US2652414A - Preparation of saturated fatty acids of improved color and color stability - Google Patents

Preparation of saturated fatty acids of improved color and color stability Download PDF

Info

Publication number
US2652414A
US2652414A US195461A US19546150A US2652414A US 2652414 A US2652414 A US 2652414A US 195461 A US195461 A US 195461A US 19546150 A US19546150 A US 19546150A US 2652414 A US2652414 A US 2652414A
Authority
US
United States
Prior art keywords
color
fatty acids
sulfuric acid
acid
saturated fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US195461A
Inventor
David E Terry
Donald T Warner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Mills Inc
Original Assignee
General Mills Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Mills Inc filed Critical General Mills Inc
Priority to US195461A priority Critical patent/US2652414A/en
Application granted granted Critical
Publication of US2652414A publication Critical patent/US2652414A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/08Refining
    • C11C1/10Refining by distillation
    • C11C1/103Refining by distillation after or with the addition of chemicals

Definitions

  • the present invention relates to the preparation of saturated higher fatty acids having improved color and color stability.
  • Fatty acids for such uses are commonly produced by the fractional distillation of hydrolyzed animal and vegetable oils, or from Waste products resulting from the processing of such oils. As first produced, these fatty acids have a fair degree of whiteness but are not sufiiciently light in color to be used for many industrial applications. It is essential, therefore, to improve the initial color of these fatty acid products.
  • the Huff patent is concerned with a method of producing a liquid sludge in such a treatment as compared with a solid sludge ordinarily produced.
  • the I-Iuff process involves the use of a mixture of sulfuric and phosphoric acid and is a two-phase process operated at low temperatures.
  • This improvement of the color and color stability of saturated higher'fatty acids is readily accomplished by heating the fatty acid at a high temperature with sulfuric acid, washing the resulting acid mixture with water to remove the sulfuric acid, and then distilling the fatty acid.
  • the sulfuric acid employed is concentrated sulfuric acid such as 66 Baume' acid, or higher concentration acid. It is employed in a quantity of from 1-3% by weight of the fatty acid.
  • the temperature of treatment is within the range of approximately -175 C". and the time period may be varied from 2 to 6 hours. In this temperature range and with this quantity of sulfuric acid a, homogeneous single phase is obtained which is extremely efficient for the treatment of the fatty acids.
  • the treatment involves the admixture of the sulfuric acid with the fatty acid in a liquid condition.
  • the sulfuric acid may be added at room temperature. In the case of the higher melting fatty acids, these may be melted and the sulfuric acid added thereto.
  • the resulting mixture is then heated to temperatures within the range mentioned above and agitated for the time period described. Following the treatment the mixture is cooled to about 100 C. and then washed with water until the sulfuric acid has been removed.
  • the product is then dried and subjected to distillation. The product obtained upon distillation is much improved in color, in
  • the color of the sample was first determined and the color value was recorded. The melted sample was then poured into a 50 ml. Nessler tube and heated for 2 hours at 205 C. The color of the heat treated sample was again determined in the Spectrophotometer and the value was expressed as the color value after heating.
  • the storage of the fatty acid samples for the tests after 1, 2 and 4 weeks was accomplished by flaking the fatty acid samples and then storing them in glass bottles with free exposure to the air. These samples were tested at intervals for color stability both before and after heating at 205 C.
  • Example 1 distilled without fractionation. Color stability was then tested and the results in color values are given in the following table:
  • Example 2 Example 1 was repeated on the same starting material and the color values are those indicated in the following table:
  • nary animal and vegetable fats and oils will contain from about 8 to about 22 carbon atoms.
  • the process may be applied to isolated saturated fatty acids, to selected fractions of the saturated fatty acids derived from the fats and oils, or to the complete mixture of saturated fatty acids occurring in a fat or oil. It will be apparent that other variations may also be made in the process without departing from the spirit of the invention.
  • Process of treating higher saturated fatty acids which comprises mixing from 1% to 3% by weight of concentrated sulfuric acid with the fatty acid, heating the mixture to a temperature within the approximate range of 150-175" C. for a period of from approximately 2 to 6 hours, thereafter washing the mixture with water to remove sulfuric acid, and distilling the residue to recover the fatty acid.
  • Process of treating higher saturated fatty acids which comprises mixing the fatty acid with 20 approximately 1% by weight of concentrated sulfuric acid, heating the mixture of fatty acid and sulfuric acid to a temperature of about 150 C. for about 2 hours, washing the mixture with water to remove the sulfuric acid, and distilling the residual fatty acid.

