US2631944A - Organic driers in organic film forming compositions - Google Patents

Organic driers in organic film forming compositions Download PDF

Info

Publication number
US2631944A
US2631944A US147334A US14733450A US2631944A US 2631944 A US2631944 A US 2631944A US 147334 A US147334 A US 147334A US 14733450 A US14733450 A US 14733450A US 2631944 A US2631944 A US 2631944A
Authority
US
United States
Prior art keywords
driers
organic
lead
compounds
drier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US147334A
Inventor
Charles A Coffey
Russell T Ryan
Lynwood N Whitehill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sherwin Williams Co
Original Assignee
Sherwin Williams Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sherwin Williams Co filed Critical Sherwin Williams Co
Priority to US147334A priority Critical patent/US2631944A/en
Application granted granted Critical
Publication of US2631944A publication Critical patent/US2631944A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09FNATURAL RESINS; FRENCH POLISH; DRYING-OILS; DRIERS (SICCATIVES); TURPENTINE
    • C09F9/00Compounds to be used as driers (siccatives)

Definitions

  • This invention relates to the employment of a novel class of compounds as replacements for the lead soaps normally used as drier catalysts in drying oil containing coating compositions. 1
  • the oil-soluble salts of a variety of organic acids have been the principal siccative materials used as catalyst to promote the drying of compositions containing unsaturated fatty acid groups.
  • the three principal metal organic soaps employed are the lead, cobalt and manganese salts of high molecular weight organic compounds, e. g., rosinates, naphthenates and oilsolates or long chain fatty acid soaps.
  • Other metals known to have some siccative effect include iron, zinc, calcium and nickel salts and soaps, but their use is more specific than the three principal metals named.
  • the three principal driers named are known to have an individual efiect in drying oil fatty acid group containing coating compositions, and it is general practice to use the cobalt, lead and manganese salts or soaps in combination to avail of the individual stimulus to drying contributed by each metal present.
  • the metallic soaps function: (1) to shorten or eliminate the normal induction period preceeding the observable drying character of the unsaturated oils, (2) to accelerate the absorption of oxygen by the drying oil, (3) to cause gelation or solidification of the drying oil film at a lower total oxygen absorption than in the absence of the metal drier, and (4;) to decrease the amount of oxygen absorption over the maximum absorpi n QCQulr ng in the absence of metal driers.
  • the drying of an oil film is believed to be initiated by oxidation and completed by polymerization within the film, and that both types of reaction are accelerated by the presence of metal driers.
  • the three principal metal driers are known to have many objectionable characteristics including high consistency at high metal content, tendency to sludge out and tendency to increase viscosity upon age after manufacture.
  • lead driers have certain objectionable qualities which are of a more serious nature.
  • One principal objection to lead driers is the toxic quality of lead itself.
