US2673886A - Hydrogenation in presence of raney nickel - Google Patents

Hydrogenation in presence of raney nickel Download PDF

Info

Publication number
US2673886A
US2673886A US237485A US23748551A US2673886A US 2673886 A US2673886 A US 2673886A US 237485 A US237485 A US 237485A US 23748551 A US23748551 A US 23748551A US 2673886 A US2673886 A US 2673886A
Authority
US
United States
Prior art keywords
water
catalyst
hydrogenation
raney nickel
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US237485A
Inventor
Thomas R Steadman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goodrich Corp
Original Assignee
BF Goodrich Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BF Goodrich Corp filed Critical BF Goodrich Corp
Priority to US237485A priority Critical patent/US2673886A/en
Application granted granted Critical
Publication of US2673886A publication Critical patent/US2673886A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/12Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
    • C11C3/123Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on nickel or derivates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • B01J25/02Raney nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/04Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/8995Catalyst and recycle considerations
    • Y10S585/906Catalyst preservation or manufacture, e.g. activation before use

Definitions

  • This invention relates to hydrogenation and more specifically pertains to an improved process of hydrogenation in the presence of Raney nickel by the use of a surface-active agent.
  • Raney nickel has been invaluable as a hydrogenation catalyst in the industrial applications of hydrogenation. Because of the somewhat involved preparation of this catalyst, it is the practice to prepare the catalyst in large batches and store it under an inert liquid until required for use. It had been found that when Raney nickel catalyst is stored under water, the catalyst retains its activity quite satisfactorily. However, when the catalyst is removed from the water and used, especially when used to catalyze the hydrogenation of water-immiscible materials containing carbon-to-carbon unsaturation, the catalyst does not disperse satisfactorily in the material to be hydrogenated and substantially longer reaction times are required than is desirable.
  • the process of this invention can be employed to hydrogenate such liquid materials as the unsaturated animal and vegetable oils and fats; olefinic compounds, straight-chained compounds containing one or more double bonds or triple aonds; aromatic compounds, compounds containin benzene rings, unsaturated heterocyclic compounds; the higher aldehydes and ketones (to the corresponding hydroxy compounds); nitrile (to amines), and the lik and. many other waterimmiscible organic materials.
  • liquid materials as the unsaturated animal and vegetable oils and fats; olefinic compounds, straight-chained compounds containing one or more double bonds or triple aonds; aromatic compounds, compounds containin benzene rings, unsaturated heterocyclic compounds; the higher aldehydes and ketones (to the corresponding hydroxy compounds); nitrile (to amines), and the lik and. many other waterimmiscible organic materials.
  • the surface-active or wetting agents which are suitable for the process of this invention include those typified by the following general classifications: sodium and potassium salts of fatty acids known as soft and hard soaps; fatty acids saponified with amines and amino alcohols; watersoluble salts of disproportionated abietic acid known as rosin soaps; water-soluble salts of the hydroxy aldehyde acids present in seaweeds known as algin soaps; water-soluble alkali-casein compositions; water-soluble lignin sulfonate salts; water-soluble long-chain alcohols usually ccntaining'lo to 18 carbon atoms; water-soluble salts of sulfated fatty alcohols containing 10 to 18 carbon atoms; water-soluble salts of fatty acid amides; water-soluble salts of .sulfated esters of fatty acids; water-soluble alkyl sulfonates having about 8 to 20 carbon atoms in the alkyl group; water-soluble ary
  • the wetting or surface-active agents are employed in rather small quantities being in the range at 0.1% to 5.0% by Weight of the Raney nickel catalyst. It will be readily understood that the optimum quantity of the wetting or surface-active agent employed will of necessity vary from class to class as well as among members of the same class according to the wetting efiiciency of the specific material employed. In any case 0.1% to 5% by weight of the wetting agent based on the Raney nickel catalyst will be sufiicient.
  • Example I Fifty-six parts by weight of 2,4-dimethy1-5,6- dihydro-1,2-pyran, 20 parts by weight of Raney nickel which had been stored under water and 0.2 part by weight of sodium lauryl sulfate as the wetting agent were charged into a Burgess-Parr hydrogenator. Hydrogen was charged into the hydrogenator. After seven hours at room temperature, the absorption of hydrogen was complete.
  • the following example illustrates the hydrogenation of the same compound at room temperature, in the absence of a Wetting or dispersing agent.
  • Example II Fifty-six parts by weight of 2,4-dimethyl-5,6- dihydro-1,2-pyran and 20 parts by weight of the same Raney nickel used in Example I were charged into a Burgess-Parr hydrogenator. Hydrogen was charged into the hydrogenator. This hydrogenation was also conducted at room temperature, but complete hydrogenation required 16 hours.
  • I claim: 1. A method of hydrogenating water-immis proficient, organic compounds which comprises reacting said compounds with hydro en under reducing conditions in the presence of a Raney nickel catalyst which has been previously stored under water, said catalyst being associated during such 4 storage with from about 0.1% to about 5% by weight, based on the weight or the catalyst of a wetting agent.
  • a method of hydrogenating water-immiscible, organic compounds which comprises reacting said compounds with hydrogen under reducing conditions in the presence of a Raney nickel catalyst which has been previously stored under water, said catalyst being associated during such storage with from about 0.1% to about 5% by weight, based on the weight of the catalyst of sodium lauryl sulfate.