Description

Patented Sept. 15, 1953 PREPARATION OF SATURATED FATTY ACIDS OF IMPROVED COLOR AND COLOR STABILITY David E. Terry and Donald T. Warner, Minneapolis, Minn., assignors to General Mills, Inc., a
corporation of Delaware No Drawing. Application November 13, 1950, Serial No. 195,461
2 Claims.
The present invention relates to the preparation of saturated higher fatty acids having improved color and color stability.
For many uses to which higher saturated fatty acids are put, it is essential that the fatty acids possess a light col-or and that the color be stable over long periods of time. Fatty acids for such uses are commonly produced by the fractional distillation of hydrolyzed animal and vegetable oils, or from Waste products resulting from the processing of such oils. As first produced, these fatty acids have a fair degree of whiteness but are not sufiiciently light in color to be used for many industrial applications. It is essential, therefore, to improve the initial color of these fatty acid products.
While the fatty acids initially produced by distillation may have a fair color, this color rapidly deteriorates on storage and the product after a reasonable storage period possesses such a poor color that it can be used only for uses which command a low price.
This degradation in color is apparently caused by certain color forming bodies Which are present in the fatty acids initially, but which are colorless at that point. Upon exposure to air and light these color forming bodies are converted into compounds which are colored and which thus color the entire body of fatty acid.
It is essential, therefore, to treat these fatty acid products not only to improve their initial color, but to give the fatty acid products color stability for a long period of time.
Heretofore the improvement in color of fatty acids and fatty products has been accomplished by various bleaching methods, principally by means of the use of various bleaching agents such as the bleaching earths, activated carbon, and the like. These methods have been subject to various disadvantages. The bleaching agents employed are relatively expensive and in their use they entrain considerable quantities of the fatty acids being treated thereby reducing the yield of products obtained.
Some attempts have been made to use sulfuric acid in the purification of fats and fatty products. For example, British Patent 2,356 of 1868 refers to the use of sulfuric acid as an adjunct to the ordinary fullers earth bleaching treatment. This patent describes the use of from 3% to 5% of strong sulfuric acid as a preliminary to fullers earth bleaching. No conditions of treatment are given, and the treatment apparently is not particularly efficacious inasmuch as it serves only as a preliminary to the usual fullers earth treatment. Moreover, the quantity of sulfuric acid employed is excessive from a cost standpoint. In
addition, the operation is clearly a two-phase system which is very inefhcient. The U. S. patent to Kraft, 153,350, likewise describes the use of sulfuric acid in the treatment of stearin. In this instance, however, the sulfuric acid has been employed in the form of dilute acid and the operation is likewise an ineflicient two-phase system. Moreover, the details of the process are not described in the patent. U. S. patent to Huff, 2,434,699, describes a process of overcoming the disadvantages previously encountered in the use of sulfuric acid for the treatment of fatty materials containing saturated and unsaturated fatty acid bodies. The Huff patent is concerned with a method of producing a liquid sludge in such a treatment as compared with a solid sludge ordinarily produced. The I-Iuff process involves the use of a mixture of sulfuric and phosphoric acid and is a two-phase process operated at low temperatures.
It has now been discovered that it is possible to treat higher saturated fatty acids by a controlled sulfuric acid treatment such that the initial color is improved and such that the color stability of the product is very materially enhanced.
It is therefore an object of the present invention to provide a novel process of treating higher saturated fatty acids with sulfuric acid under controlled conditions to improve the initial color and to improve the color stability of the fatty acids.
It is also an object of the present invention to provide a process of producing saturated higher fatty acids which retain their characteristic initial color and high temperature color stability to a marked degree even after long storage in the flaked form in air.
This improvement of the color and color stability of saturated higher'fatty acids is readily accomplished by heating the fatty acid at a high temperature with sulfuric acid, washing the resulting acid mixture with water to remove the sulfuric acid, and then distilling the fatty acid. The sulfuric acid employed is concentrated sulfuric acid such as 66 Baume' acid, or higher concentration acid. It is employed in a quantity of from 1-3% by weight of the fatty acid. The temperature of treatment is within the range of approximately -175 C". and the time period may be varied from 2 to 6 hours. In this temperature range and with this quantity of sulfuric acid a, homogeneous single phase is obtained which is extremely efficient for the treatment of the fatty acids.
