US2654663A - Gasification of carbonaceous solid fuels - Google Patents

Gasification of carbonaceous solid fuels Download PDF

Info

Publication number
US2654663A
US2654663A US128437A US12843749A US2654663A US 2654663 A US2654663 A US 2654663A US 128437 A US128437 A US 128437A US 12843749 A US12843749 A US 12843749A US 2654663 A US2654663 A US 2654663A
Authority
US
United States
Prior art keywords
vessel
methane
gas
reaction
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US128437A
Inventor
Gorin Everett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consolidation Coal Co
Pittsburgh Consolidation Coal Co
Original Assignee
Consolidation Coal Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consolidation Coal Co filed Critical Consolidation Coal Co
Priority to US128437A priority Critical patent/US2654663A/en
Application granted granted Critical
Publication of US2654663A publication Critical patent/US2654663A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • C10J2300/0933Coal fines for producing water gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/04Powdered fuel injection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

2 Sheets-Sheet l My. TORNEY E. GORIN s 5335 m E R T o mozmuzuw zuwomerz Q s m 5 W m 4 5 450.50%. 6 H r mozmwzmw zuwomEi A 6 m2 4 v R E T- A 2 w 2 Q L E 4 U 6 O- F 2 GASIFICATION OF CARBONACEOUS SOLID FUELS HYDROGENATOR 23} Oct. 6, 1953 Filed Nov. 19, 1949 FIG.
Oct. 6, 1953 v E. GORIN 2,654,663
GASIFICATION OF CARBONACEOUS SOLID FUELS Filed Nov. 19, 1949 2 Sheets-sheaf '2 TO HYDROGEN GENLERATOR A g' t j 78 as 78 94 GAS 82 z 9 S eo LLI HYDROGENATOR J I ,64 :1: 62 u n: n.
A T r J HYDROGEN RESIDUE FIG. 2 INVENTOR STEAM EVE RETT GQRIN ATTORNEY,
I for converting Patented Oct. 6, 1953 GASIFICATION F CARBONACEOUS SOLID FUELS Everett Gorin, Castle Shannon, Pa., assignor to Pittsburgh Consolidation Coal Company, Pittsburgh, Pa., a corporation of Pennsylvania Application November 19, 1949, Serial No. 128,437
1 Claim. 7 1
This invention relates to th gasification of carbonaceous solid fuels, and particularly to, the production of hydrogen or high B. t. vu. gas from such fuels.
In application Serial No. 99,563, filed June 16, 1949, a process for the gasification of carbonaceous solid fuels by reaction between steam and solid fuels in the presence of strontium oxide is described. In accordance with that process, Strontium oxide is mixed with carbonaceous solid fuels in certain critical proportions and under certain critical conditions of temperature and pressure and then subjected to reactio with steam. A gaseous product is obtained which contains methane and hydrogen in varying relative proportions depending upon the particular temperature and pressure conditions. As a result of the reaction between the steam and carbonaceous solid fuels, an inert solid residue or ash is formed in admixture with the strontium oxide. In order to reuse the strontium oxide, which is converted to strontium carbonate during the reaction, it is necessary to separate the strontium oxide from the ash and regenerate it at elevated temperatures. While various means are available for separating this ash from the strontium oxide, it would be desirable to conduct the conversion of the carbonaceous solid fuels to gas in a system in which the oxide and solid fuels ar not in admixture during the reaction, and yet in which substantially all the benefits of the use of the oxide in the process are secured, namely, high yields of hydrogen or methane as desired and under substantially thermoneutral conditions.
The primary object of this invention is to provide an improved two-Vessel system for converting carbonaceous solid fuels into gas under substantially thermoneutral conditions. Another object of this invention is to provide a two-vessel system for making a high B. t. u. fuel gas which is rich in methane. A further object of the present invention is to provide a two-vessel system gas which is rich in hydrogen. Still another obiect of this invention is to provide a two-vessel system for gasifying carbonaceous solid fuels in which the gaseous products are substantially free of carbon dioxide.
For a better understanding of my invention, reference should be had to the following description and to the accompanying drawings, in which:
Figure 1 is a diagrammatic illustration of an apparatus comprising a two vessel system adapted to carry out the preferred embodiment .of my invention; and