  • this broad objective has been accomplished through the use of metal-free organic compounds containing from seven to eighteen carbon atoms and a carbonyl group, said com pound selected from the class consisting of aliphatic aldehydes and substituted phenols wherein said substituent is characterized by thepresence in said substituent of a carbonyl group.
  • the quantities of the purely organic compounds used in the tests ranged from 0.25% to 2.0% based on the total vehicle solids of the particular drying oil containing vehicle tested.
  • the preferred range of percentage was found to be from 0.5% to 1.75% based on the said total vehicle solids content of the coating.
  • a series of eight different qualities of coating vehicles containing drying oil fatty acid groups were selected for the purpose of evaluation of the compounds tested. These vehicles contained from 100% drying oil in the outside house paint vehicle to as'low as 52% of oil modification in one of the alkyds employed. Six of the vehicles selected are further described and identified in Table I.
  • non-metal containing organic compounds tested and found useful as having a similar function to the lead soaps as driers in conjunction with the unsaturated fatty acid groups of oleoresinous varnishes are the following:
  • organic carbonyl compounds for use of the above organic carbonyl compounds as driers it is most convenient that they be dissolved in organic solvents which are miscible with the drying oil containing vehicles into which they are to be compounded.
  • the other group of carbonyl containing compounds containing an aromatic nucleus are more dificultly soluble, but for the greater part can be solubilized in aromatic solvents, e. g., toluene and xylene, occasionally employing in conjunction therewith, small amounts of an alcohol, e. g., ethyl, isopropyl and butyl alcohol, to aid solubility.
  • aromatic solvents e. g., toluene and xylene
  • small amounts of an alcohol e. g., ethyl, isopropyl and butyl alcohol
  • the driers beprepared in concentrated form by dissolving the effective carbonyl compounds in suitable solvents prior to use, it is not essential to resortto this step as they may also be directly incorporated in the ranges useful in the coating compositions described.
  • Table I which follows; the general character of the test vehicles are described in the first column.
  • the second column lists the compounds which are found to have observable drier activity.
  • the third column lists the percentage of lead assuage (as the metal) in the standard and the percentage of the purely organic drier compared therewith. In the last column observations are recorded as to the result obtained by comparison with standard films, containing cobalt, lead and manganese driers.
  • a divisional application, filed September 5, 1951, U. S. Serial No. 245,266, is directed to the aliphatic carbonyl compounds herein described as 50 fatty acid groups, said drier comprising p-methyl 7 8 where R is a carbonyl containing radical selected from the group consisting 0! UNITED STATES PATENTS (I? 1g Number Name Date 2,047,150 Koenig July '7, 1936 -CH, -c -c-0- 5 2,330,337 Cupery Sept. 28, 1943 0 2,492,334 Thompson Dec. 27, 1949 and 2,494,418 Wells et a1. Jan.

