US2582634A - Television antenna assembly - Google Patents

Television antenna assembly Download PDF

Info

Publication number
US2582634A
US2582634A US136548A US13654850A US2582634A US 2582634 A US2582634 A US 2582634A US 136548 A US136548 A US 136548A US 13654850 A US13654850 A US 13654850A US 2582634 A US2582634 A US 2582634A
Authority
US
United States
Prior art keywords
band
dipole
low
antenna assembly
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US136548A
Inventor
Jr John Paul Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Space Systems Loral LLC
Original Assignee
Philco Ford Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philco Ford Corp filed Critical Philco Ford Corp
Priority to US136548A priority Critical patent/US2582634A/en
Application granted granted Critical
Publication of US2582634A publication Critical patent/US2582634A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • H01Q5/49Combinations of two or more dipole type antennas with parasitic elements used for purposes other than for dual-band or multi-band, e.g. imbricated Yagi antennas

Definitions

  • wowml iw Patented Jan. 15, 1 952 can, mommies; in, Pottstowm Pa :assignor to tPhilco Gorporation, Philadelphia, Pal,--a corpo-- :ratl'ontohlennsylvania Application January 3, 1950,.seris1 No. 136,"548"
  • Present television receivers are required to receive signals in two I non-contiguous 'higlr 'frequency bands one of which (the lowenb'a nd i extends from 54" -tO' 88 megacyclesand includes channels Nos. 2 through 6- andthe other of which (the upper band)- extends from 174 to" 216 megacycles and includes channels' Nos-"l' through-I3.
  • the present invention relates-- particularly to an antenna assembly comprising a high-band dipole, a low-band dipole, astub interconnecting the high-band and low-ban'd dipoles, and a single or common twin-lead transmission" line connecting both dipoles to the televisionreceiver.
  • the overall efiectivenessof the above antenna assembly may be increased very' substantially by connecting a small-pinechanically rigid, loop inductor across the terminals of the high-band dipole. when this is done, the effectiveness of' theass'embly compares very favorably with that or an antenna assembly comprising a plurality offoldedudipolescach -of which is cut to the individual requirement of a particular channel and 'each' of which is connected to the television receiver' by a separate twin-lead transmission line.
  • the loop inductor is madeAbgeenough to present a reasonably hignimpedance' (about '250' ohms) to the high-band freque'ncies as seen "from thelterminals o'f the'loop.
  • the highband channels are not adversely afiectedlb the addition. of the loop inductor. 7
  • Figure shows the loop inductor of the present invention incorporated into an antenna assembly comprising a plain high-band dipole-and a plain low-band dipole mounted on a common mast, one
  • the loop inductorl! is shown em- 'ployed in an antenna assembly in which high- Referring now to Figure 1,--the antenna 'as-' sembly there shown includes a high-band dipole l mounted at or near the top of mast I l, a lowband dipole 12 mounted on mas-t ll below the.
  • high-band dipole 10 a stud H interconnecting the terminals of the high-band and low-band dipoles, and a transmission line extending from the terminalsof the low-band dipole [2 to the television receiver (not shown).
  • Transmission line l5 which extends from the terminals of low-band dipole l2 to the television receiver (not shown), is conventionally a length of parallel-wire or twin-lead having a characteristic impedance of 300 ohms.
  • inductor 11 of predetermined configuration anddimensions is connected across the terminals of high-band dipole I0 in the manner shown in Figure 1;
  • inductor ll comprises a C-shaped length of conductive material terminating at theends in lugs l8, l9, as clearly shown inr Figure 6. While the inductor, may be formed of any material having good conductive' properties, it is preferably formed of aluminum wire having a diameter of the order of one-eighth inch.
  • the diameter of the C-shaped loop is-about three and one-quarter inches, which is equivalent to about one-eighteenth wavelength at the center-frequency of the high band, and the total length of the'inductor, from lug center to lug center is'about nine and one-half inches, which is equivalent to about one-sixth wavelength-at the center-frequency of the high band.
  • the inductor is very readily installed, as by means of a couple 0fb0lts and nuts, and is sufiiciently. rigid towithstand bending by the Wind.
  • Stub M has a length equivalent to one-half wavelength at the centerfrequency of the high band, as in Figures 1 and 2.
  • FIG 3 I have plotted a graph to show the relative effectiveness of my improved antenna assembly.
  • one hundred per cent efliciency corresponds to the results obtained from a folded dipole cut to proper length for the particular channel.
  • the curves A correspond to the results obtained'from an antenna assembly similar to that shown in Figure 1 comprising a plain high-band dipole, a loop inductor connected across the terminals of the high-band dipole, a plain low-band dipole, a stub (having a length equivalent to one-half wavelength at the mid high-band frequency) interconnecting the highband and low-band-dipoles, and a single twinlead transmission line.
  • the curves B correspond to the results obtained from an antenna assembly similar to that shown in Figure-4, i. e. having a high-band reflector and a low band reflector (in addition to components similar to those just described in connection with Figure 1).
  • a two-barid'high-frequency antenna assembly comprising: a first dipole naturally resonant-at a frequency substantially midway between the end frequencies of the high band; a second dipole naturally resonant at a. frequency about midway between'the low-band center-frequency and the lower .endefrequency of the low band; a stub inond dipoles, said stub having a selected'length equal to one-halfwavelength at the center-frequency of the high; band, which is also about one- '75' quarterwavelengthnat a.
  • a common transmission line connecting both said dipoles to signal utilization means, said transmission line being connected to the terminals of said second dipole di rectly and to the terminals of said first dipole by way of said stub; and an inductor connected across the terminals of said first dipole, said inductor comprising a C-shaped loop of mechanically rigid conductive material having a loop diameter of approximately one-eighteenth wavelength at the center-frequency of the high band and a conductor length of approximately onesixth wavelength at the center-frequency of the high band, said C-shaped loop inductor and said stub together being equivalent to a one-quarter 6 wavelength shorted line at a low-band frequency about midway between the low-band center frequency and the upper end-frequency of the low band.