Figure 2 is an illustration, partly diagrammatic and partly cross-sectional of a modified embodimer t .of a portion of the system shown in Figure l...
In accordance Wi h my inv ntion, a two-weas carbonaceous solid fuels into a ystem is employed to convert carbonaceous solid fuels to. a gas containing primarily methane and/or hydrogen as desired. In one of the two vessels a bed of carbonaceous solid fuels in granular form is maintained, while in the other vessel a bed of granular strontium oxide is confined. The temperature in the oxide vessel must be between l500 and 2100" F., while that in the solids fuel vessel must be at least 1400 F. and preferably not above 1800 F. The pressures in the two vessels, while preferably, but not necessarily the same, must at least equal and preferably exceed one atmosphere when the temperature in the oxide vessel is in the range 1500 to 18.65" F., and when the temperature in the oxide vessel is in the range 1865 to 2160" R, the pressure must exceed that given by the empirical relation where p is the minimum reaction pressure in atmo p er s nd t is the temperatur in t e xide vessel in F.
Steam and a gas containing methane are. circulated through the vessel containing the strontium oxide, and under the conditions of temperature and pressure recited, the methane is converted to a gas containing a high percentage of 7 hydrogen. The amo nt of strontium oxide mainsteam reaction vessel (hereinafter sometimes referred to as the hydrogen generator) is circulated through the bed of carbonaceous solid fuels confined in the other vessel. Under the conditions of temperature and pressure existing in that vessel, the fuel is hydrogenated and a high B. t. u. gas containing methane in substantial quantities is produced. If it is desired to produce only a high B, t. u. gas from the system, in preference to substantially pure hydrogen, then part of the methane-containing gas is recycled to the hydrogen generator for manufacturing hydrogen, all of which is then returned to the solid fuel hydrogenerator vessel. If it is desired to produce hydrogen-rich gas, then only a part of the hydrogen produced in the hydrogen generator is circulated to the hydrogenator and all of the methane produced in the latter is recycled to the hydrogen generator.
As stated above, the temperatures and pressures of th two reaction zones do not necessarily have to be th s me- Bu f r practical r asons, it is desirable to maintain the same pressure in both vessels. Preferably, the temperature in the solid fuel vessel is not higher than that in the steam-methane reaction zone. It may be less but preferably not more than 200 F. lower. By operating under these preferred temperature conditions the amount of recycled gas can be kept at a minimum.
The strontium oxide employed in the hydrogen generator is progressively converted to strontium carbonate by the carbon dioxide produced. It therefore is necessary to regenerate the oxide from the carbonate from time to time. This may readily be done by separately heating the carbonate to its decomposition temperature in the same or different vessels. If the regeneration is effected in the same vessel, then it is necessary to operate a second vessel for carrying out the steam-methane reaction while the first vessel is on its regeneration cycle. Alternatively, the carbonate may be continuously withdrawn from the hydrogen generator and regenerated in a separate vessel form which it is continuously recycled to the generator.
The reactions in the two zones may be carried out using either fixed or fluidized beds. The use of fluidized beds is preferred when (1) the solid fuel used is a coking coal and (2) it is desired to obtain precise temperature control in the oxide regeneration step.
The use of a fixed or moving bed is preferred when it is desired to obtain a maximum concentration of hydrogen leaving the methanesteam zone and a maximum concentration of methane leaving the coal or char hydrogenation zone. This is not only desirable in order to obtain a higher purity product but also to minimize the recycle of gas between the two zones. The purity of the hydrogen produced in the methanesteam reaction zone may be increased for example, by establishing a temperature gradient of at least 100 F. between the top and bottom of the strontium oxide bed, the high temperature being at the methane inlet end. Similarly, the concentration of methane leaving the hydrogenation zone may be increased by establishing a temperature gradient such that the temperature of gases leaving are at least 100 F. less than they are at the hottest point in the bed. The desired temperature gradient may be established in a fixed bed by cooling the outlet portion of the bed; and in moving or fluidized beds, by maintaining a plurality of successive beds at progressively lower temperatures.
