US2470965A - Manufacture of grease - Google Patents

Manufacture of grease Download PDF

Info

Publication number
US2470965A
US2470965A US722846A US72284647A US2470965A US 2470965 A US2470965 A US 2470965A US 722846 A US722846 A US 722846A US 72284647 A US72284647 A US 72284647A US 2470965 A US2470965 A US 2470965A
Authority
US
United States
Prior art keywords
grease
cooling
greases
cooled
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US722846A
Inventor
Harold A Woods
Wallace J Yates
Klingen Leendert
Robert C Barton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Development Co
Original Assignee
Shell Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Development Co filed Critical Shell Development Co
Priority to US722846A priority Critical patent/US2470965A/en
Priority to GB1635/48A priority patent/GB654084A/en
Application granted granted Critical
Publication of US2470965A publication Critical patent/US2470965A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M5/00Solid or semi-solid compositions containing as the essential lubricating ingredient mineral lubricating oils or fatty oils and their use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/20Natural rubber; Natural resins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/18Tall oil acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/20Rosin acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • C10M2209/062Vinyl esters of saturated carboxylic or carbonic acids, e.g. vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/082Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/024Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/04Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
    • C10M2211/044Acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/08Halogenated waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/067Polyaryl amine alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/064Thiourea type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/083Dibenzyl sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/086Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing sulfur atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/04Oxidation, e.g. ozonisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • This invention relates to a method of preparing greases. More particularly, this invention pertains to a novel process of making alkali and alkaline earth metal soap greases and to a new and novel method of statically cooling them in an enclosed system so as to obtain a product having a stable, smooth, buttery, homogeneous texture and consistency.
  • this invention pertains to a novel method of statically cooling alkali and alkaline earth metal soap greases in which soap is dissolved in mineral and/ or synthetic oil type bases in a plurality of elongated tubular Zones of desired diameter and length so as to cool statically said greases at a suiflciently rapid and uniform rate, thereby obtaining products having improved stability, consistency and texture.
  • greases can be cooled in enclosed vessels of restricted cross-section oi not more than about 4 inches into which grease can be injected.
  • This restricted space of the vessei can be of any convenient shape such as annular or rectangular, but should be of sufficient size so as to accommodate the volume of the hot greases entering therein.
  • the cross-section into which the hot grease is injected is of restricted diameter or width in order to maintain efficient heat transfer so as to cool the grease rapidly and uniformly.
  • Lubricating greases of the type under consideration comprise mainly mixtures of oil and soap employed in suitable proportions, said mixtures on being heated to elevated temperatures so as to dissolve the soap in the oil form a homogeneous solution which when properly cooled forms greases.
  • Factors which control and govern the structure, consistency and texture of grease products include: the type and amount of soap used, the kind of oil employed, presence or absence of llers and other additives, and, of major importance, the method and conditions under which the greases are cooled. Proper and uniform cooling of greases from a molten state 2 otherwise a coarse, unstable, grainy or brous grease is obtained.
  • One method of cooling a grease statically is to allow it to cool in a kettle having a cooling jacket around it through which air, water, or any other cooling medium can circulate and cool the kettle. In most cases this type of cooling eiiected in the same kettle used to compound the grease. However, the hot fluid grease can be transferred to a specially equipped kettle for cooling and a new batch of oil and soap can be added to the first kettle so as to have substantially an uninterrupted process for making grease. Still another method of cooling grease is to pour the hot grease directly into shipping or storage containers where they are allowed to cool. An improved method of cooling grease is to pour it into shallow pans or trays while in a hot fluid state and allow it to remain and cool to desired temperature. v
  • the pan or tray cooling at present is the most desirable method of cooling greases because the trays are not of great depth.
  • it isdiincult to prevent a crust from forming at the surface which acts as a 3 heat insulator, inhibiting further rapidand uniform cooling of the grease.
  • cooling greases by this method is a re hazard, particularly when the grease is poured into the pans at elevated temperatures and the oil employed in' making the grease has a low flash point.
  • this invention comprises a method of making alkali and alkaline earth metal soap greases and thereafter rapidly cooling them by disposing them preferably in enclosed relatively narrow elongated tubes having controlled heat transfer.
  • the length ofthe tubes can be varied and is not a limitation; but the diameter should not exceed 4 inches and can vary from around about 1/4 to not more than about 4 inches. In most cases it is preferable to use tubes havinga die ameter of around about 21/2 to 31/2 inches because of the ease of filling and removing greases from such size tubes and because tubes of this size provide a sufficient heat transfer rate.
  • the tubes or elongated grease coolers can be made of iron, steel, aluminum or alloys thereof or any material which provides suflicient heat transfer and which has no adverse catalytic effect upon the grease.
  • the tubes can be cooled by circulating around the tubes air, water, brine or other cooling medium.
  • the time required for .cooling greases of the type and method under consideration generally depends upon the material from which the tubes are made, as well 4as-the cooling medium eme ployed. Usually it takes from a fraction of an hour to about 10 vhours for a grease to cool by the method of this invention.
  • the preferred cooling time in 1A, to 3%/2 inch steel tube is between about 1A; to 3 hours for lithium soap grease.
  • cooling greases by this method eliminates the danger of contamination and oxidation.
  • the alkali and alkaline earth soaps used in making greases may be made by conventional methods, e. g. by* saponii'lcation of fats, fatty acids and the like with alkali and alkaline earth oxides or hydroxides of sodium, lithium, potassium, rubidium and cesium, beryllium, magnesium, calcium, strontium and barium, using one or several of the metals.
  • the fatty materials used can be tallow, lard,- horse fat, fatty acids derived from vegetable oils such as castor oil, cotton-seed oil, rape oil, soya bean oil. corn oil and may be in hydrogenated or non-hydrogenated form.
  • Fish oil and hydrogenated fish 'oil fatty acids, tall oil fatty acids, naphthenic acids, rosin oils synthetic fatty-acids., and synthetic acids produced by oxidizing paraiiin waxes also can be used as well as free fatty acids such as lauric, myristic, palmitic, stearic, arachic, behenic, oleic, ricinoleic, hydroxy stearic and the like.
  • mineral oils of light, medium and heavy lubricating oil stocks derived from paranic, naphthenic or mixed crudes can be used as well asr synthetic lubricating stocks such as produced by polymerizing oleflnic materials in presence of Friedel-Craft catalyst, polymerizing alkylene oxides in presence of iodine, hydriodic acid and the like, Voltolizating mixtures of fixed and mineral oils, and those producedv from alkyl esters or organic acids,ve. g. 2-ethy1 hexyl sebacate, ethyl ricinoleate, dioctyl phthalate and the like.
  • the temperature to which oil and soap is heated to form a homogenous grease usually ranges from around about 350 to 500 F.
  • a preferred temperature range when making lithium soap grease is around about 400 to 425 F.
  • the heating and mixing can be done in a heat* ing Votator or any other suitable piece of equipment.
  • the hot liquid grease according to this invention goes directly to elongated cooling tubes Without lany intermediate treatment.
  • the grease is cooled there under static conditions to a desired gelation state and thereafter forced out of the cooling tubes into a homogenizer where it is worked into a homogeneous mass and thereafter filled or packaged in suitable containers.