Description

Patented Mar. 30, 1954 HYDROGENATION IN PRESENCE OF RANE Y NICKEL Thomas B. Steadman, W ban, Mass assignor to The B. F. Goodrich Company, New York, N. Y., a corporation of New York No Drawing. Application July 18, 1951, Serial No. 237,485
3 Claims. 1
This invention relates to hydrogenation and more specifically pertains to an improved process of hydrogenation in the presence of Raney nickel by the use of a surface-active agent.
For a long tim Raney nickel has been invaluable as a hydrogenation catalyst in the industrial applications of hydrogenation. Because of the somewhat involved preparation of this catalyst, it is the practice to prepare the catalyst in large batches and store it under an inert liquid until required for use. It had been found that when Raney nickel catalyst is stored under water, the catalyst retains its activity quite satisfactorily. However, when the catalyst is removed from the water and used, especially when used to catalyze the hydrogenation of water-immiscible materials containing carbon-to-carbon unsaturation, the catalyst does not disperse satisfactorily in the material to be hydrogenated and substantially longer reaction times are required than is desirable.
I have discovered that the hydrogenation using Raney nickel, either as freshly prepared or after bein stored under water, of water-immiscible materials can be materially speeded up by adding an extremely small quantity of a surfaceactive agent to the water-immiscible material. An amount of surface-active agent as small as 0.1% to 5% by weight of the Raney nickel catalyst is sufficient to decrease the reaction time by one half or more.
The process of this invention can be employed to hydrogenate such liquid materials as the unsaturated animal and vegetable oils and fats; olefinic compounds, straight-chained compounds containing one or more double bonds or triple aonds; aromatic compounds, compounds containin benzene rings, unsaturated heterocyclic compounds; the higher aldehydes and ketones (to the corresponding hydroxy compounds); nitrile (to amines), and the lik and. many other waterimmiscible organic materials.
The surface-active or wetting agents which are suitable for the process of this invention include those typified by the following general classifications: sodium and potassium salts of fatty acids known as soft and hard soaps; fatty acids saponified with amines and amino alcohols; watersoluble salts of disproportionated abietic acid known as rosin soaps; water-soluble salts of the hydroxy aldehyde acids present in seaweeds known as algin soaps; water-soluble alkali-casein compositions; water-soluble lignin sulfonate salts; water-soluble long-chain alcohols usually ccntaining'lo to 18 carbon atoms; water-soluble salts of sulfated fatty alcohols containing 10 to 18 carbon atoms; water-soluble salts of fatty acid amides; water-soluble salts of .sulfated esters of fatty acids; water-soluble alkyl sulfonates having about 8 to 20 carbon atoms in the alkyl group; water-soluble aryl sulfonates; Water-soluble alkyl aryl sulfonates; Water-soluble aralkyl sulfonates; water-soluble sorbitan monolaurates, palmitates, -stearates, and -o1eates, quaternary alkyl halides, and others. These wetting or surface-active agents are sold under numerous trade names and may be either pure compounds or mixtures of compounds of the same general group.
In general, as hereinbefore stated, the wetting or surface-active agents are employed in rather small quantities being in the range at 0.1% to 5.0% by Weight of the Raney nickel catalyst. It will be readily understood that the optimum quantity of the wetting or surface-active agent employed will of necessity vary from class to class as well as among members of the same class according to the wetting efiiciency of the specific material employed. In any case 0.1% to 5% by weight of the wetting agent based on the Raney nickel catalyst will be sufiicient.