Finally a fluidized bed may be used in one of the operations and not in the other. For example, due to the relatively low temperature prevailing in the methane-steam reaction zone, moderately long residence times of the order of onehalf to five minutes are required. Thus it is convenient to use relatively low velocities during the methane-steam reaction, i. e., 0.04 to 0.40 foot per second. These velocities using strontium oxide in the size consist range of 20 to +325 mesh are either insufficient to fiuidize the strontium oxide or will effect only a bubbling type of fiuidization. On the other hand, the oxide regeneration step is most suitably carried out at a higher velocity, i. e., at 0.5 to 3.0 feet per second, i. e., sufficient to maintain the strontium oxide bed in the streaming fiuidization range.
The methane-steam reaction may be carried out, therefore, using either a fixed or bubbling fluidized bed, while the oxide regeneration may be carried out using a Streaming fluidized bed.
The rate of the methane-steam reaction may be increased substantially by the use of catalysts particularly the metals of the first transition group. The metals may be supported directly on the strontium oxide or on an independent porous support, i. e., Ni, Co, or Fe on a-alumina, Cu on silica gel, etc. The strontium oxide itself may be supported on a refractory basic oxide such as MgO to provide greater physical strength.
I have found that by operating the two vessels in the above manner, either hydrogen or a high B. t. u. gas containing methane in substantial quantities may be produced at will and under conditions such that the overall process is exothermic. In the strontium oxide vessel heat is supplied for the endothermic steam-methane reaction by the exothermic reaction between the strontium oxide and the carbon dioxide produced in the reaction. In the solid fuel vessel, the reaction between hydrogen and the fuel evolves heat. This desirable heat balance can readily be achieved by recycling either methane or hydrogen as the case may be.
.In one of the embodiments of my new process, I utilize the heat evolved in the solid fuel hydrogenator to preheat the steam which is circulated to the hydrogen generator. Thus a more than adequate supply of heat is assured for the methane-steam reaction.
In the following description of a specific embodiment of my invention, by way of example only, my new process is applied to the carbonaceous solid residue obtained by the low temperature distillation or carbonization of hydrocarbonaceous solid fuels, such as the high volatile bituminous coal found in the Pittsburgh seam. This residue, for the purpose of convenience, I shall hereafter refer to as char. It is to be understood, however, that the process is generally applicable to any carbonaceous solid fuels. Among such carbonaceous solids are included all ranks of coal, lignite, oil shale, tar sands, coke from coal or bituminous pitch, solid tar, etc. However, I prefer highly reactive solid fuels such as char, lignite, and petroleum coke.
The apparatus shown in Figure l and its operation will now be described. A two-vessel system is employed comprising a solid fuels hydrogenation vessel l0 and a strontium oxide-containing methane hydrolysis vessel l2. A fluidized bed of granular char is maintained in vessel ill by means of gases circulating therethrough. The char feed should be ground so that substantially all passes through a 20 mesh screen and the velocity of the gases circulating therethrough to effect fiuidization should be of the order of 0.2 to 1.2 feet per second. The bed of strontium oxide may be maintained as a bubbling fluidized bed or as a fixed bed in vessel l2. The size consist of the strontium oxide is preferably in the range of -20 to +325 mesh while the gas velocity is maintained at 0.04 to 0.40 foot per second.