  • FIG. 1 shows a slurry tank i into which is introduced calculated proportions of alkali or alkaline ⁇ earth metal soap and mineral oil through conduit 2. If other additives such as oxidation and corrosion inhibitors, anti-bleeding agents, oiliness agents, llers and the like are added to the grease they can be introduced into the slurry tank I through conduit 3 at a convenient time.
  • the oil and soap is heated to between about 135 to 175 F.
  • Figs. 2 and 4 can be substituted for the cooling tubes III shown in flow diagram 1.
  • Fig. 2 a transverse cross section taken on the line 3--3 thereof being shown in Fig. 3, the hot grease from "Votator 1 is inserted into the area marked 23 and is cooled by suitable means by space marked 22 and 2
  • Fig. 4 may be a rectangular shaped body of restricted thickness but of relatively great length and height so that a large volume of grease can be injected into it and thereby eliminate the necessity of a large number of tubes as noted by iii in Fig. 1.
  • the grease is kept in them under static conditions until the gre-ase has cooled down sufhciently, to form a pronounced gel structure.
  • the grease is then discharged through conduit I8 into a production or storage tank I2.
  • There the grease is accumulated and then conducted through I9 into a homogenizer I3 where it is worked into a homogeneous mass at a temperature ranging from room temperature to around about i-150 F.
  • the grease is then discharged through conduit 2d to suitable packing containers 26 ready for distribution.
  • the grease in its production stages is conducted to or by-passed around certain equipment by means of conduits as noted in Fig. 1 each having attached thereto control valves I5'.
  • composition of grease produced and cooled by this method can be modied and varied over. wide limits.4
  • mixture of lithium stearate and alkaline earth naphthenates or other soaps can be used instead of making a straightl lithium stearate grease as disclosed above.
  • mixture of diierent metals as well as their acid radicals can be used in compounding grease.
  • a grease comprising sodium stearate, calcium naphthenate and lithium stearate can be made and then statically cooled by the method described.
  • antioxidants which are effective with grease composition of the type disclosed are: N-alkyl para phenylene diamine and condensed polynuclear aromatic mono-amines.
  • Such inhibitors are N-butyl paraphenylene diamine, N-N-dibutyl para-phenylene diamine, etc.
  • oxidation inhibitors are alpha or beta naphthylamine, phenyl-alpha or beta naphthylamine, alpha-alpha, beta-beta, or alpha-beta dinaphthylamine, diphenylamine, tetra-methyl diamino diphenyl methane, petroleum alkyl phenols, and 2,4-di-tertiary butyl 6-methyl phenol.
  • Corrosion inhibitors which are particularly applicable with compositions of this invention are N-primary amines containing at least 6 and more than 18 carbon atoms in the molecule such as hexylamine, octylamine, decylamine, dodecyl-v amine, octadecylamine, heterocyclic nitrogen containing organic compounds such as alkyl substituted oxazolines and their salts illustrative examples being Alketerge-C and Alketerge-O, manufactured by Commercial Solvents Corp.,
  • Patents 2,372,409 and 2,372,410 are disclosed.
  • Extreme pressure agents can be added to such grease and the preferred comprise esters of phosphorus acids such as triaryl, alkylhydroxy aryl, or aralkyl phosphates, thiophosphates or phosphites, etc., neutral aromatic sulfur compounds such as diaryl suldes and polysuli-ides, e. g. diphenyl sulde, dicresol sulide, dibenzyl sulfide, methyl butyl diphenol sulfide, etc., diphenyl selenide and diselenide: dicresol selenide and polyselenide, etc.: sulfurized fatty oils or esters of fatty acids and monohydric alcohols, e. g.
  • sulfurized long-chain oleiins obtained by dehydrogenation or cracking of wax sulfuriZed-phosphorized fatty oils, acids, esters and ketones, phosphorous acid esters having sulfurized organic radicals, such as esters of phosphoric or phosphorus acids with hydroxy fatty acids: chlorinated hydrocarbons such as chlorinated paraiiins, aromatic hydrocarbons, terpenes. mineral lubricating oil, etc.: or chlorinated ester of fatty acids containing the chlorine in position other than alpha position.
  • anti-bleeding agents such as lithium, calcium and strontium naphthenates, cresol, petroleum cresol and glycerine
  • anti-wear agents such as oilsoluble urea or thio-urea derivates, e.
  • urethanes allophanates, carbazides, carbazones, etc.; or rubber, polyisobutylene, polyvinylesters, etc.; VI improvers such as polyisobutylenes having a molecular weight above about 800, volatilized parain wax, unsaturated polymerized esters of fatty acids and monohydric alcohols, etc.: oiliness agents such as stearic and oleic acids and pour point depressors such as chlorinated naphthalene to further lower the pour point of the lubricant.
  • VI improvers such as polyisobutylenes having a molecular weight above about 800, volatilized parain wax, unsaturated polymerized esters of fatty acids and monohydric alcohols, etc.
  • oiliness agents such as stearic and oleic acids
  • pour point depressors such as chlorinated naphthalene to further lower the pour point of the lubricant.
  • the amount 'of the above additives can be added to grease composition of this invention inV aromi-id about 01.01% to less than 110% by Weight, and preferably 0.1 to 5.0% by weight.
  • Greases prepared and lcooled by the methoddescribed have unusually smoothv textures, unifornlr consistency and are extremely stable over wide temperature ranges and for long periods. They are particularly ⁇ applicable for lubricating ball bearings used in aircrafts and various' mechanisms which required lubrication at teinper'atures ranging lfrom below -80 to about 350 F. for long periods.
  • tubes having a diameter of between about 3 to 31/2 inches and said grease being kept in said tubes and cooled statically therein to a temperature of. around about 150 Fl, and passing it to a homogenizer for' working to a desired tcxziuxrel and uniform consistency.
  • a grease comprising a major portion of mineral lubricating oil and be tween about 7 to 10% by 'weight lithium stearato, between about 0.1 to 5.0% by weight calcium naphthenate and between about 0.1 to 5.01% by weight of a corrosion inhibitor selected from. the class lconsisting of hexylamine, octylamine, dec'- ylaminei, dodecylamine, octadecylamin'e "and alkyl substituted oxazolines, from a temperature of 1:425" F. by forcing it from an enclosed heating and. mixing heat transfer mechanism directly into a plurality of air cooled narrow elongated. steel tubes having a diameter off.
  • a process of preparing lithium soap grease comprising a major proportion of mineral lubricatlngfoiif and a minor amount of lithium stearato, sufficient to impart a pronounced gel structure to said: grease when uniorrnlyV cooled, the method of 'rapidly and uniformly cooling said grease which comprises, forcing the' grease from an enclosed heating and mixing heat transfer mechamsm while inv a liquid state at a temperature of from about 100 up to about. 425 F.. and higher directly into a plurality of air cooled narrow elongated steel tubes having. a diameter of about 3 up to about 31/2r inches, said. grease being kept in said tubes and cooled statically therein substantially at a uniform andl uninterruptedv rate for a period sufficient for the grease to form a pronounced gel structure throughout and have adesiredl texture and. uniform consistency.
  • the method of rapidly and uniformly cooling such grease which comprises forcing the grease at a temperature from between about 400 up to about 500 F. from an enclosed heating and mixing heat transfer mechanism directly into a plurality of cooled narrow elongated steel tubes ranging in diameter from between about 21/2 to not more than about 31/2 inches, said grease being kept in said tubes and cooled statically therein substantially at a uniform and uninterrupted rate for a period suicient for the grease to form a pronounced gel structure throughout and have a desired texture and uniform consistency.
  • the method of rapidly and uniformly cooling such grease which comprises forcing the hot liquid state grease from an enclosed heating and mixing zone directly into a plurality of narrow elongated tubular zones ranging in diameter from between about 21/2 inches to not more than about 31/2 inches, each tube allowing for good heat transfer and cooled by materials from the class consisting of air, water, and brine, said grease being kept in said tubular zones and cooled statically therein substantially at a uniform and uninterrupted rate for a period suflicient for the grease to form a pronounced gel structure throughout and have a desired texture and uniform consistency.
  • the method of rapidly and uniformly cooling the hot grease which comprises forcing the hot liquid state grease from an enclosed heating and mixing zone directly into a plurality of narrow elongated tubular zones ranging in diameter from between about 1/4 to not more than about 4 inches, each tubular zone allowing for good heat transfer and cooled by suitable means, said grease being kept in said tubular zones and cooled statically therein substantially at a uniform and uninterrupted rate for a period suflcient for the grease to form a pronounced gel structure throughout and have a desired tex- ⁇ ture and uniform consistency.