Description

Jan. 15, 1952 Filed Jan. 5, 1950 J. P. JONES, JR 2,582,634
TELEVISION ANTENNA ASSEMBLY 2 Sl-lEETS-Sl-IEET l I 1 l a l 1 I 2 J 4 .4 6 7 8 7 l0 l2 /3 IN V ENT 0R.
BY Qua/ M? Jan. 15, 1952 J JONES, JR 2,582,634
TELEVISION ANTENNA ASSEMBLY Filed Jan. 5, 1950 2 SHEETS-SHEET 2 INVENITOR.
JOH/V FAUL uo/vif &//7
wowml iw Patented Jan. 15, 1 952 can, mommies; in, Pottstowm Pa :assignor to tPhilco Gorporation, Philadelphia, Pal,--a corpo-- :ratl'ontohlennsylvania Application January 3, 1950,.seris1 No. 136,"548" The invention herein deserlbed and' claimed: relates to an improved antenna assemblyfor television receivers.
Present television receivers" are required to receive signals in two I non-contiguous 'higlr 'frequency bands one of which (the lowenb'a nd i extends from 54" -tO' 88 megacyclesand includes channels Nos. 2 through 6- andthe other of which (the upper band)- extends from 174 to" 216 megacycles and includes channels' Nos-"l' through-I3.
In some areas a single'dipole'may be satisfactory for the reception of s'ignals-i-nbdth bands, but in many areas "bWO' separate dipoles" are advantageously "employed, 'one' for the low-band and the-other for the high-band channels;
' The present invention relates-- particularly to an antenna assembly comprising a high-band dipole, a low-band dipole, astub interconnecting the high-band and low-ban'd dipoles, and a single or common twin-lead transmission" line connecting both dipoles to the televisionreceiver.
I have found that the overall efiectivenessof the above antenna assembly may be increased very' substantially by connecting a small-pinechanically rigid, loop inductor across the terminals of the high-band dipole. when this is done, the effectiveness of' theass'embly compares very favorably with that or an antenna assembly comprising a plurality offoldedudipolescach -of which is cut to the individual requirement of a particular channel and 'each' of which is connected to the television receiver' by a separate twin-lead transmission line. "Such-"an arrangement is, of course, too complex to be commercially practical, but it provides an "excellent reference for purposes of comparison since a folded dipole of such lengthas to benaturally resonant to the frequency oftheindividual channel would provide very satisfactory reception on that channel, assuming a 300-ohm itwin-lead transmission line-tube employed, as is ordinarily the case. V
The theory underlying th improvementwhich the addition, of the small loop z inductorreflects is .not simple, and is-complicatedzby the;fact that 'we are dealing with a. relatively widerrange of frequencies (54 'to. 216 megacycles) The-length of the stub which intercomiectsrthez high-band and low-band dipoles isyconventionally ;made
about one-half wavelength at .thelcenter' frequency of the high band. done in order that the low-band dipole may beeennected-to the transmission line at or near a voltagenode with respect to :thehigh-band frequencies.- :Unior- -tunate1y,. astub equalto one' halr-iwavelengmiat 'thecenterfrequency-of the 'h-igh bandcloselyapproaches one-quarter wavelengtl r at i "the low-- band frequencies, particularly at the frequencies near the upper edge of thelo'w bandfi-tleas-t some of the low-band channelswilli therefor'e', see a low-impedance one-quarter wavelength open line when lookin at the highmand dipole from thetermina'ls of the low-band sip-01a Ithas been found, experimentally, that the low band channel which 'is attenuated-the mostisatli-att channel whose one=quarter wavelength equals the length of thestub plusthe length of-one'arm'of the high-band dipole. The addition-of the" small loop inductor across the terminals of the'high- 'band dip'ole', as "proposed 'bythe presentinvention, effectively changesthe impedance-seen by the low-band channels from a low-impedance one-quarterwa'velengtlr open li 'ne to arhigh-"impedanc'e one-quarter Wavelength shorted 'lin'e, thus improving very substantially the low baml channels. To avoid attenuating the highsband channels, the loop inductor is made Iargeenough to present a reasonably hignimpedance' (about '250' ohms) to the high-band freque'ncies as seen "from thelterminals o'f the'loop. Thus, the highband channels are not adversely afiectedlb the addition. of the loop inductor. 7
