US2654703A - Electrodeposition of bright nickel, cobalt, and alloys thereof - Google Patents
Electrodeposition of bright nickel, cobalt, and alloys thereof Download PDFInfo
- Publication number
- US2654703A US2654703A US184120A US18412050A US2654703A US 2654703 A US2654703 A US 2654703A US 184120 A US184120 A US 184120A US 18412050 A US18412050 A US 18412050A US 2654703 A US2654703 A US 2654703A
- Authority
- US
- United States
- Prior art keywords
- nickel
- cobalt
- baths
- bright
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910017052 cobalt Inorganic materials 0.000 title claims description 24
- 239000010941 cobalt Substances 0.000 title claims description 24
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims description 24
- 229910045601 alloy Inorganic materials 0.000 title claims description 4
- 239000000956 alloy Substances 0.000 title claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title description 63
- 229910052759 nickel Inorganic materials 0.000 title description 33
- 238000004070 electrodeposition Methods 0.000 title description 3
- 150000003839 salts Chemical class 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 5
- DOUHZFSGSXMPIE-UHFFFAOYSA-N hydroxidooxidosulfur(.) Chemical compound [O]SO DOUHZFSGSXMPIE-UHFFFAOYSA-N 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- 239000011260 aqueous acid Substances 0.000 claims description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 21
- 125000003118 aryl group Chemical group 0.000 description 13
- 238000007747 plating Methods 0.000 description 10
- -1 aryl sulfinic acid Chemical compound 0.000 description 9
- 230000002378 acidificating effect Effects 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 230000001464 adherent effect Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- DILXLMRYFWFBGR-UHFFFAOYSA-N 2-formylbenzene-1,4-disulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(S(O)(=O)=O)C(C=O)=C1 DILXLMRYFWFBGR-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- NVSONFIVLCXXDH-UHFFFAOYSA-N benzylsulfinic acid Chemical compound O[S@@](=O)CC1=CC=CC=C1 NVSONFIVLCXXDH-UHFFFAOYSA-N 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 2
- FITCVRBURSQHEV-UHFFFAOYSA-N 1-methylcyclohexa-2,4-diene-1-sulfinic acid Chemical class OS(=O)C1(C)CC=CC=C1 FITCVRBURSQHEV-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- OLOCHARBKDWIBK-UHFFFAOYSA-N benzene-1,3-disulfinic acid Chemical compound OS(=O)C1=CC=CC(S(O)=O)=C1 OLOCHARBKDWIBK-UHFFFAOYSA-N 0.000 description 1
- JEHKKBHWRAXMCH-UHFFFAOYSA-M benzenesulfinate Chemical compound [O-]S(=O)C1=CC=CC=C1 JEHKKBHWRAXMCH-UHFFFAOYSA-M 0.000 description 1
- 150000008331 benzenesulfonamides Chemical class 0.000 description 1
- 150000008107 benzenesulfonic acids Chemical class 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- VQLYBLABXAHUDN-UHFFFAOYSA-N bis(4-fluorophenyl)-methyl-(1,2,4-triazol-1-ylmethyl)silane;methyl n-(1h-benzimidazol-2-yl)carbamate Chemical compound C1=CC=C2NC(NC(=O)OC)=NC2=C1.C=1C=C(F)C=CC=1[Si](C=1C=CC(F)=CC=1)(C)CN1C=NC=N1 VQLYBLABXAHUDN-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 150000001661 cadmium Chemical class 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- VJYUPWDBMTXWOG-UHFFFAOYSA-N ethane-1,2-disulfinic acid Chemical compound OS(=O)CCS(O)=O VJYUPWDBMTXWOG-UHFFFAOYSA-N 0.000 description 1
- RQIFXTOWUNAUJC-UHFFFAOYSA-N ethanesulfinic acid Chemical compound CCS(O)=O RQIFXTOWUNAUJC-UHFFFAOYSA-N 0.000 description 1
- HPTMZNZYFRTOKS-UHFFFAOYSA-N ethenesulfinic acid Chemical compound OS(=O)C=C HPTMZNZYFRTOKS-UHFFFAOYSA-N 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 1
