847A (en) * 1992-07-24 1994-02-22 Vortran Medical Technology, Inc. Universal nebulizer
USRE38700E1 (en) * 1998-05-14 2005-02-15 Briggs Iii Stephen W Medical nebulization device
WO2006108563A1 (en) * 2005-04-08 2006-10-19 Nycomed Gmbh Device for dry nebulization
EP2218496A1 (en) * 2009-02-12 2010-08-18 Linde Aktiengesellschaft Method and apparatus for stable and adjustable gas humidification
US20120018910A1 (en) * 2010-07-26 2012-01-26 Moreno Gil G Apparatus to add gas from liquid state source to a dry carrier gas at low pressure
CN108543189A (en) * 2018-05-15 2018-09-18 英华融泰医疗科技股份有限公司 Injection liquid aerosol-type humidification bottle
US11219255B2 (en) * 2020-04-08 2022-01-11 Terry Earl Brady Self-contained, mobile breathing apparatus or appliance that supplies pathogen and endotoxin free, rhythmically breathable air to the wearer or treated space through active, continuous bio-deactivation and destruction of bacteria, fungi, viral and allergenic/antigenic matter safely when using benign, household, rechargeable filtration media

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1222421A (en) * 1917-04-10 David Lambert Apparatus for administering anesthetics.
US1625419A (en) * 1922-08-12 1927-04-19 Mine Safety Appliances Co Breathing apparatus
US1810131A (en) * 1929-05-25 1931-06-16 American Ozone Company Device for mixing gases and liquids
US2049158A (en) * 1934-01-16 1936-07-28 Wirtschaftsbedarf M B H Ges Valve for steam cookers
US2054850A (en) * 1935-04-27 1936-09-22 Air Reduction Gas pressure regulating and signaling means
US2129482A (en) * 1934-11-30 1938-09-06 Venn Severin Machine Co Automatic control
US2230201A (en) * 1940-03-16 1941-01-28 Four Power Company Hose coupling
US2428277A (en) * 1944-08-25 1947-09-30 Air Reduction Humidifier for oxygen gas
US2437526A (en) * 1944-10-05 1948-03-09 Air Reduction Means for humidifying oxygen
US2565691A (en) * 1948-11-29 1951-08-28 Air Appliances Inc Method and apparatus for supplying a liquid to a fluid pressure medium under flow
US2588312A (en) * 1949-08-31 1952-03-04 Standard Oil Dev Co Foam distributor nozzle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1222421A (en) * 1917-04-10 David Lambert Apparatus for administering anesthetics.
US1625419A (en) * 1922-08-12 1927-04-19 Mine Safety Appliances Co Breathing apparatus
US1810131A (en) * 1929-05-25 1931-06-16 American Ozone Company Device for mixing gases and liquids
US2049158A (en) * 1934-01-16 1936-07-28 Wirtschaftsbedarf M B H Ges Valve for steam cookers
US2129482A (en) * 1934-11-30 1938-09-06 Venn Severin Machine Co Automatic control
US2054850A (en) * 1935-04-27 1936-09-22 Air Reduction Gas pressure regulating and signaling means
US2230201A (en) * 1940-03-16 1941-01-28 Four Power Company Hose coupling
US2428277A (en) * 1944-08-25 1947-09-30 Air Reduction Humidifier for oxygen gas
US2437526A (en) * 1944-10-05 1948-03-09 Air Reduction Means for humidifying oxygen
US2565691A (en) * 1948-11-29 1951-08-28 Air Appliances Inc Method and apparatus for supplying a liquid to a fluid pressure medium under flow
US2588312A (en) * 1949-08-31 1952-03-04 Standard Oil Dev Co Foam distributor nozzle

