US2620345A - Aluminum soaps - Google Patents

Aluminum soaps Download PDF

Info

Publication number
US2620345A
US2620345A US236693A US23669351A US2620345A US 2620345 A US2620345 A US 2620345A US 236693 A US236693 A US 236693A US 23669351 A US23669351 A US 23669351A US 2620345 A US2620345 A US 2620345A
Authority
US
United States
Prior art keywords
soaps
weight
aluminum
soap
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US236693A
Inventor
Walter K Dean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mallinckrodt Chemical Works
Original Assignee
Mallinckrodt Chemical Works
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mallinckrodt Chemical Works filed Critical Mallinckrodt Chemical Works
Priority to US236693A priority Critical patent/US2620345A/en
Application granted granted Critical
Publication of US2620345A publication Critical patent/US2620345A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/12Straight chain carboxylic acids containing eighteen carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/925Completion or workover fluid

Definitions

  • This invention relates to aluminum soaps and more particularly to aluminum soap gelling agents.
  • this invention is directed to aluminum soaps of organic acids consisting essentially of a major proportion of oleic acid and minor proportions of naphthenic and dimerized linoleic acids.
  • aluminum soaps are provided which do not possess these disadvantages but are dry and free-flowing, easily and economically manufactured, better able to gel hydrocarbon fuels and solvents at room temperatures more rapidly than previously known gelling agents, and which form firmer and les cohesive gels with mineral spirits which are more readily and completely broken in the presence of Water than known aluminum soaps.
  • the gelling agents of the present invention are aluminum soaps of a mixture consisting essentially of oleic, naphthenic and dimerized linoleic acids, the oleic acid component being present in a major proportion, and the naphthenic and dimerized linoleic acids being present in a minor amount.
  • the soap of this invention has the approximate composition:
  • the aluminum content (calculated as A1203) may be varied between approximately 10% to 20% while the naphthenic and dimerized linoleic acid contents may each be varied preferably within the range of approximately 5% to 15%, the balance of the composition being substantially oleic acid. Such variations in the composition of these soaps do not significantly affect their major advantages.
  • the aluminum soaps of the present invention can be prepared by any of the methods customarily employed for the preparation of aluminum soaps.
  • These novel aluminum soaps of this invention are used for gelling many hydrocarbon solvents such as, for example, chlorinated hydrocarbon solvents, benzene, toluene, xylene, gasoline, kerosene, mineral spirits, and some light oils.
  • hydrocarbon solvents can be gelled by mixing the soaps of this invention with the solvent at room temperature, Preferably, the mixture is stirred during the early stages of gelation so as to keep the soap in suspension, but stirring can be discontinued as soon as the viscosity becomes great ,enough to support the undispersed soap particles.
  • gels made with the soaps of the present invention is the completeness and quickness with which these gels are broken in the presence of water.
  • gelled kerosene, diesel fuel, Or crude oils are used to mask those areas of the well which are not to be acted upon by the acid.
  • Gels made according to the present invention are quite stable in the absence of water but they are quickly and completely broken in the presence of water.
  • Example 1 A solution consisting of 60 grams of 50% sodium hydroxide solution in 2 liters of tap water was heated to a temperature of 90-95 C. by blowing steam through the solution. Then, 160 grams of oleic acid (having a titre less than 16-18 C.), 20 grams of dimerized linoleic acid and 20 grams of naphthenic acid (having a minimum acid number of 160 and containing less than 15% unsaponifiable material) were added. The mixture was stirred with a high speed stirrer for about twenty minutes so as to complete the saponification, sufficient cold tap water was added to cool the mixture to 65-70" C., and the amount of steam blowing into the solution was adjusted to maintain this temperature. Then 120 grams of 50% sodium hydroxide solution were added.
  • Al2(SO4)a-18H2O aluminum sulfate
  • a portion of the slurry was filtered, the filtrate was tested with methyl red indicator, and sulfuric acid or sodium hydroxide was added as required until the filtrate was acidic, but such that no more than 2 ml. of sodium hydroxide were required to neutralize 25 ml. of the filtrate.
  • the slurry was then heated to 80-85 C. and stirred at this temperature for about thirty minutes until the soap was in a filterable condition.
  • the soap slurry was then cooled, filtered on a suction funnel and washed with its own volume of water three or four times. As much of the wash water as possible was removed from the cake with suction. The cake was then dried overnight at 7 -90 C., crushed and sifted.
  • Example 3 A dispersion of parts by weight of the Example 1 soap in 95 parts by weight of kerosene was prepared as described in Example 2. The gel was heated to 60 C. in a water bath and held at this temperature for ninety minutes in order to insure complete dispersion of the soap. Water equivalent to 1% by weight of the composition was then beaten into the gel using a high-speed Viscosity in Time After Addition of Water (Minutes) centipoises When treated in this manner, the above gel was virtually completely broken after sixty minutes.
  • An important advantage of the soaps of this invention is their freedom from stickiness, which is a characteristic of prior-art soaps. Soaps of the present invention are dry and free-flowing and can be handled substantially more easily than similar soaps known heretofore. If desired, an antioxidant can be included in the compositions of this invention. It has been found, for example, that a-naphthol in concentrations usually less than 1% is useful for this purpose.
  • An aluminum soap of a plurality of soapforming acids consisting essentially of a major proportion by weight of oleic acid and minor proportions by weight of naphthenic and dimerized linoleic acids, said minor proportions being not less than approximately 5%.
  • An aluminum soap of a plurality of soapforming acids consisting essentially of a major proportion by weight of oleic acid and minor proportions by weight of naphthenic and dimerized linoleic acids, said naphthenic and linoleic acids being present in approximately equal proportions, said minor proportions being not less than approximately 5%.
  • An aluminum soap of a plurality of soap forming acids consisting essentially of a major proportion by weight of oleic acid, approximately 5% to 15% by weight of naphthenic acid, and approximately 5% to 15% by weight of dimerized linoleic acid.
  • An aluminum soap of a plurality of soapforming acids consisting essentially of a major proportion by weight of oleic acid, approximately 8.5% by weight of naphthenic acid and approximately 8.5% by weight of dimerized linoleic acid.
  • a monobasic aluminum soap of a plurality of soap-forming acids consisting essentially of a major proportion by weight of oleic acid, approximately 5% to 15% by weight of naphthenic acid, and approximately 5% to 15% by weight of dimerized linoleic acid, the aluminum content calculated as A1203 being approximately 10% to 20% by weight.
  • a monobasic aluminum soap of a plurality of soap-forming acids consisting essentially of approximately 67% by weight of oleic acid, approximately 8.5% by weight of naphthenic acid, and approximately 8.5% by weight of dimerized