- ZUVVLBGWTRIOFH-UHFFFAOYSA-N methyl 4-methyl-2-[(4-methylphenyl)sulfonylamino]pentanoate Chemical compound COC(=O)C(CC(C)C)NS(=O)(=O)C1=CC=C(C)C=C1 ZUVVLBGWTRIOFH-UHFFFAOYSA-N 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- KERTUBUCQCSNJU-UHFFFAOYSA-L nickel(2+);disulfamate Chemical compound [Ni+2].NS([O-])(=O)=O.NS([O-])(=O)=O KERTUBUCQCSNJU-UHFFFAOYSA-L 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- UZSPFQBPERYLMS-UHFFFAOYSA-N prop-2-ene-1-sulfinic acid Chemical compound OS(=O)CC=C UZSPFQBPERYLMS-UHFFFAOYSA-N 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- SOUHUMACVWVDME-UHFFFAOYSA-N safranin O Chemical compound [Cl-].C12=CC(N)=CC=C2N=C2C=CC(N)=CC2=[N+]1C1=CC=CC=C1 SOUHUMACVWVDME-UHFFFAOYSA-N 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 1
- BUUPQKDIAURBJP-UHFFFAOYSA-N sulfinic acid Chemical compound OS=O BUUPQKDIAURBJP-UHFFFAOYSA-N 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/562—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/12—Electroplating: Baths therefor from solutions of nickel or cobalt
Definitions
- This invention relates to the electrodeposition of bright plate from aqueous acidic cobalt and nickel baths.
- One object of this invention is to plate bright cobalt plate over a very Wide current density range.
- Another object of this invention is to plate bright nickel and bright nickel-cobalt alloy plate over the entire concentration range of substantially zero nickel to 100% cobalt, and zero cobalt to 100% nickel.
- a third object is to provide means to increase the tolerance of cobalt and nickel plating baths to larger concentrations of many inorganic and organic substances.
- the aryl sulfinates increase to a remarkable extent the tolerance of bright nickel baths to larger concentrations of zinc, thallium, lead, copper, iron cobalt, chloride ion, and a very large number of active organic compounds than could otherwise be tolerated in bright plating baths themselves Without obtaining either dark or brittle plate or poorly adherent or both.
- these aryl sulfinates are effective when used in very small amounts .005-.03 gram per liter even when they are not the main brightening agent of the bath, that is, the aryl sulfinates in low concentration (0.005-.03 g./l.) used in conjunction with other brightener systems such as benzene sulfonic acids, naphthalene sulfonic acids,
- the latter give bright plate in Watts baths, they do not cause bright plate in the high chloride baths (over 150 g./l. nickel chloride) but yield dull gray plate instead.
- the benzene and toluene 1 sulfinates yield bright plate in high nickel chloride content baths and in cobalt baths such as specified herein, the benzene and naphthalene sulfonic acids do not cause bright cobalt plate from such baths.
- ferrous sulphate or its equivalent in ferrous chloride
- a Watts type nickel bath for example, g./l. FeSO4.7H2O and higher
- the sulfiinates will still make possible completely bright plate whereas with the benzene and naphthalene sulfonates the plates are dulled and embrittled by these high concentrations of iron.
- the aryl sulfinates also increase the tolerance to ferrous iron,- zinc and cadmium salts remarkably. These sulfiinates" function in this manner evidently by retarding the rate of deposition of the iron, zinc, cadmium, etc. with respect to nickel and cobalt, and of cobalt with respect to nickel.
- a useful application of the aryl sulfinates in acidic baths containing iron group metals is to give very fine grained, hard, adherent nickel or cobalt or binary and ternary alloys of nickeL cobalt, and iron plate which can be used Where wear is an important factor, as on certain gauges where chromium is too diflicult to apply and Where the extreme hardness of electroplated chromium is not necessary.