Description

May 24, 1949. H, A, WOODS E1'- AL 2,470,965
\ MANUFACTURE oF GREASE` v Filed Jan. 18, 1947 Patented May 24, T949 UNITED STATES PATENT OFFICE MANUFACTURE F GREASE Company, San Francisc of Delaware o, Calif., a corporation Application ll'anuary 18, 1947, Serial No. 722,846
16 Claims.
This invention relates to a method of preparing greases. More particularly, this invention pertains to a novel process of making alkali and alkaline earth metal soap greases and to a new and novel method of statically cooling them in an enclosed system so as to obtain a product having a stable, smooth, buttery, homogeneous texture and consistency. In one of its specific embodiments, this invention pertains to a novel method of statically cooling alkali and alkaline earth metal soap greases in which soap is dissolved in mineral and/ or synthetic oil type bases in a plurality of elongated tubular Zones of desired diameter and length so as to cool statically said greases at a suiflciently rapid and uniform rate, thereby obtaining products having improved stability, consistency and texture. Instead of cooling greases in a plurality of elongated tubular zones or tubes, greases can be cooled in enclosed vessels of restricted cross-section oi not more than about 4 inches into which grease can be injected. This restricted space of the vessei can be of any convenient shape such as annular or rectangular, but should be of sufficient size so as to accommodate the volume of the hot greases entering therein. The cross-section into which the hot grease is injected is of restricted diameter or width in order to maintain efficient heat transfer so as to cool the grease rapidly and uniformly.
Various factors can and do influence final structure, consistency and texture of greases during manufacture; of these, the cooling is often most influential. The physical properties of greases made under identical conditions can be altered to a marked degree, depending on whether the cooling is ellected under agitation or under static conditions, or even when using different means of statically cooling these greases. The method and means employed in cooling greases, particularly greases of the class referred to above, to obtain an improved product, is not a simple matter, but is a fine art requiring great skill.
Lubricating greases of the type under consideration comprise mainly mixtures of oil and soap employed in suitable proportions, said mixtures on being heated to elevated temperatures so as to dissolve the soap in the oil form a homogeneous solution which when properly cooled forms greases. Factors which control and govern the structure, consistency and texture of grease products, include: the type and amount of soap used, the kind of oil employed, presence or absence of llers and other additives, and, of major importance, the method and conditions under which the greases are cooled. Proper and uniform cooling of greases from a molten state 2 otherwise a coarse, unstable, grainy or brous grease is obtained.
Present methods for cooling greases, are: (1) dynamic methods which include kettle and votator cooling and (2) static methods such as pan cooling and the like. Both of these methods for is of major importance and is essential for procooling greases under consideration are not particularly applicable since in practice it has been found that the resultant products are inferior in regard to both structure and stability.
One method of cooling a grease statically is to allow it to cool in a kettle having a cooling jacket around it through which air, water, or any other cooling medium can circulate and cool the kettle. In most cases this type of cooling eiiected in the same kettle used to compound the grease. However, the hot fluid grease can be transferred to a specially equipped kettle for cooling and a new batch of oil and soap can be added to the first kettle so as to have substantially an uninterrupted process for making grease. Still another method of cooling grease is to pour the hot grease directly into shipping or storage containers where they are allowed to cool. An improved method of cooling grease is to pour it into shallow pans or trays while in a hot fluid state and allow it to remain and cool to desired temperature. v
All of these methods of cooling have disadvantages when applied to lubricating greases which are cooled from a molten state. Greases of this type on cooling form what is known as false bodies and tend to crumble Aand disintegrate under pressure rather than retain a homogeneous structure. Since this gel-like formation in such greases cannot be avoided generally, it is at times necessary to homogenize such greases in order to break down the stiff gel structure. This results in a grease of softer but smoother and more uniform consistency.
In the cases of greases having a pronounced gel structure, it is essential and important that the gel structure bev uniformand stable with regard to oilseparation. To accomplish this, greases of this type must be cooled rapidly, at a controlled rate under static conditions. The kettle, tray container or any other known method of cooling these greases and particularly lithium soap greases usually result in undesirable products due to the factthatthey are poor in quality andappearance. This is due to the non-uniform heat transfer during cooling of the grease, which results in a stili, highly gelled surface while the center and other parts of the grease are soft, semi-liquid or even liquid.
Of the three above mentioned methods, the pan or tray cooling at present is the most desirable method of cooling greases because the trays are not of great depth. However, even with shallow pans it isdiincult to prevent a crust from forming at the surface which acts as a 3 heat insulator, inhibiting further rapidand uniform cooling of the grease. In addition, cooling greases by this method is a re hazard, particularly when the grease is poured into the pans at elevated temperatures and the oil employed in' making the grease has a low flash point.
It is an object of this invention to provide a method of quickly, simply, safely and economi cally making and cooling alkali and alkaline earth metal soap greases under static conditions. Another object of this invention is to provide a method of rapidly cooling alkali and alkaline earth metal soap greases in enclosed systems which result in a product' "of uniform consistency. Furthermore it is an object of this invention to statically cool greases in elongated tubular enclosed systems thus alleviating iire hazard. It is also an` object of this invention to' provide ra method of making and thereafter rapidly cooling under static conditions greases, particularly lithium soap Agreases, in narrow elongated tubes having uniformly controlled heat transfer so as to obtain greases of uniform consistency, desired texture, and good stability.