The following specific example will illustrate th process of this invention.
Example I Fifty-six parts by weight of 2,4-dimethy1-5,6- dihydro-1,2-pyran, 20 parts by weight of Raney nickel which had been stored under water and 0.2 part by weight of sodium lauryl sulfate as the wetting agent were charged into a Burgess-Parr hydrogenator. Hydrogen was charged into the hydrogenator. After seven hours at room temperature, the absorption of hydrogen was complete.
The following example illustrates the hydrogenation of the same compound at room temperature, in the absence of a Wetting or dispersing agent.
Example II Fifty-six parts by weight of 2,4-dimethyl-5,6- dihydro-1,2-pyran and 20 parts by weight of the same Raney nickel used in Example I were charged into a Burgess-Parr hydrogenator. Hydrogen was charged into the hydrogenator. This hydrogenation was also conducted at room temperature, but complete hydrogenation required 16 hours.
A comparison of the reaction time-required for the hydrogenation of 2,4-dimethyl-5,6-dihydro- 1,2-pyran with the wetting agent present (Example I) and the reaction time required when no wetting agent was present (Example II) illustrates the unusual results obtainable by the process of this invention. Substantially equivalent results, a reduction of reaction time by more than 50%, are obtainable by the use of a wetting agent with any of the water-immiscible materials of the classes hereinbefore enumerated. While I have illustrated my invention by means of a specific example, I do not thereby desire or intend to limit myself solely thereto, for as hitherto stated, the precise proportions of the reactants can be varied and other members of the classes of wetting agents and the classes of water-immiscible materials can be employed in this hydrogenation process without departing from the spirit and scope of my invention as defined in the appended claims.
I claim: 1. A method of hydrogenating water-immis cible, organic compounds which comprises reacting said compounds with hydro en under reducing conditions in the presence of a Raney nickel catalyst which has been previously stored under water, said catalyst being associated during such 4 storage with from about 0.1% to about 5% by weight, based on the weight or the catalyst of a wetting agent.
2. A method of hydrogenating water-immiscible, organic compounds which comprises reacting said compounds with hydrogen under reducing conditions in the presence of a Raney nickel catalyst which has been previously stored under water, said catalyst being associated during such storage with from about 0.1% to about 5% by weight, based on the weight of the catalyst of sodium lauryl sulfate.
3. The method of claim 2 in which the wetting agent is added to the aqueous storing medium in a quantity of about 1% by weight of the catalyst.
THOMAS R. STEADMAN.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 1,994,058 Wietzel et al Mar. 12, 1935 2,440,929 Bremner et a1. May 4, 1948 2,546,019 Smith Mar. 20, 1951

Claims (1)

1. A METHOD OF HYDROGENATING WATER-IMMISCIBLE, ORGANIC COMPOUNDS WHICH COMPRISES REACTING SAID COMPOUNDS WITH HYDROGEN UNDER REDUCING CONDITIONS IN THE PRESENCE OF A RANEY NICKEL CATALYST WHICH HAS BEEN PREVIOUSLY STORED UNDER WATER, SAID CATALYST BEING ASSOCIATED DURING SUCH STORAGE WITH FROM ABOUT 0.1% TO ABOUT 5% BY WEIGHT, BASED ON THE WEIGHT OF THE CATALYST OF A WETTING AGENT.
US237485A 1951-07-18 1951-07-18 Hydrogenation in presence of raney nickel Expired - Lifetime US2673886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US237485A US2673886A (en) 1951-07-18 1951-07-18 Hydrogenation in presence of raney nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US237485A US2673886A (en) 1951-07-18 1951-07-18 Hydrogenation in presence of raney nickel