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882026A (en) * 1955-08-31 1959-04-14 Chemetron Corp Nebulizer
US2917386A (en) * 1955-09-09 1959-12-15 Aeroprojects Inc Homogenizing method and apparatus
US2840417A (en) * 1957-02-12 1958-06-24 Gordon Armstrong Company Inc Nebulizing apparatus
US2910956A (en) * 1957-02-18 1959-11-03 Scully Signal Co Whistle for signaling device for use in filling tanks
US3009542A (en) * 1958-12-29 1961-11-21 Int Basic Economy Corp Liquid mist generating device
US3282266A (en) * 1962-08-02 1966-11-01 Jr John M Walker Method and apparatus for humidifying inhalation mixtures
US3249553A (en) * 1963-01-28 1966-05-03 Samuel B Steinberg Smoke generator
US3353536A (en) * 1965-04-13 1967-11-21 Forrest M Bird Nebulizer
US3515676A (en) * 1967-09-18 1970-06-02 Eaton Yale & Towne Oil fog generating device
US3512718A (en) * 1968-03-06 1970-05-19 Stile Craft Mfg Inc Nebulizer spray unit
US3677527A (en) * 1969-04-17 1972-07-18 Aga Ab Humidification equipment for gases
US3903216A (en) * 1969-09-10 1975-09-02 Respiratory Care Inhalation therapy apparatus
US3667463A (en) * 1969-11-14 1972-06-06 David L Barnes Method and apparatus for treatment of respiratory disease
US3791108A (en) * 1970-10-10 1974-02-12 Bischoff Gasreinigung Flow-accelerating nozzle for gas scrubber
US3744722A (en) * 1970-12-29 1973-07-10 Cavitron Corp Nebulizer
US3724454A (en) * 1971-02-04 1973-04-03 Bendix Corp Humidifier - nebulizer
US3814091A (en) * 1972-01-17 1974-06-04 M Henkin Anesthesia rebreathing apparatus
US3806102A (en) * 1972-06-20 1974-04-23 Arirco Inc Medical humidifier
US3852385A (en) * 1972-12-06 1974-12-03 Med Pak Corp Gas humidification apparatus
US3926280A (en) * 1974-06-21 1975-12-16 Parker Hannifin Corp Airline lubricator
US3940064A (en) * 1974-08-19 1976-02-24 Kentaro Takaoka Atomizing equipments for anesthetic liquid compounds
US4011288A (en) * 1975-03-14 1977-03-08 Baxter Travenol Laboratories, Inc. Disposable humidifier assembly
US4116387A (en) * 1976-05-11 1978-09-26 Eastfield Corporation Mist generator
US4192836A (en) * 1977-10-22 1980-03-11 Dragerwerk Aktiengesellschaft Respiratory gas humidifier
US4134940A (en) * 1977-10-25 1979-01-16 Aerwey Laboratories, Inc. Humidifier adapter with audio relief valve
US4149556A (en) * 1978-09-26 1979-04-17 Respiratory Care, Inc. Tubular connector having audible relief valve
US4299355A (en) * 1979-01-05 1981-11-10 Haekkinen Taisto Apparatus for atomizing medicaments
US4566452A (en) * 1982-07-12 1986-01-28 American Hospital Supply Corporation Nebulizer
US4940051A (en) * 1983-12-28 1990-07-10 Huhtamki Oy Inhalation device
US4921640A (en) * 1989-05-08 1990-05-01 Wu Tsann Kuen Venturi-tube bubble-forming container
US5114076A (en) * 1989-06-30 1992-05-19 Taiyo Yuden Co., Ltd. Atomizer for forming a thin film
FR2669555A1 (en) * 1990-11-27 1992-05-29 Ass Gestion Ecole Fr Papeterie DEVICE FOR CONDITIONING GAS.
EP0488909A1 (en) * 1990-11-27 1992-06-03 Association De Gestion De L'ecole Francaise De Papeterie Et De L'imprimerie Method for controlling the condition of a gas and device therefor
US5249740A (en) * 1990-11-27 1993-10-05 Assoc. De Gestion De L'ecole Francaise De Papeterie Et D'imprimerie Method for regulating the conditioning of a gas and gas conditioning device
US5287847A (en) * 1992-07-24 1994-02-22 Vortran Medical Technology, Inc. Universal nebulizer
USRE38700E1 (en) * 1998-05-14 2005-02-15 Briggs Iii Stephen W Medical nebulization device
WO2006108563A1 (en) * 2005-04-08 2006-10-19 Nycomed Gmbh Device for dry nebulization
EP2218496A1 (en) * 2009-02-12 2010-08-18 Linde Aktiengesellschaft Method and apparatus for stable and adjustable gas humidification
US20120018910A1 (en) * 2010-07-26 2012-01-26 Moreno Gil G Apparatus to add gas from liquid state source to a dry carrier gas at low pressure
CN108543189A (en) * 2018-05-15 2018-09-18 英华融泰医疗科技股份有限公司 Injection liquid aerosol-type humidification bottle
US11219255B2 (en) * 2020-04-08 2022-01-11 Terry Earl Brady Self-contained, mobile breathing apparatus or appliance that supplies pathogen and endotoxin free, rhythmically breathable air to the wearer or treated space through active, continuous bio-deactivation and destruction of bacteria, fungi, viral and allergenic/antigenic matter safely when using benign, household, rechargeable filtration media

Similar Documents

Publication Publication Date Title
US2709577A (en) Oxygen therapy humidifier
US3580249A (en) Aerosol nebulizers
US5865171A (en) Nebulizer with pressure sensor
US5241954A (en) Nebulizer
US3353536A (en) Nebulizer
US5209225A (en) Flow through nebulizer
US3826255A (en) Intermittent positive pressure breathing manifold
US4512341A (en) Nebulizer with capillary feed
US4601712A (en) Drip chamber
US3172406A (en) Nebulizer
US4054622A (en) Combination nebulizer and humidifier
US4584997A (en) Volumetric flow gauge
US5109838A (en) Visually monitored anesthesia breathing circuit
US4198969A (en) Suction-operated nebulizer
US3903216A (en) Inhalation therapy apparatus
US4560519A (en) Self-contained nebulizer and system
US3319627A (en) Intermittent positive pressure breathing apparatus
US4039639A (en) Liquid entraining system of the humidifier and nebulizer type
GB2166055A (en) Suction control device for a surgical pleural drainage apparatus
US3771721A (en) Nebulizer
USRE33642E (en) Nebulizer with capillary feed
US1263079A (en) Inhaling apparatus.
US2437526A (en) Means for humidifying oxygen
US2428277A (en) Humidifier for oxygen gas
US2720203A (en) Apparatus for the administration of analgesics and anaesthetics