US2465818A - Device for measuring fiber density of a sliver - Google Patents

Device for measuring fiber density of a sliver Download PDF

Info

Publication number
US2465818A
US2465818A US634793A US63479345A US2465818A US 2465818 A US2465818 A US 2465818A US 634793 A US634793 A US 634793A US 63479345 A US63479345 A US 63479345A US 2465818 A US2465818 A US 2465818A
Authority
US
United States
Prior art keywords
sliver
chamber
passageway
density
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US634793A
Inventor
Ernest L Richardson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US492425A external-priority patent/US2407100A/en
Application filed by General Electric Co filed Critical General Electric Co
Priority to US634793A priority Critical patent/US2465818A/en
Application granted granted Critical
Publication of US2465818A publication Critical patent/US2465818A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H5/00Drafting machines or arrangements ; Threading of roving into drafting machine
    • D01H5/18Drafting machines or arrangements without fallers or like pinned bars
    • D01H5/32Regulating or varying draft
    • D01H5/38Regulating or varying draft in response to irregularities in material ; Measuring irregularities
    • D01H5/385Regulating or varying draft in response to irregularities in material ; Measuring irregularities employing hydraulic or pneumatic time-delay devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • A24C5/3418Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes by pneumatic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S131/00Tobacco
    • Y10S131/904Pneumatic means for sensing condition or characteristic

Definitions

  • This invention relates to'measuring devices, more particularly to devices for measuring the fiber density yof an array of bers such as a sliver; and it has for an object the provision of a simple, reliable, inexpensive and improved device of this character.
  • a length of material such as a sliver or roving, containing an array of bers, is subjected to a series of drafting operations before being converted into the final yarn or thread form.
  • Another object of the invention is the provision of means'for detecting variations in the density of the bers of the sliver, and for providing an indication'of the magnitude of such variations.
  • a fluid such as air is caused to ow through the fibers of a length of material such as a sliver of which the fiber density is to be determined.
  • the resistance to the flow of air offered by the array of fibers constituting the sliver is a measure of the fiber density, and thus by measuring variations in resistance to the flow of air through the ber array the amount of variation from uniformity can be determined.l ⁇
  • One form of a device for measuring the resistance to flow of air through the fibers comprises a member provided with a passageway through which the length of material passes. This member is recessed to provide a. chamber in communicatlon with the passageway. Air from a suitable source of constant pressure is supplied through a restricted tone to this passageway and escapes in opposite direction through the fibers. The air pressure in the chamber is a measure of the ber density of the array of bers passing through the passageway.
  • the detector i. e. the member containing the passageway
  • the detector is provided with a plurality of chambers which are in fluid communication with the passageway.
  • Fig. 1 is a simple, diagrammatic sketch of the embodiment of the invention
  • Fig. 2 is a sectional view of a modified form of a detail.
  • a'sliver I containing an array of loose fibers is illustrated as being passed in the direction of the arrow 2 through the nip of a pair of rollers 3 to a subsequent stage in the process.
  • the rollers 3 may be driven by any suitable driving means (not shown).
  • a flow tube device l is provided.
  • the flow tube detecting device 4 may be made in any suitable manner, it is illustrated as comprising a pipe T member 4a which is provided with an insert 4b.
  • the insert member is tapered from both ends toward the center to provide a flow tube passageway for the passage of the sliver l, and is recessed approximately midway between the enteringand delivery ends of the tube to provide a chamber 4c in communcation with the passageway through which the sliver I passes.
  • a fluid such as air is supplied from a suitable source, such as the mill supply, through a re-l 'ber 4c through the orce 5 is maintained substantially constant by means of a pressure regulating device 6, which is included in the pipe connections between the source and the orifice 5.
  • This pressure regulator comprises a bleed valve 6a which is loaded by means of a-spring 6b. 'I'he bleed valve 6a. is fastened to one end of a lever 6c, of which the opposite end is provided with a knife edge which rests in the bottom of a V-shaped slot in a block 6d to provide for pivotal movement of the lever.
  • One end of the loading spring 6b is secured to a stationary part such, for example.
  • valve 6a has a' maximum movement of approximately .003 inch so that the change in spring gradient is negligible.
  • variable inlet air pressure from the supply source through the throttling valve 8 the spring loading is adjusted for the desired pressure and the throttling valve is adjusted to give a. small opening of the bleed valve corresponding to the minimum inlet pressure.
  • the bleed valve opens a very small amount to dispose of the increased flow passed by the throttling valve and thereby maintains a substantial constant pressure to the orifice 5.
  • the restricted orifice 5 is preferably mounted in one arm of a pipe elbow 9.
  • a pressure responsive indicating device such as a Bourdon gauge I 0, is connected to the vertical pipe II leading to the pressure chamber 4c -for the purpose of providing a visual indication of the pressure in the chamber 4c and the density of the fibers of the sliver I passing through the passageway of the ow tube detecting device.
  • air passes through the restrictediser 5 to the chamber 4c.
  • -From the chamber air passes in opposite directions through the .spaces between the fibers through the entering and delivery inserts of the flow tube.
  • the rate of flow of air from the chamber 4c will remain constant as long as the density of the sliver flowing through the flow tube detecting device remains constant at the desired value.
  • the ow tube detecting device may take the form illustrated in Fig. 2.
  • the flow tube detecting devicel I2 differs from the detecting device 4 of Fig. 1 in that the sizes of the sliver ow passages in the inserts I2a and 12b in the entering and delivery ends of the tube are different and also in the provision of a plurality of internal barriers I 2c and I2d which are substantially equally spaced between the ends to provide a plurality of air chambers I2e, I2f and
  • the barriers I2c and I2d are provided with centrally disposed passages which are graduated in size such that when centrally aligned with the passages in the inserts I2a and I2b there is provided for the sliver I a passageway of which the size decreases uniformly from the entering to the discharge end.
  • the end inserts I2a and I 2b and the internal barriers I 2c and I2d may be made vof steel and their surfaces which constitute the passageway for the sliver may be chromium-plated to minimize resistance to the flow of the silver.
  • Air is supplied to the chambers I2e, I2f and I 2g from a manifold I3 which in turn is connected by means of a pipe I4 to the source of regulated air supply, i. e. to the pipe II of Fig. 1.
  • a tubular member provided with a passageway for a moving length of material containing an array of fibers and having an annular centrally disposed chamber in communication with said passageway, said passageway tapering from a relatively large opening at each end of said tubular member to a relatively small opening at the point of communication with said chamber, a source of substantially constant uid pressure for supplying fluid to said chamber and forcing fluid from said chamber through said fibers, thereby to produce variations in the fluid pressure in said chamber in response to variations in the density of said length of material, and means responsive to the fluid pressure in said chamber for indicating the density of said material.
  • a tubular member provided with a restricted passageway for a moving length of material containing an array of bers and having an annular centrally disposed chamber communicating with said passageway, said passageway tapering from a relatively large opening at each end of said tubular member to a relatively small opening at the point of communication with said chamber, an orifice,- a substantially,
  • a tubular member provided with a passageway for a length of material containing an array of fibers recessed between the inlet and outlet of said passageway to form a compartmented chamber surrounding said passageway and in communicationv therewith, said passageway tapering from a relatively large opening at each end to a relatively small opening at the point of communication with said chamber, a source' of substantially constant fluid @essere y pressure for supplying iiuid to said chamber and v l forcing fluid from said chamber through said Y i Y REFERENCES CITED bers and out through said inlet and outlet y
  • the following references are o f record in the thereby to produce variations in fluid pressure in me 0f this patent: said chamber in response to variations in density 5 UNITED of the fibers of said length of material, and means STATES PATENTS responsive to the iiuid pressure in said chamber Number N Bme Date for indicating the density ot said material.