A gas containing methane is introduced through a valved conduit it into vessel l2 along with steam fed to the conduit I l from conduits l5 and H. The bed of strontium oxide through which the steam and methane are circulated is initially elevated to a temperature of l500 to 2100 F. Once the reaction between the steam and hydrocarbon gas takes place, no heat need be added to maintain the reaction. The amount of strontium oxide present in vessel I2 is suflicient to absorb substantially all of the carbon dioxide produced, There should be at least 600 parts by weight of oxide present for reach 100 parts by weight of carbon contained in :the methane passed through vessel 12. The pressure in this system is that previously recited, that is, it must equal or exceed one atmosphere in the temperature range l500 to 1865 F.; and in the range 1865 to 2l00 R, that given by the empirical relationship of Equation 1 but it is preferably maintained between to 50 atmospheres. The gaseous product consisting essentially of hydrogen is withdrawn from vessel l2 through conduit 18. If it is desired to :make a high B. t. u. gas :rather than hydrogen, then all of the gas from the strontium oxide vessel 12 is conducted through valved conduit 2-0 to the bottom of vessel I0. It is usually desirable to free the gas of Water during its passage through conduit 20 by a condenser 2| and a collector 22.
Fresh char is introduced into the stream of gas in conduit 20 through conduit 26 from a hopper .23 provided with a motor-driven screw 24. Reacted char or ash is withdrawn through a draw- .of[ tube 21 as necessary to maintain the level in the vessel. The gas circulates through the bed of solid fuels contained in vessel i0 and the hydrogen therein reacts with the fuel to produce a gas containing methane in substantial quantities. The latter is withdrawn from vessel Iii through a conduit 28 to a cyclone separator 30 Where finely divided solids are returned to the vessel l0 through a dip leg 32. The solid-free methane gas is conveyed through a valved conduit -34 to suitable storage facilities. However, a part of the methane gas is recycled through the valved conduit 14 to vessel I2 to repeat the operation. The amount of methane recycled through conduit I 4 is determined by the material balance in the system. In other words, sufiicient methane must be recycled to produce in vessel 12 the hydrogen requirements in vessel ii The temperature and pressure maintained in vessel 1 ii may be the same as those established in vessel H, but in any case must lie within the limits previously recited.
If it is desired to produce only hydrogen from the system, then substantially all of the methane .oroduced is recycled to vessel [2 from vessel it out only a portion of the hydrogen made in ves- 1481 i2 is recycled to vessel i 0 for reaction with the solids. It is also possible by controlling the recycle from each of the vessels to produce hydrogen and methane concurrently, which is one of the inherent advantagesof the two-vessel system.
During the course of the reaction between the methane and steam in vessel l2 to make hydrogen, carbon dioxide is produced and, as previously stated, is absorbed by the strontium oxide with the formation of strontium carbonate. It is necessary to regenerate the oxide periodically in :order to maintain its effectiveness in the :reaction. This regeneration is accomplished by raising the temperature of the carbonate to the decomposition point. Since it is desirable not to suspend operation of the system during the regeneration, another vessel d0 corresponding to vessel :2 is provided for continuing the steamcarbon reaction while the vessel l2is on regeneration.
When the strontium oxide in vessel I2 is being regenerated, the flow of steam and methane through valved conduit id is stopped. The-vessel I2 is reduced to atmospheric pressure by closing its communication with the remainder of the system and by opening the valve in an exhaust line 42. The necessary decomposition temperature is established in the bed of carbonate by burning producer gas introduced through a valved conduit 44 withair-introduced througha valvedconduit Hi.v Pulverizedcoalmaybeburned directly with air invessel 1-2 in'place of producer gas. ;A fine grind is employed, i. e., '80 per cent through 200 mesh such'that ash is not retained by the strontium oxide. but is carried off in the hue gases.
While vessel al-Z is ona regeneration cycle, vessel 4051s operating as the steam-methanereaction zone in the same manner as previously described for vessel l2. Steam is conducted through a valved :conduit 48 into a valved con- :duit 50 which .carries'methane from the recycling conduit IM to "vessel d0. The gaseous product from vessel 4.0 is conveyed. to the main, outletconduit l8 by ;a valved conduit 52. When vessel [2 is operating .on 'a hydrogen generation cycle, vessel all is placedon a regeneration of oxide cycle in the same manner as is vessel l2. -Air and producer gas are introduced through valved conduits :56 and 56, respectively, and flue gases are discharged through a valved conduit 58 at atmospheric pressure.
