US2689840A - Closure sealing gaskets - Google Patents

Closure sealing gaskets Download PDF

Info

Publication number
US2689840A
US2689840A US306499A US30649952A US2689840A US 2689840 A US2689840 A US 2689840A US 306499 A US306499 A US 306499A US 30649952 A US30649952 A US 30649952A US 2689840 A US2689840 A US 2689840A
Authority
US
United States
Prior art keywords
parts
carbon black
corrosion
chain
discoloration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US306499A
Inventor
Charles W Husum
Jack M Wheaton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OI Glass Inc
Original Assignee
Owens Illinois Glass Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Illinois Glass Co filed Critical Owens Illinois Glass Co
Priority to US306499A priority Critical patent/US2689840A/en
Application granted granted Critical
Publication of US2689840A publication Critical patent/US2689840A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon

Definitions

  • Thermax is a product of Thermatomic Carbon Company and Philblack A, a product of Phillips Chemical Company, Akron, Ohio.
  • the componentsindicated may be increased, or decreased, slightly, as determined by the physical characteristics desired in the gasket.
  • Thermax which is a carbon black of generally; isolated, large globular, or particle structureapparently of about .274 millimicrons diameter, may comprise from about 125 to 140 parts by weight in a composition of 280 parts.
  • Such carbon black when compounded into rubber, the globules are sufiiciently discrete and isolated from each other to be ineffective in conducting electric current.
  • Such material serves as an excellent filler, but contributes little to the resiliency or hardness of the compound. Any carbon black having the characteristics indicated may be utilized.
  • a sealing gasket composition for sheet metal caps used in closing bottles and jars which comprises about 100 parts butadiene acrylonitrile rubber; about 3 parts sulphur; about 5 parts zinc oxide; about 20 parts plasticizer; about 1 part stearic acid; about 1 part accelerator; about 130 parts of carbon black composed largely of discrete isolated particles and about 20 parts of a chain-like carbon black.
  • furnace type carbon black is the chain-like carbon black.
  • composition recited in claim 1 wherein the chain-type carbon black constitutes a maximum of about 12% by weight of the total composition.
  • a sealing gasket composition for sheet metal caps used in closing bottles and jars comprising 100 parts by weight of butadiene-acrylonitrile rubber, from about 25 to about parts by weight of a carbon black of chain-like structure and from about 125 to about 140 parts by weight of a carbon black composed of isolated globular particles.
  • a sealing gasket composition for sheet metal caps used in closing bottles and jars comprising butadiene acrylonitrile rubber and a filler consisting of a carbon black which is composed largely of substantially discrete, relatively isolated particles and a carbon black having a chain-like structure, the ratio of the second named carbon black to the first named carbon black being less than 4 to 11 and the carbon black of chain-like structure comprising less than about 12% by weight of the total composition.
  • a sealing gasket composition for sheet metal caps used in closing bottles and jars comprising butadiene acrylonitrile rubber, a carbon black of chain-like particle structure, and a carbon black consisting largely of substantially discrete relatively isolated globular particles whose diameter is approximately 274 millimicrons, the ratio of the carbon black of chain-like particle structure to the second named carbon black being less than 4 to 11 and the carbon black of chain-like structure comprising less than about 12% by weight of the total composition.