The treatment involves the admixture of the sulfuric acid with the fatty acid in a liquid condition. In the case of fatty acids which are liquid at normal temperature, the sulfuric acid may be added at room temperature. In the case of the higher melting fatty acids, these may be melted and the sulfuric acid added thereto. The resulting mixture is then heated to temperatures within the range mentioned above and agitated for the time period described. Following the treatment the mixture is cooled to about 100 C. and then washed with water until the sulfuric acid has been removed. The product is then dried and subjected to distillation. The product obtained upon distillation is much improved in color, in
color stability on aging, and in .color stability on heating to 205 C.
In the following examples the Coleman Junior Spectrophotometer was used for the determination of the color of the samples. Color of the samples was determined at five wave lengths- 400, 425, 450, 475, and 500 millirnicrons. The color values are stated in percentage transmittance compared with distilled water values=l at each of the wave lengths. Thus, for example, a tube of distilled water was placed in the instrument and the instrument was adjusted such that the reading was equal to 100% at that wave length. Then the distilled water tube was removed and the fatty acid sample was placed in the instrument. The instrument reading was then recorded as a measure of the fatty acid color at that wave length. The instrument readings at the five wave lengths were then averaged numerically and this average figure was designated as the color value in these examples.
In the heat stability test the color of the sample was first determined and the color value was recorded. The melted sample was then poured into a 50 ml. Nessler tube and heated for 2 hours at 205 C. The color of the heat treated sample was again determined in the Spectrophotometer and the value was expressed as the color value after heating.
The storage of the fatty acid samples for the tests after 1, 2 and 4 weeks was accomplished by flaking the fatty acid samples and then storing them in glass bottles with free exposure to the air. These samples were tested at intervals for color stability both before and after heating at 205 C.
Example 1 distilled without fractionation. Color stability was then tested and the results in color values are given in the following table:
4 Example 2 Example 1 was repeated on the same starting material and the color values are those indicated in the following table:
Treated Flaked Product Before and Treating Freshly 1 10 Distilled Week Weeks As melted 60 83 84 78 -After heating 2 hours at Example 3 Treated Flaked Product Before and Treating Freshly 1 2 Dlstlned Week Weeks As melted 60 82 84 82 After heating 2 hours at Example 4 v100 parts of a commercial distilled stearic acid (90% stearic acid) were heated with 1 part by weight of concentrated sulfuric acid for 2 hours at 150 C. The melt was then washed with warm water, dried in vacuo, and distilled without fractionation. Color stability of this product was determined and the values are reported as follows in terms of color values:
Treated Flaked Product Before and Treating Freshly 1 2 Dlsmned Week Weeks As melted 48 72 73 74 After heating 2 hours at Example 5 One hundred parts of a commercial grade of saturated fatty acids palmitic-45% stearic acid) were heated with 3 parts by weight of concentrated sulfuric acid for 2 hours at 150 C. The melt was then washed with warm water, dried in vacuo and distilled without fractionation. The color stability of this product was determined and the values are reported below in terms of color values.
Treated Flaked Product Before Trglatied Flaked Before and Treatment Freshly Product Treating Freshly 1 2 4 Distilled (1 week) DSnned Week Weeks Weeks As melted 5 55 56 As melted. 60 84 81 4 33 Aiterheating 2hours at 205 C. 0 42 40 After heating 2 hours at 205 C 13 62 70 52 54 The .process is applicable to higher saturated Control: 7 fatty acids in general. Those derived from ordi- Freshly distilled and untreated, 77. Freshly distilled and untreated, heated 2 hours at 205 C., 39.
nary animal and vegetable fats and oils will contain from about 8 to about 22 carbon atoms. The process may be applied to isolated saturated fatty acids, to selected fractions of the saturated fatty acids derived from the fats and oils, or to the complete mixture of saturated fatty acids occurring in a fat or oil. It will be apparent that other variations may also be made in the process without departing from the spirit of the invention.
We claim as our invention:
1. Process of treating higher saturated fatty acids which comprises mixing from 1% to 3% by weight of concentrated sulfuric acid with the fatty acid, heating the mixture to a temperature within the approximate range of 150-175" C. for a period of from approximately 2 to 6 hours, thereafter washing the mixture with water to remove sulfuric acid, and distilling the residue to recover the fatty acid.
2. Process of treating higher saturated fatty acids which comprises mixing the fatty acid with 20 approximately 1% by weight of concentrated sulfuric acid, heating the mixture of fatty acid and sulfuric acid to a temperature of about 150 C. for about 2 hours, washing the mixture with water to remove the sulfuric acid, and distilling the residual fatty acid.
DAVID E. TERRY.
DONALD T. WARNER.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 1,106,509 Hofmann Aug. 11, 1914 2, 34,699 Huff Jan. 20, 1948 FOREIGN PATENTS Number Country Date 419 Great Britain Feb. 10, 1869 10,000 Great Britain 1843