It is a primary obj ect of the present invention to provide -fora television receiverirequired to receive signals in two non-continuous high-frequency I bands, an antenna assembly-of relatively simple construction capable nevertheless of .op-
eratingas- -efectively as the more complexassembly :of a plurality of vindividual dipoles :each
naturally resonant .to' on'eaoiV.the:.channels in- "valved.
transmission" line connecting both dipoles to television receiver.
These and other objects, advantages and teatures of the present-invention 'will'be best'under- 'stood from aconsideration of the following ,de-
tailed description and accompanying drawing wherein: 1
Figure shows the loop inductor of the present invention incorporated into an antenna assembly comprising a plain high-band dipole-and a plain low-band dipole mounted on a common mast, one
above the" other; V
"Figure 2 *SHOWS"th loll mdufiflfof the present invention incorporated into an antenna assembly 4 ing one-quarter wavelength at one of the mid low-band frequencies.
I have found that the addition of the loop inductor I1 to the antenna assembly shown in Figure 2 effects a very-material improvement in the operating efficiency of the antenna assembly, particularly at the low-band frequencies.
In'Figure' 4, the loop inductorl! is shown em- 'ployed in an antenna assembly in which high- Referring now to Figure 1,--the antenna 'as-' sembly there shown includesa high-band dipole l mounted at or near the top of mast I l, a lowband dipole 12 mounted on mas-t ll below the.
high-band dipole 10, a stud H interconnecting the terminals of the high-band and low-band dipoles, and a transmission line extending from the terminalsof the low-band dipole [2 to the television receiver (not shown).
-with respect to the high-hand frequencies.
Transmission line l5, which extends from the terminals of low-band dipole l2 to the television receiver (not shown), is conventionally a length of parallel-wire or twin-lead having a characteristic impedance of 300 ohms.
In accordance with'my invention, a small inductor 11 of predetermined configuration anddimensions is connected across the terminals of high-band dipole I0 in the manner shown in Figure 1; ,In the preferred embodiment, inductor ll comprises a C-shaped length of conductive material terminating at theends in lugs l8, l9, as clearly shown inrFigure 6. While the inductor, may be formed of any material having good conductive' properties, it is preferably formed of aluminum wire having a diameter of the order of one-eighth inch. The diameter of the C-shaped loop is-about three and one-quarter inches, which is equivalent to about one-eighteenth wavelength at the center-frequency of the high band, and the total length of the'inductor, from lug center to lug center is'about nine and one-half inches, which is equivalent to about one-sixth wavelength-at the center-frequency of the high band.
The inductor is very readily installed, as by means of a couple 0fb0lts and nuts, and is sufiiciently. rigid towithstand bending by the Wind.
In Figure 2, the high-band dipole l0 and lowband dipole H! are secured to a spacer bar. and
disposed in a common horizontal plane. The two dipoles are separated in ,space byone-quarter wavelength at the center-frequency of the high band in order that'low-band dipole 12 may function as. a reflector for high-band dipole. l0. Stub 14, however, has the same length as it has in Figure 1, namely, one-half wavelength at the centerfrequency of the high band. Thus, low-band dipole l2 is connected at a'voltage node with respect to high-band frequencies. The (ii-shaped loop inductor l 'I' is connected across the terminal -of high band dipolelfl, in the same manner as in Figure 1. A reflector bar 21-is provided for i l wr a d p e lLthesnac e th wee v low-band channels.
'band dipole l0 and low-band dipole l2 are each provided with a reflector, identified by numerals 40 and 42 respectively. Stub M has a length equivalent to one-half wavelength at the centerfrequency of the high band, as in Figures 1 and 2.