The application of the above process to the production of a high '13. t. u. gas from char may :be illustrated specifically .by the following example. The reaction zones in the two vessels are maintained at -l6.-l0-and at 40 atmospheres pressure absolute. The recycle ratio of gas from the solid fuel hydrogenation vessel to the gas discharged through conduit 34 as product. is 1.95. The molar ratio of steam to methane ted to the steam-methane reaction vessel is 1. 8. A gas having a heating value on a dry basis of 575 B. t. u./cubic foot and the following composition is obtained: 1-12-63 percent by volume; CO-.24 per cent by volume; co -.02 per cent by volume; and CH4-36.8 per cent by volume. The overall steam conversion is 67 per cent and the net heat evolved over and above that required .to maintain the system in operation is about 35,000 B. t. u./1b. .mol. of carbon fed to the system.
The application .of the above process to the production of a gas rich in hydrogen from char may be illustrated specifically by the following example. The reaction zones in the two vessels are maintained .at 1610" -F. and .at 40 atmospheres pressure absolute. The recycle ratio of hydrogen ;gas from the steam-methane reaction vessel to the net hydrogen gasdischarged through conduit t3 .as product is -1.98. The molar ratio of steam to methane red -.to the steam-methane reaction vessel is 2.95. A gas having a heating value on .a .dry basis of 350 B. t. u./cubic foot and the following composition is obtained: H2-96.2 per cent by volume; C-O0.2 per cent by volume; CO-2.02 per cent by volume; and Gill-3.6 per cent .by volume; The overall steam conversion is 61.8 per cent and the net heat evolved over and above that required to maintain the system in operationis about 39,000 E. t. u./1b. moi. of carbon vfed .to the system.
In Figure 2 of the drawings there is shown a modification of the solid fuel hydrogena'tor which provides for utilizing the heat evolved by "the reaction between hydrogen and the solid fuel to preheat the steam fed to the methanestea-m reaction vessel. This is particularly desimblewhen the temperature prevailing in the latter vessel is in the upper end of the previously recited critical range since then the steam-methane "reaction is :at or about the :tlrerrnoneutral point, rather than being highly exothermic. At the same time, the
7 per cent steam conversion is increased by virtue of partial reaction of the steam with the solid fuel in the hydrogenator vessel.
Referring specifically to Figure 2, numeral 60 designates a modified solid fuel hydrogenator vessel in which carbonaceous solid fuel is reacted with hydrogen from a hydrogen generator like that described above. The vessel is divided into an inner hydrogenation zone 62 and an outer annular-shaped steam preheating zone 6 1 by a cylindrically shaped chimney 56. The two zones communicate with one another at the bottom and the top of the chimney, V
Finely divided solid fuel is carried into the inner hydrogenation zone 52 by the hydrogen gas produced in a hydrogen generator (not shown) which operates in the same manner as that described in connection with the system of Figure l. The linear velocity of the hydrogen gas and the particle size of the solid fuel are regulated to produce a fluidized bed in the zone 02. A cone-shaped baffle element 70 is provided at the foot of the chimney to support the bed and is spaced from the walls of the chimney to form an annular passage 12 permitting communication with the outer zone 64.
The gases produced in the hydrogenation zone are collected in a bell-shaped member 14 which is supported within the top of the chimney as in a spaced position with respect to the chimney walls to form an annular passage 15 for communication between the two zones. The bed level in the vessel 60 is maintained sufficiently high to at least cover the top of the chimney and thereby assure free circulation of solids between the two zones at the bottom and the top of the chimney. Preferably, the solids overflow from the top of zone 55 into the top of zone 52 in order to provide an effective seal between the gas bell is and chimney 08. This may be accomplished higher linear velocity than that circulating through zone 62. A conduit 18 serves to convey the high B. t. u. gas produced to a cyclone separator so which separates any entrained solids from the gas and returns them through a dip leg 82 to the feed line 68. The solid free gas is either discharged as product through conduit 84 or recycled through conduit 85 to the hydrogen generator.