Publications (1)

Publication Number Publication Date
US2673886A true US2673886A (en) 1954-03-30

Family

ID=22893917

Family Applications (1)

Application Number Title Priority Date Filing Date
US237485A Expired - Lifetime US2673886A (en) 1951-07-18 1951-07-18 Hydrogenation in presence of raney nickel

Country Status (1)

Country Link
US (1) US2673886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865889A (en) * 1957-06-21 1958-12-23 Monsanto Chemicals Reduced copolymers
US3052737A (en) * 1959-12-21 1962-09-04 Shell Oil Co Synthesis of alkenyl substituted cycloalkanes
US3154594A (en) * 1962-04-24 1964-10-27 California Research Corp Production of organic compounds containing carbon-to-carbon double bonds in terminal positions only

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1994058A (en) * 1927-06-01 1935-03-12 Ig Farbenindustrie Ag Production of valuable products by conversion of carbonaceous materials
US2440929A (en) * 1945-05-25 1948-05-04 Ici Ltd Production of 1:5-pentanediol
US2546019A (en) * 1947-10-25 1951-03-20 Shell Dev Preparation of 1, 5-pentanediols

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1994058A (en) * 1927-06-01 1935-03-12 Ig Farbenindustrie Ag Production of valuable products by conversion of carbonaceous materials
US2440929A (en) * 1945-05-25 1948-05-04 Ici Ltd Production of 1:5-pentanediol
US2546019A (en) * 1947-10-25 1951-03-20 Shell Dev Preparation of 1, 5-pentanediols

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865889A (en) * 1957-06-21 1958-12-23 Monsanto Chemicals Reduced copolymers
US3052737A (en) * 1959-12-21 1962-09-04 Shell Oil Co Synthesis of alkenyl substituted cycloalkanes
US3154594A (en) * 1962-04-24 1964-10-27 California Research Corp Production of organic compounds containing carbon-to-carbon double bonds in terminal positions only

Similar Documents

Publication Publication Date Title
US3997478A (en) Promted Raney-nickel catalysts
US2673886A (en) Hydrogenation in presence of raney nickel
MX3300E (en) PROCEDURE FOR OBTAINING AN INSECTICIDE COMPOSITION CONTAINING AS ACTIVE COMPOUNDS (+) - CIS, TRANS CRISANTEMATOS
US2223303A (en) Process for the catalytic hydrogenation of carboxylic acid substances to amines
US2953605A (en) Hydrogenation of 1, 4-butynediol to 1, 4-butanediol
US3184417A (en) Method of preparing a copper modified nickel catalyst composition
US3129252A (en) Purification of butynediol
US1990245A (en) Production of polyhydric alcohols
US3113138A (en) Preparation of butyrolactone
US2587572A (en) Process for production of amino hydroxy compounds by hydrogenation of nitro hydroxy compounds
US2771487A (en) Tertiary alkyl substituted cyclohexane carboxylic acids, derivatives thereof, and method for producing the same
ES366135A1 (en) Process for preparing beta-phenylethyl alcohol
US2174242A (en) Aminoglycols
US2176018A (en) Production of alkyl and aralkyl cyanoacetic esters
US2865865A (en) Preparation of a stabilized raney nickel catalyst
GB1434026A (en) Alkyl benzene isomerisation process
US2811556A (en) Method of producing secondary aliphatic amines
US3019262A (en) Nu-benzyl-n'-phenyl-p-phenylenediamine and its manufacture
US2016963A (en) Product comprising glucamines and related substances
US2443015A (en) Hydrogenated polyalkylated phenol
US2408171A (en) Process for preparation of 2-methyl-1, 2-propanediamine
US2139123A (en) Aminoalcohol
US2605263A (en) Preparation of piperazine
US2654737A (en) Process of preparing derivatives of ethyleneimine
US2205552A (en) Method of preserving the catalytic activity of a metallic nickel hydrogenation catalyst