Description

Patented Sept. 21, 1954 CLOSURE SEALING GASKETS Charles W. Husum and Jack M. Wheaton,l'1oledo,
Ohio, assignors to Owens-zllli1iois Glass Company, a corporation of Ohio No Drawing. Application August 26, 1952, Serial No. 3065499 6 Claims.
r a sealing gasket of such composition as will completely prevent, or in any event reduce to a point at which any deleterious eiTect is negligible, both corrosion of the metal closure and discoloration of the packaged product.
Both corrosion and discoloration have posed extremely serious problems and resulted in substantial annual loss to the packers, aggregating hundreds of thousands of dollars. With respect particularly to discoloration, many foods, such as beets, squash, carrots, peaches, sweet potatoes, etc., the discoloration (darkening) is quite pronounced, but with practically all products there is some appreciable and objectionable discoloration. Whereas foods sealed with an ordinary standard metal closure become seriously discoloredwithin g aiven :period of time, identical foods sealed with closures incorporating our improved sealing gasket, for the sameperiod of time and under like conditions, show absolutely no discoloration.
'It has been quite conclusively determined that entrance of oxygen into the packages is the pri mary, if not the sole cause of such discoloration. Permeability of conventional sealing gasket compounds to oxygen is the controlling factor with relation to discoloration. We have, .as a consequence of the foregoing, determined GRA, which is butadiene-acryonitrile rubber, to be most eifective in retarding the passage of oxygen into the sealed containers. "Butyl rubber has also been .found to be satisfactory from permeability standpoint, but is not suitable for use as .a gasket because of its lack 'oiresilience.
With respect to corrosion, such occurs in the tin plated closures as a result of very small exposed parts of .theiron base material and the creation in effect of an electrolytic cell. Such is due to the existence of an electric circuit through the packed product (which functions as an electrolyte), the sealing gasket, and iron base material beneath the 'tin coating of the closure.
Our experiments have shown that the part of the carbon filler that has a chain-like structure acts as the cathode and the iron in the closure provides the anode.
Closures of the generalb p'e involved are shown in iHoge Patent #2.,441g9l8 and Hohl :et a1. Patent #1443506. 'Obviouslmrother typesioi closures maybe used. 'e tin coating ahnost invariably 'contains small pinholes, whichactually expose the base metal. Organic coatingsapplied to the plate have weak spots (low dielectric) through which a current willfiow. Such conditions, together with the electrical conductivity characteristics of conventional sealing gasket compositions, contributes to the creation of the aforementioned electrolytic cell, and consequent corrosion. As a result there is serious pitting and corrosion of the underside of the closure panel or top portion 'and frequent pinholing. Consequently, food spoilage occurs.
.We have discovered, as suggested in our copending application, S. N. 237,118, filed July 17, 1951, entitled Method and Means for Inhibiting Corrosionof Metal Closures, that such corrosion can be eliminated byut-ilizing a gasket formulation, or composition, which limits the percentage of carbon bla'c'kpresent with chain-like or electric current conducting structure, as observed under an electron microscope. To this end we have tformulated a composition possessing the two-fold function of (l) effectively preventing transfer of oxygen through the gasket to the interior of the container, and (2) preventing an electro-chemical effect. Thus, in a single composition We have provided a structure which eliminates both discoloration and corrosion.
In the sealing gasket which has been found to be most effective, the components, in parts by weight, are about as follows:
GRA-butadiene-acrylonitrile rubber Sulphur J 3 Zinc oxide n 5 Plasticizer 20 Stearic acid 1 Accelerator 1 Therrnax (isolated globule type carbon black particles) Philblack .A (chain-type carbon black) 20 Thermax is a product of Thermatomic Carbon Company and Philblack A, a product of Phillips Chemical Company, Akron, Ohio. The componentsindicated may be increased, or decreased, slightly, as determined by the physical characteristics desired in the gasket. We have ascertained that Thermax which is a carbon black of generally; isolated, large globular, or particle structureapparently of about .274 millimicrons diameter, may comprise from about 125 to 140 parts by weight in a composition of 280 parts. In such carbon black, when compounded into rubber, the globules are sufiiciently discrete and isolated from each other to be ineffective in conducting electric current. Such material serves as an excellent filler, but contributes little to the resiliency or hardness of the compound. Any carbon black having the characteristics indicated may be utilized.
With respect to Philblack A which is a chaintype carbon black, apparently having a mean particle diameter of about 51 millimicrons, we have determined that it should comprise no more than about 12% by weight of the total composition. This is based upon the discovery that if used in excess, Philblack A, or its equivalent, definitely causes corrosion. This chaintype carbon is a filler which functions to impart smoothness for extrusion purposes, as well as the necessary degree of resilience and hardness. In lieu of Philblack A, we may use in the same amounts any ,of the following carbon blacks: Statex K. or Statex M., which are furnace blacks produced by Cblumbian Carbon Company, of New York city; Sterling 30, a product of Cabot, Inc., Boston, Massachusetts; or Dixie 50, or Kosmos 50, which are products of United Carbon Company, Inc., Charleston, W. Va.