In Figure 5, afolded dipole 50 is substituted for the plain high-band dipole l0 shown in Figure 4.
In Figure 3 I have plotted a graph to show the relative effectiveness of my improved antenna assembly. In Figure 3, one hundred per cent efliciency corresponds to the results obtained from a folded dipole cut to proper length for the particular channel. The curves A correspond to the results obtained'from an antenna assembly similar to that shown in Figure 1 comprising a plain high-band dipole, a loop inductor connected across the terminals of the high-band dipole, a plain low-band dipole, a stub (having a length equivalent to one-half wavelength at the mid high-band frequency) interconnecting the highband and low-band-dipoles, and a single twinlead transmission line. The curves B correspond to the results obtained from an antenna assembly similar to that shown in Figure-4, i. e. having a high-band reflector and a low band reflector (in addition to components similar to those just described in connection with Figure 1).
It will beobserved from the curves shown in Figure 3 that the operating efficiencies of my improved antenna assemblies compare very favorably with, those of an assembly wherein an individual folded dipole isprovided for each channel. If, however, the O-shaped loop inductor is removed, the efficiencyof the two-band dipole antenna assembly drops very materially at the It will also be observed from curves A and B of Figure ;3 that the response of my improved antenna assembly (both with and without reflectors) is ,fairly flat over the entire range of lowband; and high-band frequencies. The flatness of the responseover the low band was obtained by cutting the low-band dipole to channel No.3 after determin g that stub l4 and loop inductor I! were together. equivalent to a one-quarter wavelength closed line at channel No. 5. By so doing, the flatnessof the response over the, lowband frequencies was improved over that which would have been obtained had the low-band dipole been cut to the same frequency with respect to which stub l4v andinductor l1 represented a one-quarter wavelength closed line.
Having described-my invention, I claim:
A two-barid'high-frequency antenna assembly comprising: a first dipole naturally resonant-at a frequency substantially midway between the end frequencies of the high band; a second dipole naturally resonant at a. frequency about midway between'the low-band center-frequency and the lower .endefrequency of the low band; a stub inond dipoles, said stub having a selected'length equal to one-halfwavelength at the center-frequency of the high; band, which is also about one- '75' quarterwavelengthnat a. frequency near'the up- 5 per end of the low band; a common transmission line connecting both said dipoles to signal utilization means, said transmission line being connected to the terminals of said second dipole di rectly and to the terminals of said first dipole by way of said stub; and an inductor connected across the terminals of said first dipole, said inductor comprising a C-shaped loop of mechanically rigid conductive material having a loop diameter of approximately one-eighteenth wavelength at the center-frequency of the high band and a conductor length of approximately onesixth wavelength at the center-frequency of the high band, said C-shaped loop inductor and said stub together being equivalent to a one-quarter 6 wavelength shorted line at a low-band frequency about midway between the low-band center frequency and the upper end-frequency of the low band.
JOHN PAUL JONES. JR.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 2,474,480 Kearse June 28, 1949 2,510,010 Callaghan May 30, 1950 15 2,511,574 Finneburgh June 11, 1950
US136548A 1950-01-03 1950-01-03 Television antenna assembly Expired - Lifetime US2582634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US136548A US2582634A (en) 1950-01-03 1950-01-03 Television antenna assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US136548A US2582634A (en) 1950-01-03 1950-01-03 Television antenna assembly