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

Patented Dec. 2, 1952 ALUMINUM SOAPS Walter K. Dean, Ferguson, Mo., assignor to Mallinckrodt Chemical Works, St. Louis, Mo., a corporation of Missouri No Drawing. Application July 13, 1951, Serial No. 236,693
6 Claims. 1
This invention relates to aluminum soaps and more particularly to aluminum soap gelling agents.
Briefly, this invention is directed to aluminum soaps of organic acids consisting essentially of a major proportion of oleic acid and minor proportions of naphthenic and dimerized linoleic acids.
Among the several objects of this invention are the provision of aluminum soaps of the class described which can be dispersed in hydrocarbon fuels and solvents at room or only slightly more elevated temperatures; the provision of soaps of the type indicated which are substantially free from stickiness in the dry state; the provision of such soaps which gel hydrocarbon fuels and solvents at room temperature substantially more rapidly than soaps of similar types heretofore known; the provision of aluminum soaps of this class which form substantially firmer and less cohesive or stringy gels with mineral spirits than could be formed from similar soaps known heretofore; and the provision of such soaps which may be manufactured easily and economically from readily available starting materials. Other features will be in part apparent and in part pointed out hereinafter.
The invention accordingly comprises the products hereinafter described, the scope of the invention being indicated in the following claims.
While aluminum soaps capable of gelling mineral spirits at room temperature are known, these soaps have certain properties which limit their usefulness. For example, instead of being dry and free-flowing these known low temperature gelling agents tend to be sticky even in the dry state and, for that reason, relatively diflicult to manufacture and handle.
In accordance with the present invention, aluminum soaps are provided which do not possess these disadvantages but are dry and free-flowing, easily and economically manufactured, better able to gel hydrocarbon fuels and solvents at room temperatures more rapidly than previously known gelling agents, and which form firmer and les cohesive gels with mineral spirits which are more readily and completely broken in the presence of Water than known aluminum soaps. The gelling agents of the present invention are aluminum soaps of a mixture consisting essentially of oleic, naphthenic and dimerized linoleic acids, the oleic acid component being present in a major proportion, and the naphthenic and dimerized linoleic acids being present in a minor amount. In one of the preferred embodiments, the soap of this invention has the approximate composition:
Percent A1203 16.0 Oleic acid 67.0 Naphthenic acid 8.5 Dimerized linoleic acid 8.5
The aluminum content (calculated as A1203) may be varied between approximately 10% to 20% while the naphthenic and dimerized linoleic acid contents may each be varied preferably within the range of approximately 5% to 15%, the balance of the composition being substantially oleic acid. Such variations in the composition of these soaps do not significantly affect their major advantages.
The aluminum soaps of the present invention can be prepared by any of the methods customarily employed for the preparation of aluminum soaps. These novel aluminum soaps of this invention are used for gelling many hydrocarbon solvents such as, for example, chlorinated hydrocarbon solvents, benzene, toluene, xylene, gasoline, kerosene, mineral spirits, and some light oils. These hydrocarbon solvents can be gelled by mixing the soaps of this invention with the solvent at room temperature, Preferably, the mixture is stirred during the early stages of gelation so as to keep the soap in suspension, but stirring can be discontinued as soon as the viscosity becomes great ,enough to support the undispersed soap particles.
An important advantage possessed by gels made with the soaps of the present invention is the completeness and quickness with which these gels are broken in the presence of water. For example, in one method of treating oil wells with strong acids to increase their productivity, gelled kerosene, diesel fuel, Or crude oils are used to mask those areas of the well which are not to be acted upon by the acid. In such applications it is essential that the gel should be completely and quickly broken on completion of the treatment so that it will not thereafter interfere with normal operation of the well. Gels made according to the present invention are quite stable in the absence of water but they are quickly and completely broken in the presence of water.
The following examples illustrate the invention.