Broadlythis invention comprises a method of making alkali and alkaline earth metal soap greases and thereafter rapidly cooling them by disposing them preferably in enclosed relatively narrow elongated tubes having controlled heat transfer. The length ofthe tubes can be varied and is not a limitation; but the diameter should not exceed 4 inches and can vary from around about 1/4 to not more than about 4 inches. In most cases it is preferable to use tubes havinga die ameter of around about 21/2 to 31/2 inches because of the ease of filling and removing greases from such size tubes and because tubes of this size provide a sufficient heat transfer rate. The tubes or elongated grease coolers can be made of iron, steel, aluminum or alloys thereof or any material which provides suflicient heat transfer and which has no adverse catalytic effect upon the grease. The tubes can be cooled by circulating around the tubes air, water, brine or other cooling medium.
The time required for .cooling greases of the type and method under considerationgenerally depends upon the material from which the tubes are made, as well 4as-the cooling medium eme ployed. Usually it takes from a fraction of an hour to about 10 vhours for a grease to cool by the method of this invention. The preferred cooling time in 1A, to 3%/2 inch steel tube is between about 1A; to 3 hours for lithium soap grease. In addition to being more convenient and safer, cooling greases by this method eliminates the danger of contamination and oxidation.
The alkali and alkaline earth soaps used in making greases may be made by conventional methods, e. g. by* saponii'lcation of fats, fatty acids and the like with alkali and alkaline earth oxides or hydroxides of sodium, lithium, potassium, rubidium and cesium, beryllium, magnesium, calcium, strontium and barium, using one or several of the metals. Specieally the fatty materials used can be tallow, lard,- horse fat, fatty acids derived from vegetable oils such as castor oil, cotton-seed oil, rape oil, soya bean oil. corn oil and may be in hydrogenated or non-hydrogenated form. Fish oil and hydrogenated fish 'oil fatty acids, tall oil fatty acids, naphthenic acids, rosin oils synthetic fatty-acids., and synthetic acids produced by oxidizing paraiiin waxes also can be used as well as free fatty acids such as lauric, myristic, palmitic, stearic, arachic, behenic, oleic, ricinoleic, hydroxy stearic and the like.
It has been observed that the" type of base oil used has a marked influence upon the physical properties of greases. When compounding lithum soap grease it is preferable to use naphthenic type oils although other type oils can be used, since grease thus `compounded is less susceptible to bleeding and has improved temperature consistency characteristics. With other alkali and/or alkaline earth soaps, mineral oils of light, medium and heavy lubricating oil stocks derived from paranic, naphthenic or mixed crudes can be used as well asr synthetic lubricating stocks such as produced by polymerizing oleflnic materials in presence of Friedel-Craft catalyst, polymerizing alkylene oxides in presence of iodine, hydriodic acid and the like, Voltolizating mixtures of fixed and mineral oils, and those producedv from alkyl esters or organic acids,ve. g. 2-ethy1 hexyl sebacate, ethyl ricinoleate, dioctyl phthalate and the like.
The temperature to which oil and soap is heated to form a homogenous grease usually ranges from around about 350 to 500 F. A preferred temperature range when making lithium soap grease is around about 400 to 425 F.
The heating and mixing can be done in a heat* ing Votator or any other suitable piece of equipment. From there the hot liquid grease according to this invention goes directly to elongated cooling tubes Without lany intermediate treatment. The grease is cooled there under static conditions to a desired gelation state and thereafter forced out of the cooling tubes into a homogenizer where it is worked into a homogeneous mass and thereafter filled or packaged in suitable containers.
In order to more clearly set forth the invention reference is now made to the accompanying drawing, which is a iiow diagram illustrating a method of producing and subsequently cooling alkali soap greases by means of this invention. It is understood that modification as to equipment, its arrangement, type 4andkind of materials and their proportions can be resorted to without departing from the spirit of the invention as presented in the subjoined claims.
Referring to the flow diagram, it shows a slurry tank i into which is introduced calculated proportions of alkali or alkaline `earth metal soap and mineral oil through conduit 2. If other additives such as oxidation and corrosion inhibitors, anti-bleeding agents, oiliness agents, llers and the like are added to the grease they can be introduced into the slurry tank I through conduit 3 at a convenient time. The oil and soap is heated to between about 135 to 175 F.
and preferably i150 F. and then led through conduit 4 to conduit I4 and intofa heat exchanger 5. From the heat exchanger the mixture goes to a slurry homogenizer 6Y Where it is worked at a temperature of around about i200" F. The mixture can thengbe returned to the slurry tank I through lines IG and l5, for further working or by-passed through line I6 through pump 8 and into a heating Votator 7, anenclosed heat transfer mechanism manufactured by the Girdler Corporation, Votator Division, Louisville, Kentucky, and described in their bulir letin entitled The Votator. I f the mixture is returned to slurry 'tank l for further working it is subsequently discharged from the tank into line 4, through a booster pump 9 on through line 25 and pump 8 and into the heating Votator 1. The grease temperature in the heat Votator" 'l is kept at around about 400 to 500 F. and preferably around about 400 to 430" F. The utilization of a heat Votator for making grease is of considerable advantage over the open kettle method, since the Votator is entirely closed eliminating the danger of oil flashing and causing fire, The hot liquid grease from the "Votator is led along conduit I1 directly into a plurality of elongated cooling tubes I each tube having attached thereto control valve II. If desired other convenient enclosed shaped cooling vessels or containers 2| and 24 as shown in Figs. 2 and 4 can be substituted for the cooling tubes III shown in flow diagram 1. In Fig. 2, a transverse cross section taken on the line 3--3 thereof being shown in Fig. 3, the