Claims (1)

1. PROCESS OF TREATING HIGHER SATURATED FATTY ACIDS WHICH COMPRISES MIXING FROM 1% TO 3% BY WEIGHT OF CONCENTRATED SULFURIC ACID WHICH THE FATTY ACID, HEATING THE MIXTURE TO A TEMPERATURE WITHIN THE APPROXIMATE RANGE OF 150-175* C. FOR A PERIOD OF FROM APPROXIMATELY 2 TO 6 HOURS, THEREAFTER WASHING THE MIXTURE WITH WATER TO REMOVE SULFURIC ACID, AND DISTILLING THE RESIDUE TO RECOVER THE FATTY ACID.
US195461A 1950-11-13 1950-11-13 Preparation of saturated fatty acids of improved color and color stability Expired - Lifetime US2652414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US195461A US2652414A (en) 1950-11-13 1950-11-13 Preparation of saturated fatty acids of improved color and color stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US195461A US2652414A (en) 1950-11-13 1950-11-13 Preparation of saturated fatty acids of improved color and color stability

Publications (1)

Publication Number Publication Date
US2652414A true US2652414A (en) 1953-09-15

Family

ID=22721508

Family Applications (1)

Application Number Title Priority Date Filing Date
US195461A Expired - Lifetime US2652414A (en) 1950-11-13 1950-11-13 Preparation of saturated fatty acids of improved color and color stability

Country Status (1)

Country Link
US (1) US2652414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812343A (en) * 1953-04-06 1957-11-05 Archer Daniels Midland Co Method of making refined fatty acids from soap stocks
US3489779A (en) * 1965-12-23 1970-01-13 Exxon Research Engineering Co Purification of neo-carboxylic acids by treating with sulfuric acid and a phase-separating agent
US4650611A (en) * 1981-07-20 1987-03-17 Henkel Kommanditgesellschaft Auf Aktien Process for the preparation of fatty acid alkyl esters having improved processing properties

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1106509A (en) * 1913-09-23 1914-08-11 Wilhelm Hermann Hofmann Process for deodorizing oleic and fatty acids derived from train or fish oils.
US2434699A (en) * 1945-04-10 1948-01-20 Ralph H Huff Refining unsaturated acids and esters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1106509A (en) * 1913-09-23 1914-08-11 Wilhelm Hermann Hofmann Process for deodorizing oleic and fatty acids derived from train or fish oils.
US2434699A (en) * 1945-04-10 1948-01-20 Ralph H Huff Refining unsaturated acids and esters

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812343A (en) * 1953-04-06 1957-11-05 Archer Daniels Midland Co Method of making refined fatty acids from soap stocks
US3489779A (en) * 1965-12-23 1970-01-13 Exxon Research Engineering Co Purification of neo-carboxylic acids by treating with sulfuric acid and a phase-separating agent
US4650611A (en) * 1981-07-20 1987-03-17 Henkel Kommanditgesellschaft Auf Aktien Process for the preparation of fatty acid alkyl esters having improved processing properties

Similar Documents

Publication Publication Date Title
US2340104A (en) Process fob making mixtures of
US2652414A (en) Preparation of saturated fatty acids of improved color and color stability
US2583028A (en) Improvement of color and color stability of saturated fatty acids
US2862943A (en) Purification of fatty acids
US2475420A (en) Treatment of fatty acids
US2454936A (en) Process for preparing unsaturated alcohols
Feuge et al. Modification of vegetable oils. IX. Purification of technical monoglycerides
US2680122A (en) Stabilization of fats for soap
US2567409A (en) High molecular weight fatty acids
US2133282A (en) Preparation of alkylated aromatic sulphonic acids
Mattil The formation of isomers of polyunsaturated acids during the hydrogenation of soybean oil
US2401772A (en) Purifying nitriles
US1934100A (en) Production of neat s-fooff
US2876174A (en) Bleaching and color stabilization of fatty acids and related materials
US2411111A (en) Treatment of polyene compounds
US3396182A (en) Process for recovery of purified saturated higher fatty acid from fatty acid fractions
Boucher et al. Phase behavior in the solvent winterization of crude cottonseed oil in 85–15 acetone-hexane mixture as related to reduction in refining loss and color
US2545126A (en) Processing of fatty acids and making grease therefrom
US2855310A (en) Method of producing shortening
US2547505A (en) Purification of chlorophthalic anhydrides
US2123560A (en) Pitch paint
US3272850A (en) Deodorization of lanolin and lanolin derivatives
US3027259A (en) Mixed triglyceride compositions
US2062837A (en) Process of preparing color-stable fatty acids
DE740367C (en) Process for the preparation of halogen compounds of ª ‡ -acetoxybutadiene-1, 3