- v v I Another useful application of the aryl sulfinates is: when too much of an active material is accidentally added to the bath, then the addition of the aryl sulfinate will tend to counteract the harmful effects (peeling or dark deposits) immediately. The excess of harmful material can then later be removed if necessary for best results, at a more convenient time.
- the plate obtained with the aryl sulfinates alone in the nickel bath is very fine-grained, of
- the aryl sulfinates are effective in other nickel baths besides those of Table I, for example, in nickel baths containing nickel sulfamate: in the acidic nickel baths such as those used in plating zinc-base die casting directly with nickel and which baths often have high concentrations of sodium sulfate, or citrate, acetate, formate, or fluoborate.
- Aryl Sulfinates and Aliphatic Sulfinates Bath (al 1 benzene sulfmlc acid 005-1 (Na, K, Mg, Zn, Ni, Co salt, etc.) p-toluene sulfinic acid. 005-1 p-chlor benzene sulfmic acid. 005-1 0, m, p-xylene sulfinates 005-1 zit-naphthalene sulfinlc acid.
- the baths and it is necessary to replenish the small concentrations of sulfinate at a greater rate than their rate of reduction at the cathode.
- the replenishment may be necessary every day, but this is not a great drawback as only very small concentrations are used.
- a bath for electrodepositing fine-grained, bright metal selected from the group consisting of nickel, cobalt, and alloys thereof comprising an aqueous acid solution of a salt selected from the group consisting of the chloride, sulfate, and fluoborate salts of the metal to be deposited and mixtures of at least two of said salts, said metal being selected from the group consisting of nickel, cobalt, and mixtures thereof, said solution having dissolved therein an organic sulfinate in an amount falling Within a range from about .005 gram per liter of solution to saturation.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Description
I 'MHMJ Patented Oct. 6, 1953 OFFICE ELECTRODEPOSITION F BRIGHT NICKEL, COBALT, AND ALLOYS THEREOF Henry Brown, Detroit, Mich., as'signor to The Udylite Corporation, Detroit, Mich., a corporation of Delaware No Drawing. Application September 9, 1950, Serial No. 184,120
4 Claims. (Cl. 204-49) This invention relates to the electrodeposition of bright plate from aqueous acidic cobalt and nickel baths.
One object of this invention is to plate bright cobalt plate over a very Wide current density range.
Another object of this invention is to plate bright nickel and bright nickel-cobalt alloy plate over the entire concentration range of substantially zero nickel to 100% cobalt, and zero cobalt to 100% nickel.
A third object is to provide means to increase the tolerance of cobalt and nickel plating baths to larger concentrations of many inorganic and organic substances.
These objects and others can be accomplished by the use of small percentages of a salt of a sulfinic acid, preferably an aryl sulfinic acid, such as benzene or toluene sulfiinates (see Table II) in acidic cobalt and nickel baths (see Table I).
To cause the plate to be bright from an acidic cobalt bath (sulfate, chloride, fluoborate, sulfamate or mixtures) only about 0.1 to 0.5 g./l. (the saturation concentration is around 1 g./l.) is usually needed of the benzene or toluene sulfinate in the bath. The same is true for corresponding acidic nickel baths or for mixtures of acidic cobalt and nickel baths.