Description

Patented Mar. 17, 1953 ORGANIC DRIERS IN ORGANIC FILM FORMING COMPOSITIONS Charles A. Coffey, Elmhurst, and Russell T. Ryan and Lynwood N. Whitehill, Chicago, 111., assignors to The Sherwin-Williams Company, Cleveland, Ohio, a corporation of Ohio No Drawing. Application March 2, 1950, Serial No. 147,334
Claims. 1. This invention relates to the employment of a novel class of compounds as replacements for the lead soaps normally used as drier catalysts in drying oil containing coating compositions. 1
Heretofore, the oil-soluble salts of a variety of organic acids have been the principal siccative materials used as catalyst to promote the drying of compositions containing unsaturated fatty acid groups. The three principal metal organic soaps employed are the lead, cobalt and manganese salts of high molecular weight organic compounds, e. g., rosinates, naphthenates and oilsolates or long chain fatty acid soaps. Other metals known to have some siccative effect include iron, zinc, calcium and nickel salts and soaps, but their use is more specific than the three principal metals named.
The three principal driers named are known to have an individual efiect in drying oil fatty acid group containing coating compositions, and it is general practice to use the cobalt, lead and manganese salts or soaps in combination to avail of the individual stimulus to drying contributed by each metal present.
It is fairly generally agreed in the art as to theory that the metallic soaps function: (1) to shorten or eliminate the normal induction period preceeding the observable drying character of the unsaturated oils, (2) to accelerate the absorption of oxygen by the drying oil, (3) to cause gelation or solidification of the drying oil film at a lower total oxygen absorption than in the absence of the metal drier, and (4;) to decrease the amount of oxygen absorption over the maximum absorpi n QCQulr ng in the absence of metal driers. Brieflystated, the drying of an oil film is believed to be initiated by oxidation and completed by polymerization within the film, and that both types of reaction are accelerated by the presence of metal driers.
The three principal metal driers are known to have many objectionable characteristics including high consistency at high metal content, tendency to sludge out and tendency to increase viscosity upon age after manufacture.
However, the lead driers have certain objectionable qualities which are of a more serious nature. One principal objection to lead driers is the toxic quality of lead itself.
During the last several decades, attention has been. focused upon the toxic quality of lead in paints by numerous court actions involving lead poisoning. It has been alleged that children have become the victims of lead poisoning by .QQGWihgthe paint off their cribs, and cattle by a similar attack on fences and barns painted with lead-containing paints. As a result, many manufacturers of articles intended foruse by children as in toys and furniture have insisted that such coatings be absolutely lead free. This was a diificult requirement as lead is considered almost essential to obtain through-drytnecessary to quality finishes.
Another objection to lead driers has been the uncertainty of behavior of world markets in relation to its price and availability. Particularly during war periods, availability of lead for peacetime requirements becomes a serious problem.
Accordingly, we have directed our efforts .toward purely organic compounds containing-no metals at all which might be useful to supplant lead entirely.
As a result of a research project undertaken with this view as a goal, we have discoveredithat not only can lead soaps be eliminated by'substitution therefor of a particular class of purely organic compounds, but in several instances actual improvements in siccative behavior :over the usual lead soaps has been obtained. It has been further found that the substitutesfor lead are more specific in their catalytic eflect'thanis lead, and while all function as driers in a particular system, one of the group hereinafter disclosed may out-perform another. So far we have no full explanation for this phenomenon but we believe that it may be related to the molecular Weight of the given organic drier. Our present research was conducted purely on a wei ht for weight substitution basisand it is reasonable to assume that slightly less amounts of some outstandingly useful compounds and slightly more of others in given formulations may result in greater economy in some cases. and greater siccative quality in other applications, attention being given to molecular weights.
It is the broad object, therefore, to provide ,a drier catalyst for use in coating compositions containing drying oil fatty acid groups, said catalysts being purely organic in nature, having a similar behavior and function to metallic soaps presently employed as driers therein.