Example 1 A solution consisting of 60 grams of 50% sodium hydroxide solution in 2 liters of tap water was heated to a temperature of 90-95 C. by blowing steam through the solution. Then, 160 grams of oleic acid (having a titre less than 16-18 C.), 20 grams of dimerized linoleic acid and 20 grams of naphthenic acid (having a minimum acid number of 160 and containing less than 15% unsaponifiable material) were added. The mixture was stirred with a high speed stirrer for about twenty minutes so as to complete the saponification, sufficient cold tap water was added to cool the mixture to 65-70" C., and the amount of steam blowing into the solution was adjusted to maintain this temperature. Then 120 grams of 50% sodium hydroxide solution were added. Next, 250 grams of aluminum sulfate (Al2(SO4)a-18H2O), dissolved in 1.5 liters of tap water and warmed to 40-60 0., was gradually added to the vigorously stirred mixture over a period of approximately fifteen to twenty minutes. When precipitation was complete, a portion of the slurry was filtered, the filtrate was tested with methyl red indicator, and sulfuric acid or sodium hydroxide was added as required until the filtrate was acidic, but such that no more than 2 ml. of sodium hydroxide were required to neutralize 25 ml. of the filtrate. The slurry was then heated to 80-85 C. and stirred at this temperature for about thirty minutes until the soap was in a filterable condition. The soap slurry was then cooled, filtered on a suction funnel and washed with its own volume of water three or four times. As much of the wash water as possible was removed from the cake with suction. The cake was then dried overnight at 7 -90 C., crushed and sifted.
Example 2 Viscosity in Ccntipoises Time After Mixing Soap and Kerosene (Minutes) 0. over 16,000.
Example 3 A dispersion of parts by weight of the Example 1 soap in 95 parts by weight of kerosene was prepared as described in Example 2. The gel was heated to 60 C. in a water bath and held at this temperature for ninety minutes in order to insure complete dispersion of the soap. Water equivalent to 1% by weight of the composition was then beaten into the gel using a high-speed Viscosity in Time After Addition of Water (Minutes) centipoises When treated in this manner, the above gel was virtually completely broken after sixty minutes.
An important advantage of the soaps of this invention is their freedom from stickiness, which is a characteristic of prior-art soaps. Soaps of the present invention are dry and free-flowing and can be handled substantially more easily than similar soaps known heretofore. If desired, an antioxidant can be included in the compositions of this invention. It has been found, for example, that a-naphthol in concentrations usually less than 1% is useful for this purpose.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As many changes could be made in the above products without departing from the scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.
I claim:
1. An aluminum soap of a plurality of soapforming acids consisting essentially of a major proportion by weight of oleic acid and minor proportions by weight of naphthenic and dimerized linoleic acids, said minor proportions being not less than approximately 5%.
2. An aluminum soap of a plurality of soapforming acids consisting essentially of a major proportion by weight of oleic acid and minor proportions by weight of naphthenic and dimerized linoleic acids, said naphthenic and linoleic acids being present in approximately equal proportions, said minor proportions being not less than approximately 5%.
3. An aluminum soap of a plurality of soap forming acids consisting essentially of a major proportion by weight of oleic acid, approximately 5% to 15% by weight of naphthenic acid, and approximately 5% to 15% by weight of dimerized linoleic acid.
4. An aluminum soap of a plurality of soapforming acids consisting essentially of a major proportion by weight of oleic acid, approximately 8.5% by weight of naphthenic acid and approximately 8.5% by weight of dimerized linoleic acid.
5. A monobasic aluminum soap of a plurality of soap-forming acids consisting essentially of a major proportion by weight of oleic acid, approximately 5% to 15% by weight of naphthenic acid, and approximately 5% to 15% by weight of dimerized linoleic acid, the aluminum content calculated as A1203 being approximately 10% to 20% by weight.
6. A monobasic aluminum soap of a plurality of soap-forming acids consisting essentially of approximately 67% by weight of oleic acid, approximately 8.5% by weight of naphthenic acid, and approximately 8.5% by weight of dimerized The following references are of record in the file of this patent:
UNITED STATES PATENTS Name Date Rosenbaum Apr. 1, 1930 Number 6 Name Date Miles Mar. 28, 1944 Sproule et a]. Feb. 12, 1946 Gebhart et a1 Mar. 11-, 1947 Ashley et a1. May 29, 1949 OTHER REFERENCES Ralston: text Fatty Acids and Their Derivatives, published 1948 by John Wiley and Sons, 10 Inc.. New York, N. Y., pp. 893-894, 937.