To prevent peeling (poor adhesion) or misplating or dark deposits in low current density areas in nickel plating or cobalt plating which might be caused by excessive quantities of inorganic or organic impurities it is necessary to use only as little as 0.005 to 0.03 g./l. to overcome these difficulties, especially in bright plating baths using o-benzoyl sulfimide. It is at the low current density areas (recesses) where the first excesses of materials like lead, zinc, copper, chromic acid and certain organic compounds which plate out or are reduced preferentially to nickel first show up. That is, the aryl sulfinates increase to a remarkable extent the tolerance of bright nickel baths to larger concentrations of zinc, thallium, lead, copper, iron cobalt, chloride ion, and a very large number of active organic compounds than could otherwise be tolerated in bright plating baths themselves Without obtaining either dark or brittle plate or poorly adherent or both. Thus, these aryl sulfinates are effective when used in very small amounts .005-.03 gram per liter even when they are not the main brightening agent of the bath, that is, the aryl sulfinates in low concentration (0.005-.03 g./l.) used in conjunction with other brightener systems such as benzene sulfonic acids, naphthalene sulfonic acids,
2 benzene sulfonamides and sulfonimides extends the useful bright-plate range of these materials to the very lowest current densities (where the cathode current density is around 1 amp/sq. It. and less). This is very important in many com= mercial installations, especially in the plating oibrass plumbing goods and of copper plated zinc base die-castings where many articles have deep recesses (low current density areas) which must be plated bright to receive the subsequent chi-0 mium plate, or Where no rack marks (dull low current density areas under the hooks 'oi. racks or under wires) must show.
However, evidently for the same reason that the aryl sulfinates are much more efiect'ive in increasing the tolerance of the nickel plating bath to much larger concentrations of impurl= ties, they do not produce as high a rate of brightening or degree of lustre in conjunction with such brighteners as zinc, phenosafranine, etc. as do the benzene and naphthalene sulfo-nic acids in Watts type baths. However, while the latter give bright plate in Watts baths, they do not cause bright plate in the high chloride baths (over 150 g./l. nickel chloride) but yield dull gray plate instead. Whereas the benzene and toluene 1 sulfinates yield bright plate in high nickel chloride content baths and in cobalt baths such as specified herein, the benzene and naphthalene sulfonic acids do not cause bright cobalt plate from such baths.
Furthermore, when ferrous sulphate (or its equivalent in ferrous chloride) is added in high concentrations to a Watts type nickel bath, for example, g./l. FeSO4.7H2O and higher, the sulfiinates will still make possible completely bright plate whereas with the benzene and naphthalene sulfonates the plates are dulled and embrittled by these high concentrations of iron. In the case of cobalt baths, the aryl sulfinates also increase the tolerance to ferrous iron,- zinc and cadmium salts remarkably. These sulfiinates" function in this manner evidently by retarding the rate of deposition of the iron, zinc, cadmium, etc. with respect to nickel and cobalt, and of cobalt with respect to nickel.
A useful application of the aryl sulfinates in acidic baths containing iron group metals is to give very fine grained, hard, adherent nickel or cobalt or binary and ternary alloys of nickeL cobalt, and iron plate which can be used Where wear is an important factor, as on certain gauges where chromium is too diflicult to apply and Where the extreme hardness of electroplated chromium is not necessary. v v I Another useful application of the aryl sulfinates is: when too much of an active material is accidentally added to the bath, then the addition of the aryl sulfinate will tend to counteract the harmful effects (peeling or dark deposits) immediately. The excess of harmful material can then later be removed if necessary for best results, at a more convenient time.
In Table II ar listed a number of suitable sulfinates. It is preferred to use the p-toluene sulfinic acid (preferably in the form of the nickel or sodium salt, though other salts such as the Zinc salt can be used) because it is most readily prepared.
The plate obtained with the aryl sulfinates alone in the nickel bath is very fine-grained, of
good color, hard, adherent, and when deposited on a smooth or buffed surface is bright. After a concentration of about 0.5 g./1. is reached further additions up to saturation do not materially increase the brightness of th plate nor lessen the adhesion or affect the color.
The aryl sulfinates are effective in other nickel baths besides those of Table I, for example, in nickel baths containing nickel sulfamate: in the acidic nickel baths such as those used in plating zinc-base die casting directly with nickel and which baths often have high concentrations of sodium sulfate, or citrate, acetate, formate, or fluoborate. The sulfinates always tend to act to prevent dark plate, peeling, and defective low current density plate, in all these types of acidic nickel baths (pH-=1.5-6.0)
Even very small concentrations of only 5 mg. /l. are effective in the very low C. D. areas, though usually around mg./1. is needed for the general amount of impurities encountered during plating. If the aryl sulflnates are used in concentrations as high as 0.5 g./1. or up to saturation, the bath will tolerate at least 2 g./l. of zinc or more and still obtain no streaked or dark plate, in fact adherent, hard bright plate will be obtained.