Steam enters the outer zone 6% of vessel 60 through a conduit 88 and passes up through the hot solids at such linear Velocity that the fluidized condition is maintained. Because the solids in vessel are continuously circulating between the two zones, the temperature in the outer zone 64 is nearly as high as that in the inner zone 02. The steam circulating through the outer zone is consequently preheated to reaction temperature. At the same time a small amount of the steam, of the order of 20 per cent, is converted by reaction with the carbonaceous solids. The preheated steam and gaseous reaction products are conducted from vessel 60 through a conduit 9!! to a cyclone separator 92 which separates the entrained solid fines and returns them to the outer zone fi l through a dip leg 94. The solid free steam and gases are discharged from the cyclone into conduit 86 where they become mixed with by circulating the fiuidizing gas in zone (i l at a the .methane rich gas from the hydrogenation 7 zone andare then fed to the hydrogen generator.
Operating temperature and pressure ranges are the same as previously given for the system described in connection With Figure 1. The com- 8 position of the products'of the modified system remains substantially unchanged.
According to the provisions of the patent statutes, I have explained the principle, preferred construction, and mode of operation of my invention and have illustrated and described what I now consider to represent its best embodiment. However, I desire to have it understood that, within the scope of the appended claim, the invention may be practiced otherwise than as specifically illustrated and described.
I claim:
The method of making gas from carbonaceous solid fuels which comprises maintaining two separate reaction zones, the first of which contains strontium oxide in granular form and the second of which contains carbonaceous solids in granular form, said second zone being divided into a hydrogenation section and a preheating section which intercommunicate and which are arranged in heat exchange relation with each other, maintaining said first reaction zone at a temperature between 1500 and 2100 F., maintaining said second reaction zon at a temperature between 1400 and 1800 F., maintaining pressures in both reaction zones which are at least one atmosphere when the temperature of said first reaction zone is in the range 1500 to 1865 F., and when the temperature is in the range 1865 to 2100 F., are at least those given by the empirical relationship Where p is the minimum reaction pressure in atmospheres and t is the temperature of the reaction zone in F., circulating a methane-containing gas and preheated steam through said first reaction zone in the absence of methane-steam converting catalysts, the amount of strontium oxide present in said zone being at least 600 parts by weight for each parts by weight of carbon contained in the methane containing gas, circulating at least a portion of the product hydrogen from said strontium oxide reaction zone through the hydrogenation section of the second reaction zone under fiuidizing conditions, passing steam through the preheating section of the second reaction zone under fluidizing conditions, circulating solids in the fluidized condition between said sections, recycling at least a portion of the gaseous reaction product from th hydrogenation section of said second'zone together with the steam from the preheating section through said first reaction zone as the aforementioned methane-containing gas and preheated steam, respectively, and recovering at least a portion of the gas produced in one of said zones.
EVERETT GORIN.
References Cited in the file of this patent UNITED STATES PATENTS Chemical Engineering, 7. January 1947, pages -108.
US128437A 1949-11-19 1949-11-19 Gasification of carbonaceous solid fuels Expired - Lifetime US2654663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US128437A US2654663A (en) 1949-11-19 1949-11-19 Gasification of carbonaceous solid fuels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US128437A US2654663A (en) 1949-11-19 1949-11-19 Gasification of carbonaceous solid fuels