Claims (1)

1. AN ALUMINUM SOAP OF A PLURALITY OF SOAPFORMING ACIDS CONSISTING ESSENTIALLY OF A MAJOR PROPORTION BY WEIGHT OF OLEIC ACID AND MINOR PROPORTIONS BY WEIGHT OF NAPHTHENIC AND DIMERIZED LINOLEIC ACIDS, SAID MINOR PROPORTIONS BEING NOT LESS THAN APPROXIMATELY 5%.
US236693A 1951-07-13 1951-07-13 Aluminum soaps Expired - Lifetime US2620345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US236693A US2620345A (en) 1951-07-13 1951-07-13 Aluminum soaps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US236693A US2620345A (en) 1951-07-13 1951-07-13 Aluminum soaps

Publications (1)

Publication Number Publication Date
US2620345A true US2620345A (en) 1952-12-02

Family

ID=22890562

Family Applications (1)

Application Number Title Priority Date Filing Date
US236693A Expired - Lifetime US2620345A (en) 1951-07-13 1951-07-13 Aluminum soaps

Country Status (1)

Country Link
US (1) US2620345A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2751283A (en) * 1953-03-02 1956-06-19 Standard Oil Co Rapid gelling basic aluminum soaps
US2795492A (en) * 1952-10-23 1957-06-11 Emery Industries Inc Thickening agent for liquid hydrocarbons
US3171159A (en) * 1961-08-09 1965-03-02 Nopco Chem Co Pelletized water insoluble metallic soaps and methods and apparatus for producing them
US3480545A (en) * 1966-08-17 1969-11-25 Monsanto Res Corp Method of controlling the spread of fires
US3516944A (en) * 1967-01-04 1970-06-23 Allied Chem Carbon nitrogen backbone chain copolymers as gelling agents
US3755184A (en) * 1971-06-18 1973-08-28 Econimics Labor Inc Cleaning teflon-coated cookware
US4022725A (en) * 1972-12-04 1977-05-10 Moaco Metal Oxide Acylates Company Condensed oligomeric organo metallic resinous acylates containing ligands of monobasic carboxylic acid of at least 7 carbon atoms and bridging radicals of divalent carboxylic acids of at least 6 carbon atoms and processes for producing such resins
US6302209B1 (en) 1997-09-10 2001-10-16 Bj Services Company Surfactant compositions and uses therefor
US6849581B1 (en) 1999-03-30 2005-02-01 Bj Services Company Gelled hydrocarbon compositions and methods for use thereof
US7981003B1 (en) 2007-06-07 2011-07-19 Jacobson Zachary T Rear brace articulating stilt
US8337369B1 (en) 2005-12-19 2012-12-25 Jacobson Zachary T Adjustable quick-release ratcheting binding system for adjustable leg extensions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1752309A (en) * 1927-10-01 1930-04-01 Rudolph R Rosenbaum Lubricant product and producing process
US2345061A (en) * 1942-02-27 1944-03-28 Colgate Palmolive Peet Co Organic compound and process for producing the same
US2394567A (en) * 1941-12-17 1946-02-12 Standard Oil Dev Co Lubricating grease composition
US2417071A (en) * 1943-08-14 1947-03-11 Colgate Palmolive Peet Co Preparation of water-insoluble organic salts
US2555104A (en) * 1949-11-25 1951-05-29 American Cyanamid Co Aluminum soap compositions and greases containing them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1752309A (en) * 1927-10-01 1930-04-01 Rudolph R Rosenbaum Lubricant product and producing process
US2394567A (en) * 1941-12-17 1946-02-12 Standard Oil Dev Co Lubricating grease composition
US2345061A (en) * 1942-02-27 1944-03-28 Colgate Palmolive Peet Co Organic compound and process for producing the same
US2417071A (en) * 1943-08-14 1947-03-11 Colgate Palmolive Peet Co Preparation of water-insoluble organic salts
US2555104A (en) * 1949-11-25 1951-05-29 American Cyanamid Co Aluminum soap compositions and greases containing them