It was also noted that aryl sulfinates repressed pitting a remarkable extent even when no wetting agents were in the baths.
3. 00804311120 g/l 100-200 B31303 EH NaF g/l 6-15 0001261120 g/l 10-40 pH=2.5-5.5.
Temperature=room to 60 C. v C. D.=up to 150 amps/sq. ft. (15 amps/sq. dm.).
4. C0 (N114)2(SO4)2-6H2O g/l100-200 pH=4.5-5.5. Temperature=room to 60 C. C. D.=up to 40 amps/sq. it. (4.5 amps/sq. dm.)
commg/l100-200 0001:.6H2O gll 0-40 pH= 2.5-5.5.
Temperature=room to 60 C. C. D.=up to 200 ampsJsq. ft. (20 ampsJsq. dm.)
Representative cobalt-nickel baths 1. C0SO4.7H2O g/l -100 NiSO4.6HzO g/l 100 N1C12.6H2O g/1 100 H313 0a g/l 40 Temperature=room to C. C. D.=up to 150 amps/sq. it. (15 amps sq. dm.).
2. Any one of the above listed cobalt baths with 50-200 g/l of either or both NiSO4.6HzONiC12.6HzO.
TABLE 11 Gone. in Aryl Sulfinates and Aliphatic Sulfinates Bath (al 1 benzene sulfmlc acid 005-1 (Na, K, Mg, Zn, Ni, Co salt, etc.) p-toluene sulfinic acid. 005-1 p-chlor benzene sulfmic acid. 005-1 0, m, p-xylene sulfinates 005-1 zit-naphthalene sulfinlc acid. 005-1 B-naphthalene sulfinlc acid 005-1 m-benzene disulfinic acid; 005-1 ethane sulfinic acid (Na, Mg or Ni salt) 005-1 ethane-1,2-disulfinic acid (Na, Mg or Ni salt) 005-1 allyl sulfinic acid 005-1 vinyl sulfinic acid 005-1 In bright nickel plating baths one of the best uses of the aryl sulfinates is in low concentrations (.005.02 gram per liter) in conjunction with o-benzoyl sulfimide. In bright cobalt plat- TABLE I Representative nickel baths Current NlSO47H2O NlClzGHzO, Other Salts For- Temp, Density, Bath No. gJL EJL Buffer FOrmula mula gJL F. PH amps-[sq- HaB 03 (b oric acid) 40- -160 2-6 10-75 75-160 1-5 10-100 75-160 2-6 10-85 75-140 3-6 10-60 Representative cobalt baths 1. CoSOiJHzO g/l -200 g/l 10-50 HaBOa g/l 20-40 pH=2.5-5.5. Temperature=room to 60 C. C.D. up to amps/sq. it. (15 amps/sq. dm.).
2. COC1z.6H2O c {5/1 100-200 H3BO3 g/l 20-40 pH= 2.5-5.5.
Temperature=room to 60 C. C. D.=up to 150 amps/sq. ft. (15 amps. sq. dm.).
75 the baths and it is necessary to replenish the small concentrations of sulfinate at a greater rate than their rate of reduction at the cathode. When the very low concentrations are used in nickel baths, the replenishment may be necessary every day, but this is not a great drawback as only very small concentrations are used.
This application is a continuation-in-part of my copending application Serial No. 600,212, filed June 18, 1945, which is a continuation-in-part of my application Serial No. 366,386, filed November 20, 1940, which applications are now abandoned.
I claim:
1. A bath for electrodepositing fine-grained, bright metal selected from the group consisting of nickel, cobalt, and alloys thereof, comprising an aqueous acid solution of a salt selected from the group consisting of the chloride, sulfate, and fluoborate salts of the metal to be deposited and mixtures of at least two of said salts, said metal being selected from the group consisting of nickel, cobalt, and mixtures thereof, said solution having dissolved therein an organic sulfinate in an amount falling Within a range from about .005 gram per liter of solution to saturation.