Publications (1)

Publication Number Publication Date
US2582634A true US2582634A (en) 1952-01-15

Family

ID=22473316

Family Applications (1)

Application Number Title Priority Date Filing Date
US136548A Expired - Lifetime US2582634A (en) 1950-01-03 1950-01-03 Television antenna assembly

Country Status (1)

Country Link
US (1) US2582634A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2608657A (en) * 1950-04-14 1952-08-26 Spirt Television antenna
US2688083A (en) * 1950-09-01 1954-08-31 Joseph N Marks Multifrequency antenna
US3017632A (en) * 1957-06-07 1962-01-16 Josep Gustave Jean Henri Aerials for receiving television and modulated frequency broadcast signals
US20080061211A1 (en) * 2006-09-07 2008-03-13 Madsen Paul C Versatile pole support, system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2474480A (en) * 1948-05-18 1949-06-28 American Phenclic Corp Antenna system
US2510010A (en) * 1948-06-05 1950-05-30 Rca Corp High-frequency antenna system
US2511574A (en) * 1949-09-03 1950-06-13 Gabriel Co Antenna circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2474480A (en) * 1948-05-18 1949-06-28 American Phenclic Corp Antenna system
US2510010A (en) * 1948-06-05 1950-05-30 Rca Corp High-frequency antenna system
US2511574A (en) * 1949-09-03 1950-06-13 Gabriel Co Antenna circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2608657A (en) * 1950-04-14 1952-08-26 Spirt Television antenna
US2688083A (en) * 1950-09-01 1954-08-31 Joseph N Marks Multifrequency antenna
US3017632A (en) * 1957-06-07 1962-01-16 Josep Gustave Jean Henri Aerials for receiving television and modulated frequency broadcast signals
US20080061211A1 (en) * 2006-09-07 2008-03-13 Madsen Paul C Versatile pole support, system and method

Similar Documents

Publication Publication Date Title
US3721990A (en) Physically small combined loop and dipole all channel television antenna system
US2507528A (en) Antenna
USRE23273E (en) Antenna system
GB1446999A (en) Radio antenna systems
US2417793A (en) Antenna
US2648768A (en) Dipole antenna
GB1343498A (en) Multifrequency antenna system
US2582634A (en) Television antenna assembly
US2715184A (en) Aerials
US2611865A (en) Transversely gapped cylindrical antenna
US2580798A (en) Broad-band antenna system
US3761933A (en) Loop antenna with distributed impedance near the terminating gap
US2755465A (en) Aerials
US2255520A (en) Directional antenna system
US3092835A (en) Multi-band resonant v antenna
US3396399A (en) Ultra-high frequency fishbone type television antenna
USRE23960E (en) lorusso
US2691730A (en) Wide band antenna
US3371348A (en) Dual band dipole antenna with collinear director
US3487415A (en) Combination uhf-vhf television receiving antenna
US2543085A (en) Wide frequency band antenna
US2640933A (en) Dual range antenna
US3428923A (en) Broadband choke for antenna structure
US2886813A (en) Directional antenna
US3277491A (en) Multiband television antenna with multiband parasites