hot grease from "Votator 1 is inserted into the area marked 23 and is cooled by suitable means by space marked 22 and 2|. Fig. 4 may be a rectangular shaped body of restricted thickness but of relatively great length and height so that a large volume of grease can be injected into it and thereby eliminate the necessity of a large number of tubes as noted by iii in Fig. 1. If cooling tubes are used the grease is kept in them under static conditions until the gre-ase has cooled down sufhciently, to form a pronounced gel structure. The grease is then discharged through conduit I8 into a production or storage tank I2. There the grease is accumulated and then conducted through I9 into a homogenizer I3 where it is worked into a homogeneous mass at a temperature ranging from room temperature to around about i-150 F. The grease is then discharged through conduit 2d to suitable packing containers 26 ready for distribution. The grease in its production stages is conducted to or by-passed around certain equipment by means of conduits as noted in Fig. 1 each having attached thereto control valves I5'.
To illustrate the applicability of this cooling method for making grease, a specific example, namely, the method of making and cooling a lithium soap grease will be herein fully describedl following the flow diagram.
Around about 710% by weight of lithium stearate and a suitable amount of mineral lubricating oil, preferably naphthenic base oil are introduced into slurry tank I and agitated at a temperature of around about i150 F. The oilsoap mixture is then led through conduit 4 and Eli through heat exchanger and into slurry homogenizer where the mixture is homogenized at a temperature of around about 200 F. The composition is then conducted through lines I6 and i5 back to slurry tank I for further agitation and finally discharged at a temperature of about 150 F. through line 4 to pumps 9 and 8 and into heating Votator 7. There the oil-soap mixture is heated to about @125 F. and then discharged directly into a plurality of steel tubes Ill each having a diameter of about 3 inches and a length of about 40 feet. The grease is cooled statically in these tubes down to about 150 F. and forced out of them into a production or storage tank I 2. When suicient grease is accumulated in tank I2 it is conducted into a homogenizer I3 for working into a homogeneous consistency and texture, after which it is packed in containers 26. Grease produced by this method frequently requires less soap and has a consistency, texture and stability which is superior to any known grease produced and cooled by present known methods.
The composition of grease produced and cooled by this method can be modied and varied over. wide limits.4 Thus instead of making a straightl lithium stearate grease as disclosed above, mixture of lithium stearate and alkaline earth naphthenates or other soaps can be used. Also mixture of diierent metals as well as their acid radicals can be used in compounding grease. Thus a grease comprising sodium stearate, calcium naphthenate and lithium stearate can be made and then statically cooled by the method described.
To stabilize greases of the type described against oxidation it it advisable to add minor amounts of oxidation inhibitors to the grease. Among the antioxidants which are effective with grease composition of the type disclosed are: N-alkyl para phenylene diamine and condensed polynuclear aromatic mono-amines. Such inhibitors are N-butyl paraphenylene diamine, N-N-dibutyl para-phenylene diamine, etc. Also effective as oxidation inhibitors are alpha or beta naphthylamine, phenyl-alpha or beta naphthylamine, alpha-alpha, beta-beta, or alpha-beta dinaphthylamine, diphenylamine, tetra-methyl diamino diphenyl methane, petroleum alkyl phenols, and 2,4-di-tertiary butyl 6-methyl phenol.
Corrosion inhibitors which are particularly applicable with compositions of this invention are N-primary amines containing at least 6 and more than 18 carbon atoms in the molecule such as hexylamine, octylamine, decylamine, dodecyl-v amine, octadecylamine, heterocyclic nitrogen containing organic compounds such as alkyl substituted oxazolines and their salts illustrative examples being Alketerge-C and Alketerge-O, manufactured by Commercial Solvents Corp.,
' which compounds are fully described in U. S.
Patents 2,372,409 and 2,372,410.
Extreme pressure agents can be added to such grease and the preferred comprise esters of phosphorus acids such as triaryl, alkylhydroxy aryl, or aralkyl phosphates, thiophosphates or phosphites, etc., neutral aromatic sulfur compounds such as diaryl suldes and polysuli-ides, e. g. diphenyl sulde, dicresol sulide, dibenzyl sulfide, methyl butyl diphenol sulfide, etc., diphenyl selenide and diselenide: dicresol selenide and polyselenide, etc.: sulfurized fatty oils or esters of fatty acids and monohydric alcohols, e. g. sperm oil, jojoba oil, etc., in which the sulfur is tightly bound: sulfurized long-chain oleiins obtained by dehydrogenation or cracking of wax: sulfuriZed-phosphorized fatty oils, acids, esters and ketones, phosphorous acid esters having sulfurized organic radicals, such as esters of phosphoric or phosphorus acids with hydroxy fatty acids: chlorinated hydrocarbons such as chlorinated paraiiins, aromatic hydrocarbons, terpenes. mineral lubricating oil, etc.: or chlorinated ester of fatty acids containing the chlorine in position other than alpha position.
Additional ingredients which can be added are anti-bleeding agents such as lithium, calcium and strontium naphthenates, cresol, petroleum cresol and glycerine: anti-wear agents such as oilsoluble urea or thio-urea derivates, e. g., urethanes, allophanates, carbazides, carbazones, etc.; or rubber, polyisobutylene, polyvinylesters, etc.; VI improvers such as polyisobutylenes having a molecular weight above about 800, volatilized parain wax, unsaturated polymerized esters of fatty acids and monohydric alcohols, etc.: oiliness agents such as stearic and oleic acids and pour point depressors such as chlorinated naphthalene to further lower the pour point of the lubricant.
The amount 'of the above additives can be added to grease composition of this invention inV aromi-id about 01.01% to less than 110% by Weight, and preferably 0.1 to 5.0% by weight.
Greases prepared and lcooled by the methoddescribed have unusually smoothv textures, unifornlr consistency and are extremely stable over wide temperature ranges and for long periods. They are particularly `applicable for lubricating ball bearings used in aircrafts and various' mechanisms which required lubrication at teinper'atures ranging lfrom below -80 to about 350 F. for long periods.
We claim as our invention:
1. The method of cooling a grease comprising a major portion of mineral lubricating olli and between about 'I to 10% by weight lithium sten rate, between about 0.1. to 5.0% by weight calcium methane, from a temperature of i425 1F. by weight of an oxidation inhibitor selected from 'the'class consisting of N,N dibutylz para phenylene diamine, and tetramethyl diamine diphenyl methane, from a temperature of +425ya lF'. by forcing it from an enclosed heating and mixing. heatl transfer mechanism directly into a plurality of air cooledl narrow elongated steel. tubes having a diameter of between about 3 to 31/2 inches and said grease being kept in said tubes and cooled statically therein to a temperature of. around about 150 Fl, and passing it to a homogenizer for' working to a desired tcxziuxrel and uniform consistency.
2. The method of cooling a grease. comprising a major portion of mineral lubricating oil and be tween about 7 to 10% by 'weight lithium stearato, between about 0.1 to 5.0% by weight calcium naphthenate and between about 0.1 to 5.01% by weight of a corrosion inhibitor selected from. the class lconsisting of hexylamine, octylamine, dec'- ylaminei, dodecylamine, octadecylamin'e "and alkyl substituted oxazolines, from a temperature of 1:425" F. by forcing it from an enclosed heating and. mixing heat transfer mechanism directly into a plurality of air cooled narrow elongated. steel tubes having a diameter off. between about 3` to 3.1/2 inches and said. grease being kept said'tub'es and cooled statically therein to a terne perature of around about 150 F., 'and passing it to a homogenizer for working to a desired. tex@ ture and miiform consistency.
3. The method of cooling a vgrease comprising a major portion of mineral lubricating eiland between about 7 to 10% by weight lithitu-n'` hydroxy stearato, between about 0.1 to"5.0% by weight calcium naphthenate and between about 0.1 to 5.0% by weight of a corrosionv inhibitor selected from the class consisting of hexylamine, octylamine, decylamine, dodecylamine,v octade'c ylarinlne and alkyl substituted oxazolines, from `a temperature of i425 F, by forcing it from an enclosed heating and mixing heat transfer mechanism directly into a plurality oral-rA narrow elongated steel tubes rhaving a 'diameter of between about 3' to 3% inches and said; grease being kept in said. tubes and cooled staticai'ly therein to a temperature of around 150" Ff., and'. passing it to ahomogenizer for Working to 'a desired texture and uniform consistency.
4. The -method of cooling a grease comprising a major portion of mineral lubricating and between about 7 to 10% by Weight lithium palmitate, between about 0,1 to '5.0% by' weight calcium naphthenate and betweenabout 0.1v to 5.0% .by weight of a corrosioninhibitor selected from the class consisting of hexylamine, octyla- PLO' 8 and' ai'ykl. substituted oxazolines, from a temperature'of .Li-425 F; by forcing it from an enclosed'heatmgand mixing; heat transfer mechanisnr directly into a plurality of air cooled narrow elongated steel tubes having a diameter of between. about 3 to inches and said grease being kept in said tubes and cooled statically thereiirtoa temperature of around. about 150 and passing it toy ahomogenizer for working. to
-a desired texture and uniform. consistency.
5. In: a process of preparing lithium soap grease comprising a major proportion of mineral lubricatlngfoiif and a minor amount of lithium stearato, sufficient to impart a pronounced gel structure to said: grease when uniorrnlyV cooled, the method of 'rapidly and uniformly cooling said grease which comprises, forcing the' grease from an enclosed heating and mixing heat transfer mechamsm while inv a liquid state at a temperature of from about 100 up to about. 425 F.. and higher directly into a plurality of air cooled narrow elongated steel tubes having. a diameter of about 3 up to about 31/2r inches, said. grease being kept in said tubes and cooled statically therein substantially at a uniform andl uninterruptedv rate for a period sufficient for the grease to form a pronounced gel structure throughout and have adesiredl texture and. uniform consistency.
d. In a processv of preparing lithium soap grease comprising. a major'proportion of a mixture of mineral lubricating oil and 2ethyl hexyl sebacate and. a minor amount of lithium stearato, suiilcifent to impart a pronounced gel structure to. grease when uniformly cooled', the method of. rapidly and uniformly cooling said grease which-comprises, forcing th-e grease from. an enclosed heating and mixing heat transfer mechanism while in a liquid state at a temperature of from about 100 up to about 425' F. and higher directly `into a plurality of air cooled narrow elongated steel tubes having a diameter of about 3 up to about 31/2 inches, said grease beingv kept in. said tubes and cooled statically therein substantially at a uniform and uniterrupted rate for a period sufiicient for the' greasetoform a pronounced gel structure throughout and have a desirecl and uniform consistency.
7. In aprocess of preparing. lithium soap grease comprising a mador pro-portion of. mineral lubrieating oil and minor amounts` of lithium soap of high molecular weightmonocarboxylicacids and their mixtures., sufiicientto impart a pronounced gelV structure to said grease when cooled, the method of rapidly and uniformly cooling said v grease-,which comprises forcing the grease from an enclosed heating and mixing heat transfer mechanism While in a hot liquid state directly into ia plurality of. air cooled narrow elongated steel tubes ranging in diameter from between about 21/2 to-notmore. than 31/2 inches, said grease being kept in said tubes and cooled statically therein substantially at a uniform and uninterrupted rate for a period suihcent for the grease to form a pronounced gel structure throughout and have.
a desired texture and uniform consistency.
8l Ina processof preparing. barium soap grease, the method of rapidly and uniformly cooling said grease by forcing it from an enclosed heating andmix-ing heat transfer mechanism while ina hot liquid stater directly into ar plurality of air cooled narrow elongated steel tubes having a diameter of from between about 21/2 to not more than 31/2'. inches sai-d grease being kept in said tubes 'and cooled statically therein substantially mine, decyla'ml'ne, dodecylamine, octadecylamine 7o at a uniform and uninterrupted rate for a period 9 sufficient for the grease to form a desired texture and uniform consistency.