2. The bath defined in claim 1 wherein the organic sulfinate is an aryl sulfinate.
3. The bath defined in claim 2 wherein the aryl sulfinate is a benzene sulfinate.
4. The bath defined in claim 2 wherein th aryl sulfinate is toluene sulfinate. 1
HENRY BROWN.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 2,112,818 Waite Mar. 29, 1938 2,291,590 Lind July 28, 1942 OTHER REFERENCES Raub et al., Metal Finishing, August 1940, page 430.
Henricks, Metal Industry, December 11, 1942, page 380.
Claims (1)
1. A BATH FOR ELECTRODEPOSITING FINE-GRAINED, BRIGHT METAL SELECTED FROM THE GROUP CONSISTING OF NICKEL, COBALT, AND ALLOYS THEREOF, COMPRISING AN AQUEOUS ACID SOLUTION OF A SALT SELECTED FROM THE GROUP CONSISTING OF THE CHLORIDE, SULFATE, AND FLUOBORATE SALTS OF THE METAL TO BE DEPOSITED AND MIXTURES OF AT LEAST TWO OF SAID SALTS, SAID METAL BEING SELECTED FROM THE GROUP CONSISTING OF NICKEL, COBALT, AND MIXTURES THEREOF, SAID SOLUTION HAVING DISSOLVED THEREIN AN ORGANIC SULFINATE IN AN AMOUNT FALLING WITHIN A RANGE FROM ABOUT .005 GRAM PER LITER OF SOLUTION TO SATURATION.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US184120A US2654703A (en) | 1950-09-09 | 1950-09-09 | Electrodeposition of bright nickel, cobalt, and alloys thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US184120A US2654703A (en) | 1950-09-09 | 1950-09-09 | Electrodeposition of bright nickel, cobalt, and alloys thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US2654703A true US2654703A (en) | 1953-10-06 |
Family
ID=22675625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US184120A Expired - Lifetime US2654703A (en) | 1950-09-09 | 1950-09-09 | Electrodeposition of bright nickel, cobalt, and alloys thereof |
Country Status (1)
Country | Link |
---|---|
US (1) | US2654703A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2839458A (en) * | 1956-11-16 | 1958-06-17 | Hanson Van Winkle Munning Co | Electroplating |
US2921888A (en) * | 1956-10-26 | 1960-01-19 | Vertol Aircraft Corp | Electroplating titanium ano titanium alloys |
US3232718A (en) * | 1960-06-17 | 1966-02-01 | M & T Chemicals Inc | Electrochemical product |
FR2317382A1 (en) * | 1975-07-09 | 1977-02-04 | M & T Chemicals Inc | PROCESS FOR THE ELECTROLYTIC DEPOSITION OF AN ALLOY OF IRON, NICKEL AND / OR COBALT |
US4053373A (en) * | 1975-07-09 | 1977-10-11 | M & T Chemicals Inc. | Electroplating of nickel, cobalt, nickel-cobalt, nickel-iron, cobalt-iron and nickel-iron-cobalt deposits |
DE2943028A1 (en) * | 1978-11-01 | 1980-05-08 | M & T Chemicals Inc | GALVANIC NICKEL BATH |
US20030209295A1 (en) * | 2000-08-09 | 2003-11-13 | International Business Machines Corporation | CoFe alloy film and process of making same |
US20070261967A1 (en) * | 2006-05-10 | 2007-11-15 | Headway Technologies, Inc. | Electroplated magnetic film for read-write applications |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2112818A (en) * | 1934-08-15 | 1938-03-29 | Mcgean Chem Co Inc | Electrodeposition of metals |
US2291590A (en) * | 1940-03-11 | 1942-07-28 | Harshaw Chem Corp | Electrodeposition of metals |
-
1950
- 1950-09-09 US US184120A patent/US2654703A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2112818A (en) * | 1934-08-15 | 1938-03-29 | Mcgean Chem Co Inc | Electrodeposition of metals |