In general, this broad objective has been accomplished through the use of metal-free organic compounds containing from seven to eighteen carbon atoms and a carbonyl group, said com pound selected from the class consisting of aliphatic aldehydes and substituted phenols wherein said substituent is characterized by thepresence in said substituent of a carbonyl group.
substituted ethanes have been suggested as pos sible driers, and certain mercaptans have been indicated as having an eifect upon unsaturated maleic type resins. Cyanamide, acrylonitrile, guanyl urea compounds and lauro-guanamine have also been priorly suggested.
In makin the tests and comparisons for the purpose of this research, tests were carried out A. Carbonyl compounds-Aliphatic aldehydes Octa-decenyl aldehyde 2-ethyl hexaldehyde n-Decyl aldehyde 3,5,5-trimethyl hexaldehyde Citronnellal Cinnamic aldehyde B; Carbonyl compounds-Substituted phenolic nucleus p-Hydroxy benzaldehyde in an air-conditioned room where temperature,
humidity and light conditions were kept quite constant. i
As it is usually customary to employ lead .-driers in conjunction with cobalt and manganese driers, the tests were further made upon the drying 011 containing compositions havin present from 0.025% to 0.30% cobalt. based on the metal -and the vehicle solids, and in many cases an additional managnese salt present from 0.005% to 0.05% on the same basis of calculation.
An additional control test was carried throu h simultaneously contain ng only the metallic -driers other than lead as a further means of comparison of drier activity of the nonmetallic organic compounds under test.
Comparative tests were conducted on identical vehicles, e. g., one aliquot portion of a selected 'vehicle would contain as an additive the conventional amount of the lead soap or drier and another aliquot portion of the same vehicle would carry an equivalent amount by weight to the lead soap of the purely organic compound under test.
The quantities of the purely organic compounds used in the tests ranged from 0.25% to 2.0% based on the total vehicle solids of the particular drying oil containing vehicle tested. The preferred range of percentage was found to be from 0.5% to 1.75% based on the said total vehicle solids content of the coating.
A series of eight different qualities of coating vehicles containing drying oil fatty acid groups were selected for the purpose of evaluation of the compounds tested. These vehicles contained from 100% drying oil in the outside house paint vehicle to as'low as 52% of oil modification in one of the alkyds employed. Six of the vehicles selected are further described and identified in Table I.
A number of the compounds tested were objectionable from a practical viewpoint, though actually found to promote drying of paint films. In some instances, bad discoloration limits the application of the driers to darker colors and blacks. In other cases, odor of a persistent nature limits usage to outside application where odors are not confined. While skinning tendencies were observed with some vehicles and the purely organic driers, in general, by direct comparison we found an advantage in respect to nonskinning in favor of the purely organic driers herein disclosed.
Among the non-metal containing organic compounds tested and found useful as having a similar function to the lead soaps as driers in conjunction with the unsaturated fatty acid groups of oleoresinous varnishes are the following:
Vanillin Salicylaldehyde p-Hydroxy propiophenone fi Methyl umbelliferone p-Anisaldehyde 2-hydroxy,3-methoxy benzaldehyde 2-hydroxy,5-chloro benzaldehyde Piperonal Benzaldehyde An interesting result was observed in the comparison of certain of the aromatic ring compounds containing aldehydic substituents. Test results indicated that if the ring was substituted in the para positionto the carbonyl containing group with a phenolic group, outstanding drier activity was obtained. When the hydroxy group was ina meta position the results were not unusually good, but when that group was ortho in position to the carbonyl containing group, improvement over the meta substituted compounds was observable. It was thus found that the first described substituents, e. g., a hydroxy group para to the carbonyl containing group gave preferred results with ortho substituents second in order.
For use of the above organic carbonyl compounds as driers it is most convenient that they be dissolved in organic solvents which are miscible with the drying oil containing vehicles into which they are to be compounded.
Of the useful aliphatic aldehydes most are fairly completely soluble in mineral spirits and varnish makers naphtha, and because of their solubility in a common solvent used in the paint and varnish makers art have inherent advantage in respect to solubility.
The other group of carbonyl containing compounds containing an aromatic nucleus are more dificultly soluble, but for the greater part can be solubilized in aromatic solvents, e. g., toluene and xylene, occasionally employing in conjunction therewith, small amounts of an alcohol, e. g., ethyl, isopropyl and butyl alcohol, to aid solubility.