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2795492A (en) * 1952-10-23 1957-06-11 Emery Industries Inc Thickening agent for liquid hydrocarbons
US2751283A (en) * 1953-03-02 1956-06-19 Standard Oil Co Rapid gelling basic aluminum soaps
US3171159A (en) * 1961-08-09 1965-03-02 Nopco Chem Co Pelletized water insoluble metallic soaps and methods and apparatus for producing them
US3480545A (en) * 1966-08-17 1969-11-25 Monsanto Res Corp Method of controlling the spread of fires
US3516944A (en) * 1967-01-04 1970-06-23 Allied Chem Carbon nitrogen backbone chain copolymers as gelling agents
US3755184A (en) * 1971-06-18 1973-08-28 Econimics Labor Inc Cleaning teflon-coated cookware
US4022725A (en) * 1972-12-04 1977-05-10 Moaco Metal Oxide Acylates Company Condensed oligomeric organo metallic resinous acylates containing ligands of monobasic carboxylic acid of at least 7 carbon atoms and bridging radicals of divalent carboxylic acids of at least 6 carbon atoms and processes for producing such resins
US6302209B1 (en) 1997-09-10 2001-10-16 Bj Services Company Surfactant compositions and uses therefor
US6849581B1 (en) 1999-03-30 2005-02-01 Bj Services Company Gelled hydrocarbon compositions and methods for use thereof
US8337369B1 (en) 2005-12-19 2012-12-25 Jacobson Zachary T Adjustable quick-release ratcheting binding system for adjustable leg extensions
US7981003B1 (en) 2007-06-07 2011-07-19 Jacobson Zachary T Rear brace articulating stilt

Similar Documents

Publication Publication Date Title
US2620345A (en) Aluminum soaps
CA1068452A (en) Aqueous fortified rosin dispersions
US2594286A (en) Grease and grease base
GB537615A (en) Improved grease composition and method for making the same
US2628205A (en) Viscous hydrophilic composition and method of making the same
US2303256A (en) Grease and process of making same
US2763621A (en) Method of converting a liquid hydrocarbon to a gel
US2382533A (en) Oil in water dispersions
US2097737A (en) Detergent composition
US2606107A (en) Incendiary gels
US2790776A (en) Water-resistant gels and their manufacture
US2827395A (en) Process for coating a gas filter
US2419144A (en) Antiseize and sealing compound
USRE20709E (en) Lubricating grease and method for
US2238045A (en) Hydraulic pressure transmitting fluid
US2355359A (en) Fluorescein and halogenated fluoresceins dye acids
US2820763A (en) Thickened lubricants
US3584025A (en) Hydrocarbon gels
US2459176A (en) Process of preparing oil acid modified alkyd material
US1938078A (en) Artificial dispersion of rubber
US1109119A (en) Solidified oil and process of making same.
US2758123A (en) Aluminum soaps
US2795492A (en) Thickening agent for liquid hydrocarbons
US3036899A (en) Process for manufacturing thickened combustible mixtures
US1861711A (en) Material and process for neutralizing acids in oils