9. In a process of preparing sodium soap grease comprising a major proportion of mineral lubrieating oil and a minor amount of sodium soap of high molecular weight monocarboxylic acid, the method of rapidly and uniformly cooling said grease by forcing it from an enclosed heating and mixing heat transfer mechanism while in a hot liquid state, directly into a plurality of air cooled narrow elongated steel tubes having a diameter of from between about 21/2 to not more than 31/2 inches and said grease being kept in said tubes and cooled statically therein substantially at a uniform and uninterrupted rate for a period sumcient for the grease to form a desired texture and uniform consistency.
10. In a process of preparing alkali and alkaline earth soap grease of high molecular weight monocarboxylic acid and their mixtures comprising a d major proportion of mineral lubricating oil and substantially minor amounts of said soap, sunlcient to impart a pronounced gel structure to said. grease on cooling, the method of rapidly and uniformly cooling said grease, which comprises forcing the grease from an enclosed heating and mixing heat transfer mechanism while in a hot liquid state directly into a plurality of air cooled narrow elongated steel tubes ranging in diameter from between about 21/2 to not more than 31/2 inches, said grease being kept in said tubes and cooled statically therein substantially at a uniform and uninterrupted rate for a period sufficient foi` the grease to form a pronounced gel structure throughout and have a desired texture and uniform consistency.
1l. In a process of preparing alkali and alkaline earth soap grease of high molecular weight monocarboxylic acid and their mixtures comprising a major proportion of a suitable organic lubricating base and substantially minor amounts of said soap, sufficient to impart a pronounced gel struc-4 ture to said grease on cooling, the method of rapidly and uniformly cooling said grease, which comprises forcing the grease from an enclosed heating and mixing heat transfer mechanism while in a hot liquid state directly into a plurality of air cooled narrow elongated steel tubes ranging in diameter from between about 21/ to not more than 31/2 inches, said grease being kept in said tubes and cooled statically therein substantially at a uniform and uninterrupted rate for a period sumcient for the grease to form a pronounced gel structure throughout and have a de-A sired texture and uniform consistency.
12. In a process of preparing alkali and alkaline earth soap grease comprising a major proportion of a mixture of mineral oil and Z-ethyl hexyl sebacate as the base and substantially minorl amounts of said soap, sufficient to impart a pro-A nounced gel structure to said grease on cooling, the method of rapidly and uniformly cooling said grease, which comprises forcing said hot liquid state grease from an enclosed heating and mixing zone directly into a plurality of narrow elongated tubular zones ranging in diameter from between about 1/4 to not more than about 4 inches, each tubular zone allowing for good heat transfer and cooled by suitable means, said grease being kept in said tubular zones and cooled statically therein substantially at a uniform and uninterrupted rate for a period suflicient for the grease to form a pronounced gel structure throughout and have a desired and uniform consistency.
13. In a process of preparing alkali and alkaline earth soap grease, the method of rapidly and uniformly cooling such grease, which comprises forcing the grease at a temperature from between about 400 up to about 500 F. from an enclosed heating and mixing heat transfer mechanism directly into a plurality of cooled narrow elongated steel tubes ranging in diameter from between about 21/2 to not more than about 31/2 inches, said grease being kept in said tubes and cooled statically therein substantially at a uniform and uninterrupted rate for a period suicient for the grease to form a pronounced gel structure throughout and have a desired texture and uniform consistency.
14. In a process of preparing alkali and alkaline earth metal soap grease, the method of rapidly and uniformly cooling such grease which comprises forcing the hot liquid state grease from an enclosed heating and mixing zone directly into a plurality of narrow elongated tubular zones ranging in diameter from between about 21/2 inches to not more than about 31/2 inches, each tube allowing for good heat transfer and cooled by materials from the class consisting of air, water, and brine, said grease being kept in said tubular zones and cooled statically therein substantially at a uniform and uninterrupted rate for a period suflicient for the grease to form a pronounced gel structure throughout and have a desired texture and uniform consistency.
15. In a process of preparing alkali and alkaline earth metal soap grease, the method of rapidly and uniformly cooling the hot grease which comprises forcing the hot liquid state grease from an enclosed heating and mixing zone directly into a plurality of narrow elongated tubular zones ranging in diameter from between about 1/4 to not more than about 4 inches, each tubular zone allowing for good heat transfer and cooled by suitable means, said grease being kept in said tubular zones and cooled statically therein substantially at a uniform and uninterrupted rate for a period suflcient for the grease to form a pronounced gel structure throughout and have a desired tex-` ture and uniform consistency.
16. In a process of preparing alkali and alkaline earth metal soap greases, wherein the hot grease is rapidly and uniformly cooled, the improvement which comprises forcing the hot liquid state grease from an enclosed heating and mixing zone directly into a zone of restricted cross-section having a thickness of not more than about 4 inches and cooled by suitable means, said grease being kept in said cooling zone and cooled statically therein substantially at a uniform and uninterrupted rate for a period sucient for the grease to form a pronounced gel structure throughout and have a desired texture and uniform consistency.
HAROLD A. WOODS. WALLACE J. YATES. LEENDERT KLINGEN. ROBERT C. BARTON.
REFERENCES CITED The following references are of record in the le of this patent:
UNITED STATES PATENTS Number Name Date 2,332,202 calkins oct. 19, 1943 2,343,736 Beerbower et al. Mar. 7, 1944 2,394,567 Sproule et al. Feb. 12, 1946 2,417,495 I-Ioulton Mar. 18, 1947
US722846A 1947-01-18 1947-01-18 Manufacture of grease Expired - Lifetime US2470965A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US722846A US2470965A (en) 1947-01-18 1947-01-18 Manufacture of grease
GB1635/48A GB654084A (en) 1947-01-18 1948-01-19 Manufacture of lubricating grease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US722846A US2470965A (en) 1947-01-18 1947-01-18 Manufacture of grease