We have also discovered that satisfactory results, or in any event, results incomparably superior to those obtained with conventional gaskets, may be obtained where 125 or 140 parts by weight of Thermax are used together with 25 or parts by weight of Philblack A, respectively.
As being indicative of the asserted criticalness of the particular carbon content and proportions, we show below three formulations in which Applicants several years of experience in the actual testing of processed food closures for resistance to corrosion, or pitting, has developed the fact that the absence of significant pitting, at the end of three months storage at 125 F., is a reliable index of the performance of closures for one year at room temperature. Quite frequently sheets of tinplate, as received from the tin mill, contain slight pits of from .001 to .003 of an inch in depth. It has also been our observation that a slight etching of the tinplate often occurs, which does not continue after a depth of .001 or .002 of an inch has been reached.
Because of the foregoing we are not concerned with pits of from .001 to .003 of an inch in depth. However, we have discovered that when a pit is in excess of .003 of an inch in depth, after a period of three (3) months storage at 125 F., that is .004, .005, etc., there is serious danger that corrosion will continue, cause perforation and probable food spoilage.
In the following tables, we have indicated the comparative results of using the three gasket compositions above described. The importance of controlling the carbon black content is readily apparent.
3 MONTHS- F.
G k t o E (lips with as e aps xits over Product Formula amined .003 in Depth A 20 3 B 46 0 o 46 c A 20 7 B 44 0 o 44 0 A 20 2 B 46 0 0 46 0 3 MONTHS F.
1 A 28 6 B 66 0 o 67 0 A 28 4 B 65 0 o 65 0 A 20 3 B 45 0 c 45 0 In all mstanees, the product color was excellent, thus indicating the impermeability of the selected type of rubber to atmospheric oxygen and that discoloration is caused by entry of oxygen into the container. Corrosion, however, was excessive in formulation A. By contrast, the modification of the carbon content in formulations A and B, wherein Thermax was increased and Philblack A decreased, there was no ultimate corrosion deeper than .003 of an inch.
It has been determined that the best results, as regards non-corrosive action, are obtained where the ratio of Philblack A to Thermax is less than about 4 to 11.
Thus, it is apparent that we have discovered that corrosion and discoloration are not interrelated as regards cause, in that either can be present without the other. Also, that permeability of the gasket material to oxygen determines the extent and rapidity of discoloration and that the carbon black content and type, determine whether corrosion will, or will not develop, quite apart from the discoloration aspects. It is possible to concurrently have severe corrosion of the closure and good color retention, such being due to the use of the proper type of rubber, but improper carbon blacks and in the wrong proportions. Moreover, both corrosion resistance and poor color retention may result, if the rubber component is incorrect. In our gasket composition both of the foregoing problems have been completely solved.
Inasmuch as some foods are much less subject to discoloration than others and in such instances only corrosion prevention requires special attention, we contemplate the use of known types of rubber which may be less effective than GRA as a barrier to oxygen passage. However, the use of Termax or equivalent carbon blacks such as Shell 53, is essential in corrosion prevention. Hence in such circumstances we utilize these two carbon blacks in about the proportions stated heretofore, it being understood that Philblack A serves to improve workability, extrusion, etc., of the composition, as explained above.
Modifications may be resorted to within the spirit and scope of the appended claims.
We claim:
1. A sealing gasket composition for sheet metal caps used in closing bottles and jars, which comprises about 100 parts butadiene acrylonitrile rubber; about 3 parts sulphur; about 5 parts zinc oxide; about 20 parts plasticizer; about 1 part stearic acid; about 1 part accelerator; about 130 parts of carbon black composed largely of discrete isolated particles and about 20 parts of a chain-like carbon black.
2. The composition recited in claim 1, wherein furnace type carbon black is the chain-like carbon black.
3. The composition recited in claim 1, Wherein the chain-type carbon black constitutes a maximum of about 12% by weight of the total composition.
4. A sealing gasket composition for sheet metal caps used in closing bottles and jars comprising 100 parts by weight of butadiene-acrylonitrile rubber, from about 25 to about parts by weight of a carbon black of chain-like structure and from about 125 to about 140 parts by weight of a carbon black composed of isolated globular particles.
5. A sealing gasket composition for sheet metal caps used in closing bottles and jars comprising butadiene acrylonitrile rubber and a filler consisting of a carbon black which is composed largely of substantially discrete, relatively isolated particles and a carbon black having a chain-like structure, the ratio of the second named carbon black to the first named carbon black being less than 4 to 11 and the carbon black of chain-like structure comprising less than about 12% by weight of the total composition.
6. A sealing gasket composition for sheet metal caps used in closing bottles and jars comprising butadiene acrylonitrile rubber, a carbon black of chain-like particle structure, and a carbon black consisting largely of substantially discrete relatively isolated globular particles whose diameter is approximately 274 millimicrons, the ratio of the carbon black of chain-like particle structure to the second named carbon black being less than 4 to 11 and the carbon black of chain-like structure comprising less than about 12% by weight of the total composition.
References Cited in the file of this patent UNITED STATES PATENTS Number