Publications (1)

Publication Number Publication Date
US2654663A true US2654663A (en) 1953-10-06

Family

ID=22435381

Family Applications (1)

Application Number Title Priority Date Filing Date
US128437A Expired - Lifetime US2654663A (en) 1949-11-19 1949-11-19 Gasification of carbonaceous solid fuels

Country Status (1)

Country Link
US (1) US2654663A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322521A (en) * 1967-05-30 Process and apparatus for the gasifica- tion of ash-containing fuel
US3607158A (en) * 1969-03-12 1971-09-21 Gas Council Process for the hydrogenation of coal
US3703052A (en) * 1970-11-12 1972-11-21 Inst Gas Technology Process for production of pipeline quality gas from oil shale
US3929431A (en) * 1972-09-08 1975-12-30 Exxon Research Engineering Co Catalytic reforming process
US3957681A (en) * 1970-09-04 1976-05-18 Toyo Engineering Corporation Process for manufacturing gaseous mixtures rich in hydrogen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1938202A (en) * 1930-09-12 1933-12-05 Du Pont Hydrogen production
GB491453A (en) * 1937-02-02 1938-09-02 Institution Of Gas Engineers Improvements in the production of hydrocarbon gases by hydrogenation of carbonaceous materials
GB519246A (en) * 1938-10-07 1940-03-20 Institution Of Gas Engineers Improvements in the carbonisation of carbonaceous materials
GB522640A (en) * 1938-12-16 1940-06-24 Institution Of Gas Engineers Improvements in the manufacture of combustible gas and coke from carbonaceous materials
US2602019A (en) * 1947-08-23 1952-07-01 William W Odell Process for promoting endothermic reactions at elevated temperatures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1938202A (en) * 1930-09-12 1933-12-05 Du Pont Hydrogen production
GB491453A (en) * 1937-02-02 1938-09-02 Institution Of Gas Engineers Improvements in the production of hydrocarbon gases by hydrogenation of carbonaceous materials
GB519246A (en) * 1938-10-07 1940-03-20 Institution Of Gas Engineers Improvements in the carbonisation of carbonaceous materials
GB522640A (en) * 1938-12-16 1940-06-24 Institution Of Gas Engineers Improvements in the manufacture of combustible gas and coke from carbonaceous materials
US2602019A (en) * 1947-08-23 1952-07-01 William W Odell Process for promoting endothermic reactions at elevated temperatures

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322521A (en) * 1967-05-30 Process and apparatus for the gasifica- tion of ash-containing fuel
US3607158A (en) * 1969-03-12 1971-09-21 Gas Council Process for the hydrogenation of coal
US3957681A (en) * 1970-09-04 1976-05-18 Toyo Engineering Corporation Process for manufacturing gaseous mixtures rich in hydrogen
US3703052A (en) * 1970-11-12 1972-11-21 Inst Gas Technology Process for production of pipeline quality gas from oil shale
US3929431A (en) * 1972-09-08 1975-12-30 Exxon Research Engineering Co Catalytic reforming process

Similar Documents

Publication Publication Date Title
US2694623A (en) Process for enrichment of water gas
US3985519A (en) Hydrogasification process
US2840462A (en) Production of high btu-content gas from carbonaceous solid fuels
US4597776A (en) Hydropyrolysis process
US3619142A (en) Continuous steam-iron process
US2482187A (en) Process for producing hydrogencarbon monoxide gas mixtures
US4118204A (en) Process for the production of an intermediate Btu gas
US2680065A (en) Gasification of carbonaceous solids
US2689787A (en) Volatile fuel production and apparatus therefor
US2662816A (en) Gasification of carbonaceous materials containing volatile constituents
US3115394A (en) Process for the production of hydrogen
US2554263A (en) Gasification of carbonaceous solids
US2538235A (en) Hydrogen manufacture
US2805188A (en) Process for producing synthesis gas and coke
US2633416A (en) Gasification of carbonaceous solids
US2579397A (en) Method for handling fuels
US2588075A (en) Method for gasifying carbonaceous fuels
US4560547A (en) Production of hydrogen from oil shale
US4391612A (en) Gasification of coal
US2654661A (en) Gasification of carbonaceous solid fuels
US2705672A (en) Manufacture of water gas
US3108857A (en) Method for the production of hydrogen
US2654663A (en) Gasification of carbonaceous solid fuels
US2682455A (en) Gasification of carbonaceous solid fuels
CA1199039A (en) Hydropyrolysis process