Publications (1)

Publication Number Publication Date
US2470965A true US2470965A (en) 1949-05-24

Family

ID=24903642

Family Applications (1)

Application Number Title Priority Date Filing Date
US722846A Expired - Lifetime US2470965A (en) 1947-01-18 1947-01-18 Manufacture of grease

Country Status (2)

Country Link
US (1) US2470965A (en)
GB (1) GB654084A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2614981A (en) * 1950-04-03 1952-10-21 Standard Oil Dev Co Process for inhibiting corrosion in oil wells
US2614980A (en) * 1950-04-03 1952-10-21 Standard Oil Dev Co Process for inhibiting corrosion in oil wells
US2629695A (en) * 1948-01-13 1953-02-24 Shell Dev Manufacture of lithium lubricating greases
US2653131A (en) * 1951-03-29 1953-09-22 Standard Oil Dev Co Aluminum-carbon black thickened grease compositions
US2759894A (en) * 1951-07-27 1956-08-21 Exxon Research Engineering Co Rust inhibitor
US2870090A (en) * 1956-06-25 1959-01-20 Texas Co Method of grease manufacture comprising shearing
US3158574A (en) * 1960-07-26 1964-11-24 Exxon Research Engineering Co Lithium greases
US4879054A (en) * 1988-02-29 1989-11-07 Amoco Corporation Process for producing low temperature high performance grease

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2332202A (en) * 1941-08-19 1943-10-19 Standard Oil Dev Co Lubricating grease manufacture and apparatus therefor
US2343736A (en) * 1942-08-28 1944-03-07 Standard Oil Dev Co Lubricant, etc.
US2394567A (en) * 1941-12-17 1946-02-12 Standard Oil Dev Co Lubricating grease composition
US2417495A (en) * 1943-12-10 1947-03-18 Girdler Corp Manufacture of grease

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2332202A (en) * 1941-08-19 1943-10-19 Standard Oil Dev Co Lubricating grease manufacture and apparatus therefor
US2394567A (en) * 1941-12-17 1946-02-12 Standard Oil Dev Co Lubricating grease composition
US2343736A (en) * 1942-08-28 1944-03-07 Standard Oil Dev Co Lubricant, etc.
US2417495A (en) * 1943-12-10 1947-03-18 Girdler Corp Manufacture of grease

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2629695A (en) * 1948-01-13 1953-02-24 Shell Dev Manufacture of lithium lubricating greases
US2651616A (en) * 1948-01-13 1953-09-08 Shell Dev Lithium hydroxy stearate grease compositions
US2614981A (en) * 1950-04-03 1952-10-21 Standard Oil Dev Co Process for inhibiting corrosion in oil wells
US2614980A (en) * 1950-04-03 1952-10-21 Standard Oil Dev Co Process for inhibiting corrosion in oil wells
US2653131A (en) * 1951-03-29 1953-09-22 Standard Oil Dev Co Aluminum-carbon black thickened grease compositions
US2759894A (en) * 1951-07-27 1956-08-21 Exxon Research Engineering Co Rust inhibitor
US2870090A (en) * 1956-06-25 1959-01-20 Texas Co Method of grease manufacture comprising shearing
US3158574A (en) * 1960-07-26 1964-11-24 Exxon Research Engineering Co Lithium greases
US4879054A (en) * 1988-02-29 1989-11-07 Amoco Corporation Process for producing low temperature high performance grease

Also Published As

Publication number Publication date
GB654084A (en) 1951-06-06

Similar Documents

Publication Publication Date Title
US2566793A (en) Grease compositions
US2652366A (en) Method of preparing lubricating grease compositions
US2651616A (en) Lithium hydroxy stearate grease compositions
US2351384A (en) Lithium soap grease
US2475589A (en) Lubricating grease composition
US2652365A (en) Manufacture of grease compositions
US2470965A (en) Manufacture of grease
US2588556A (en) Manufacture of grease compositions
US2318668A (en) Grease manufacture
US2964475A (en) Lubricants containing metal carboxylate and metal phosphate
US2648634A (en) Method of preparing lubricating grease compositions
US2398173A (en) Lithium soap greases
US2846394A (en) Rheopectic grease composition
US2652362A (en) Grease composition
US2999065A (en) Lubricant containing a calcium saltcalcium soaps mixture and process for forming same
US2545190A (en) Alkali base lubricating greases
US2394567A (en) Lubricating grease composition
US2343736A (en) Lubricant, etc.
US2264353A (en) Lubricant
US2614079A (en) Lubricating grease
US3079341A (en) Rheopectic lithium soap grease and method of preparation therefor
US2542159A (en) Continuous grease manufacture
US2353830A (en) Air pump lubricant
US2830022A (en) Method of grease manufacture with recycle cooling
US2365037A (en) Process for preparing aluminum soap greases