Claims (1)

1. A SEALING GASKET COMPOSITION FOR SHEET METAL CAPS USED IN CLOSING BOTTLES AND JARS, WHICH COMPRISES ABOUT 100 PARTS BUTADIENE ACRYLONITRILE RUBBER; ABOUT 3 PARTS SULPHUR; ABOUT 5 PARTS ZINC OXIDE; ABOUT 20 PARTS PLASTICIZER; ABOUT 1 PART STEARIC ACID; ABOUT 1 PART ACCELERATOR; ABOUT 130 PARTS OF CARBON BLACK COMPOSED LARGELY OF DISCRETE ISOLATED PARTICLES AND ABOUT 20 PARTS OF A CHAIN-LIKE CARBON BLACK.
US306499A 1952-08-26 1952-08-26 Closure sealing gaskets Expired - Lifetime US2689840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US306499A US2689840A (en) 1952-08-26 1952-08-26 Closure sealing gaskets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US306499A US2689840A (en) 1952-08-26 1952-08-26 Closure sealing gaskets

Publications (1)

Publication Number Publication Date
US2689840A true US2689840A (en) 1954-09-21

Family

ID=23185574

Family Applications (1)

Application Number Title Priority Date Filing Date
US306499A Expired - Lifetime US2689840A (en) 1952-08-26 1952-08-26 Closure sealing gaskets

Country Status (1)

Country Link
US (1) US2689840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202307A (en) * 1954-12-31 1965-08-24 Crown Cork & Seal Co Plastic liners

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2594165A (en) * 1949-06-09 1952-04-22 Goodrich Co B F Semihard rubber composition and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2594165A (en) * 1949-06-09 1952-04-22 Goodrich Co B F Semihard rubber composition and method of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202307A (en) * 1954-12-31 1965-08-24 Crown Cork & Seal Co Plastic liners

Similar Documents

Publication Publication Date Title
GB937421A (en) Improvements relating to synthetic rubber compositions
GB745119A (en) Improvements in or relating to rigid shock-resisting vinyl halide polymer compositions
US2689840A (en) Closure sealing gaskets
US4000109A (en) Thermoplastic polyester compositions
US2967850A (en) Compositions of stabilized straight chain hydrocarbons containing carbon black and a compound having r-s-s-r structure
US2789962A (en) Stabilization of synthetic rubber-modified polystyrenes with aryl secondary amines and dithiocarbamic acid salts
US2868745A (en) Vinyl chloride resin stabilized with three component stabilizer
US2820774A (en) Vinyl chloride resin with lead salt and hindered phenol stabilizers
US2993019A (en) Flame retarded polyethylene
GB1593902A (en) Stabilisation of polymers
US3189567A (en) Process for vulcanization of butyl rubber
US2766219A (en) N-hydrocarbon-substituted ureas as anti-exposure cracking agents for sulfur vulcanizable rubbers
US3998782A (en) Stabilizer composition for polyvinyl chloride polymers
US2205654A (en) Dielectric composition
US2445367A (en) Method of stabilizing hydrocarbons
CA1043927A (en) Low temperature plasticizer composition for natural and synthetic butadiene-styrene rubber
US3536662A (en) Phenolic antioxidants for low unsaturation hydrocarbon polymers
US3142659A (en) Halogen containing vinyl resins stabilized with iron-polyol combination
US2888503A (en) 2, 6 dialkoxy, 4 alkyl phenol antiozidants
US2231595A (en) Electrical insulation
US2789108A (en) Combination of 2, 4, 6-trialkylphenols and mono-ethers of dihydric phenols as rubber antioxidants
JP2000104833A (en) Rubber made seal material for aerosol spray
US3148168A (en) Stabilization of polyethylene with carbon black and thiobisphenol
US2960487A (en) Rubber stabilized with nu-sec-alkyl-p-aminophenols
US2731431A (en) Methylpolychloro fatty acid esters stabilized with epoxidized fatty oil and compositions thereof with polyvinyl resins