Specific compounds such as p-methyl umbelliferone are quite insoluble inmost organic solvents and blends of ketones and alcohols were resorted to (e. g., butyl alcohol and methyl ethyl ketone) and found useful for solubilizing purposes in this specific instance.
While it is preferable that the driers beprepared in concentrated form by dissolving the effective carbonyl compounds in suitable solvents prior to use, it is not essential to resortto this step as they may also be directly incorporated in the ranges useful in the coating compositions described.
In Table I which follows; the general character of the test vehicles are described in the first column. The second column lists the compounds which are found to have observable drier activity. The third column lists the percentage of lead assuage (as the metal) in the standard and the percentage of the purely organic drier compared therewith. In the last column observations are recorded as to the result obtained by comparison with standard films, containing cobalt, lead and manganese driers.
It is obvious that more or less in quantity of the drier testedmay effect the rate of dry within the limits of proportion herein defined. Above 2% of drier is notappreciably-more effective than 1.75% and 2% is therefore an upper limit dictated by optimum performance.
Table I COMPARISON OF ORGANIC COMPOUNDS USED IN PLACE OF LEAD DRIERS Vehicle Compound Substituted Comparison with Standard Cobalt, Lead, and Manganese Driers Percent Used maleic-rosin-soya bean oil oil length=52% N. v. M. cinnamic aldehyde 3 5,5-trimethyl hexaldehyde acld value=10l2 viscosity T (Gardner-Holdt) gggi f gi igggi fi i:
p-hydroxy benzaldehyde. benzaldehyde salicylaldehyde fl-methyl umbelliferonapentaerythritol phthalate-pentaery- Xy benzaldehydethn'tol rosin linseed 011 modified octadech'l' a a alkyd Vamlsh 2-ethyl hexaldehyde p-hydroxy benzaldehyde. 3,5,5-trirnethyl hexaldehyde n-decyl aldehyde cinnamic aldehyde citronellal salicylaldehyde p-hydroxy propiophen0ne. pentaerythritol-rosin linseed oil vevanillin hi e p-hydroxy benzaldehyde oil 1ength=66% N. V. M.
pentaerythritol-phthalate linseed-soya bean oil modification oil length=58% N. V. M. acid value=56 viscosity=X (Gardner-Holdt) p-hydroxy propiophenone. acid va1ue=36 octa-decenyl aldehyde viscosity I Gardner-Holdt) -methyl umbelliferonapentaerythritol-glycerine linseed-soya modification 0i1length=73% N. V. M. acid value=3.67.2 viscosity=T (Gardner-Holdt) straight drying oil heat bodied-l-alkali refined oil as used in outside house paint 2-ethyl hexaldehyde -methyl umbelliferoneocto-decenyl aldehyde p-hydroxy propiophenona p-hydroxy propiophenone. p-hydroxy benzaldehyde. Z-ethyl hexaldehyde salicylaldehyde vanillin 2-hydroxy-5-chlorobenzaldehyde 2-ethyl hexaldehyde anisaldehyde faster dry,
Do. slightly slower.
D 0. not as effective.
Do. faster than tandard.
Do. Do. Do. slightly slower.
D o Do. faster.
Do. slightly slower.
taster.
Do. slightly slower.
. equal to standard. slightly slower.
slower.
It has further been observed upon periodic examination and testing of the vehicle-drier combination described in Table I that in some instances an initially very high peak of drier activity will level off to some extent. However, the change by comparison with the compositions containing the lead driers and the identical vehicles has been relatively insignificant and the aging tests so far indicate no instability problems due to the substitution of the driers as indicated in the disclosure.
While the research leading to the discovery of the above described purely organic compounds was conducted with the idea in mind of substitutions for lead soaps or driers in drying oil modified coating compositions, it is apparent that the compounds described need not necessarily be used in conjunction with cobalt and manganese driers, but may be used either alone or in combination with each other where it is expedient to eliminate all metallic drier combinations. However, as is preferable in the art today, combinations of driers will be found useful.
A divisional application, filed September 5, 1951, U. S. Serial No. 245,266, is directed to the aliphatic carbonyl compounds herein described as 50 fatty acid groups, said drier comprising p-methyl 7 8 where R is a carbonyl containing radical selected from the group consisting 0! UNITED STATES PATENTS (I? 1g Number Name Date 2,047,150 Koenig July '7, 1936 -CH, -c -c-0- 5 2,330,337 Cupery Sept. 28, 1943 0 2,492,334 Thompson Dec. 27, 1949 and 2,494,418 Wells et a1. Jan. 10, 1950 E 7 OTHER REFERENCES 1o Ellis, Printing Inks (1940), pages 109-110; CHARLES COFFEY- Mattiello, "Protective and Decorative Coat- RUSSELL T. RYAN. ings, page 533, Vol. I. i LYNWQOD WHITEHIL'L- Aldehydes booklet, Carbide and Carbon Chemicals Corp., 1946. REFERENCES CITED 15 The following references are of record in the file of this patent:

Claims (1)

1. A COMPOSITION OF MATTER WHICH COMPRISES IN COMBINATION AN ORGANIC FILM FORMING AGENT CONTAINING DRYING OIL FATTY ACID GROUPS AND AN AROMATIC METAL FREE ORGANIC DRIER CATALYST SELECTED FROM THE GROUP CONSISTING OF B-METHYL UMBELLIFERONE, PARA-HYDROXY BENZALDEHYDE AND PARAHYDROXY PROPIOPHENONE.
US147334A 1950-03-02 1950-03-02 Organic driers in organic film forming compositions Expired - Lifetime US2631944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US147334A US2631944A (en) 1950-03-02 1950-03-02 Organic driers in organic film forming compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US147334A US2631944A (en) 1950-03-02 1950-03-02 Organic driers in organic film forming compositions

Publications (1)

Publication Number Publication Date
US2631944A true US2631944A (en) 1953-03-17

Family

ID=22521149

Family Applications (1)

Application Number Title Priority Date Filing Date
US147334A Expired - Lifetime US2631944A (en) 1950-03-02 1950-03-02 Organic driers in organic film forming compositions

Country Status (1)

Country Link
US (1) US2631944A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023117A (en) * 1957-10-03 1962-02-27 Sherwin Williams Co Active acids for metal driers useful in siccative coatings
US3050413A (en) * 1956-02-01 1962-08-21 Miehle Goss Dexter Inc Quick drying printing ink for coating materials and method of drying same
US3256342A (en) * 1961-09-12 1966-06-14 Union Carbide Corp Polyether-polyols
US3446874A (en) * 1966-03-04 1969-05-27 Esb Inc Polymerizable solvent adhesive composition containing mixed cobalt/zinc catalyst promoter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2047150A (en) * 1932-12-07 1936-07-07 Walter J Koenig Composition of matter and method of making the same
US2330337A (en) * 1943-09-28 Alpha
US2492334A (en) * 1947-04-12 1949-12-27 Universal Oil Prod Co Stabilization of organic compounds
US2494418A (en) * 1950-01-10 Paint and varnish

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2330337A (en) * 1943-09-28 Alpha
US2494418A (en) * 1950-01-10 Paint and varnish
US2047150A (en) * 1932-12-07 1936-07-07 Walter J Koenig Composition of matter and method of making the same
US2492334A (en) * 1947-04-12 1949-12-27 Universal Oil Prod Co Stabilization of organic compounds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3050413A (en) * 1956-02-01 1962-08-21 Miehle Goss Dexter Inc Quick drying printing ink for coating materials and method of drying same
US3023117A (en) * 1957-10-03 1962-02-27 Sherwin Williams Co Active acids for metal driers useful in siccative coatings
US3256342A (en) * 1961-09-12 1966-06-14 Union Carbide Corp Polyether-polyols
US3446874A (en) * 1966-03-04 1969-05-27 Esb Inc Polymerizable solvent adhesive composition containing mixed cobalt/zinc catalyst promoter

Similar Documents

Publication Publication Date Title
US1933520A (en) Drier and drying oil composition
US1995954A (en) Rust-resisting coating composition
US2631944A (en) Organic driers in organic film forming compositions
US3124475A (en) Metal salt drier compositions
US2072770A (en) Coating composition and drier
US2694015A (en) Organic driers in organic film forming compositions
US2169577A (en) Liquid coating composition
US2537949A (en) Modified alkyd resins and coating compositions containing the same in admixture withreadily copolymerizable vinyl monomers
US2308595A (en) Drier
US2544391A (en) Coating composition
US2050366A (en) Composition of matter containing synthetic resins
US3005789A (en) Drier composition
US2225918A (en) Coating composition
US3333978A (en) Water-dispersible coating compositions and phenolic wood bases coated therewith
US3085890A (en) Leafing aluminum paint manufacture
US2268002A (en) Paint vehicle
US2990385A (en) Alkylol phenol-modified copolymers of vinyl monomers and unsaturated fatty acid-modified alkyd resins
US2225920A (en) Coating composition
USRE27433E (en) Metal salt drier compositions
US2063869A (en) Siccative composition and process of making same
US2568188A (en) Liquid coating composition
US2422259A (en) Drying oil-polyvinyl acetal
US2778806A (en) Printing ink
US2894849A (en) Alpha, gamma diketones in combination with metallo-organic driers as drying accelerators for siccative coatings
US2373177A (en) Wrinkle finish drying compositions