US2291590A (en) * | 1940-03-11 | 1942-07-28 | Harshaw Chem Corp | Electrodeposition of metals |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2921888A (en) * | 1956-10-26 | 1960-01-19 | Vertol Aircraft Corp | Electroplating titanium ano titanium alloys |
US2839458A (en) * | 1956-11-16 | 1958-06-17 | Hanson Van Winkle Munning Co | Electroplating |
US3232718A (en) * | 1960-06-17 | 1966-02-01 | M & T Chemicals Inc | Electrochemical product |
FR2317382A1 (en) * | 1975-07-09 | 1977-02-04 | M & T Chemicals Inc | PROCESS FOR THE ELECTROLYTIC DEPOSITION OF AN ALLOY OF IRON, NICKEL AND / OR COBALT |
US4053373A (en) * | 1975-07-09 | 1977-10-11 | M & T Chemicals Inc. | Electroplating of nickel, cobalt, nickel-cobalt, nickel-iron, cobalt-iron and nickel-iron-cobalt deposits |
DE2943028A1 (en) * | 1978-11-01 | 1980-05-08 | M & T Chemicals Inc | GALVANIC NICKEL BATH |
US20030209295A1 (en) * | 2000-08-09 | 2003-11-13 | International Business Machines Corporation | CoFe alloy film and process of making same |
US6855240B2 (en) | 2000-08-09 | 2005-02-15 | Hitachi Global Storage Technologies Netherlands B.V. | CoFe alloy film and process of making same |
US20070261967A1 (en) * | 2006-05-10 | 2007-11-15 | Headway Technologies, Inc. | Electroplated magnetic film for read-write applications |
US8118990B2 (en) * | 2006-05-10 | 2012-02-21 | Headway Technologies, Inc. | Electroplated magnetic film for read-write applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1051818A (en) | Bath and method for the electrodeposition of bright nickel-iron deposits | |
US3354059A (en) | Electrodeposition of nickel-iron magnetic alloy films | |
US4053373A (en) | Electroplating of nickel, cobalt, nickel-cobalt, nickel-iron, cobalt-iron and nickel-iron-cobalt deposits | |
US4036709A (en) | Electroplating nickel, cobalt, nickel-cobalt alloys and binary or ternary alloys of nickel, cobalt and iron | |
US2822326A (en) | Bright chromium alloy plating | |
US3697391A (en) | Electroplating processes and compositions | |
US3471271A (en) | Electrodeposition of a micro-cracked corrosion resistant nickel-chromium plate | |
US2654703A (en) | Electrodeposition of bright nickel, cobalt, and alloys thereof | |
US4014759A (en) | Electroplating iron alloys containing nickel, cobalt or nickel and cobalt | |
US4046647A (en) | Additive for improved electroplating process | |
CA1132088A (en) | Electrodepositing iron alloy composition with aryl complexing compound present | |
US3922209A (en) | Electrode position of alloys of nickel, cobalt or nickel and cobalt with iron and electrolytes therefor | |
US3615281A (en) | Corrosion-resistant chromium-plated articles | |
US4104137A (en) | Alloy plating | |
ES344368A1 (en) | Method of electrodepositing corrosion resistant coating | |
US4435254A (en) | Bright nickel electroplating | |
US4069112A (en) | Electroplating of nickel, cobalt, mutual alloys thereof or ternary alloys thereof with iron | |
CA1070637A (en) | Electroplating process | |
US2380044A (en) | Process for producing electrodeposits | |
US2658867A (en) | Electrodeposition of nickel | |
US2809156A (en) | Electrodeposition of iron and iron alloys | |
CA1114768A (en) | Addition of rare earth metal compounds in nickel, cobalt, or iron plating | |
US2648628A (en) | Electroplating of nickel | |
US2694041A (en) | Electrodeposition of nickel | |
US2389135A (en) | Electrodeposition of metals |