Description

March 29, 1949. j; L. RICHARDSQN 2,465,818
DEVICE FOR MEASURING FIBER DENSITY OF A SLIVER Original Filed June 26. 1943 Inventor:
Ernest L ,.Rchardson,
,by His Attorney.
Patented Mar'. 29, 1949v DEVICE FOR MEASURING FIBER DENSITY F A SLIVER f Ernest L. Richardson, Melrose, Mass., asslgnor to General Electric ACompany, a corporation of New York Original application June 26, 1943, Serial No.
492,425. Divided and this application December 13, 1945, Serial No. 634,793
3 Claims.
This invention relates to'measuring devices, more particularly to devices for measuring the fiber density yof an array of bers such as a sliver; and it has for an object the provision of a simple, reliable, inexpensive and improved device of this character.
This application is a division of application Serial No. 492,425, filed June 26, 1943, now Patent 2,407,100, and assigned to the same assignee.
In certain of the preparatory steps in the processing of fibers to form a yarn or thread, a length of material such as a sliver or roving, containing an array of bers, is subjected to a series of drafting operations before being converted into the final yarn or thread form.
When the material is made up in the sliver form for the first time, whether it be by means of carding or in any other manner, it falls far short of the ideal insofar as regularity and unif ormity of density are concerned. The constituent bers are by'no means perfectly mixed, and both long and short wave variations in thickness are considerable.
Another object of the invention is the provision of means'for detecting variations in the density of the bers of the sliver, and for providing an indication'of the magnitude of such variations.
In carrying the invention into effect in one form thereof, a fluid such as air is caused to ow through the fibers of a length of material such as a sliver of which the fiber density is to be determined. The resistance to the flow of air offered by the array of fibers constituting the sliver is a measure of the fiber density, and thus by measuring variations in resistance to the flow of air through the ber array the amount of variation from uniformity can be determined.l`
One form of a device for measuring the resistance to flow of air through the fibers comprises a member provided with a passageway through which the length of material passes. This member is recessed to provide a. chamber in communicatlon with the passageway. Air from a suitable source of constant pressure is supplied through a restricted orice to this passageway and escapes in opposite direction through the fibers. The air pressure in the chamber is a measure of the ber density of the array of bers passing through the passageway.
In a modied form of the invention, the detector, i. e. the member containing the passageway, is provided with a plurality of chambers which are in fluid communication with the passageway.
For a better and more complete understanding of the invention, reference should now be had to the following speciiication and to the accoml panying drawing of which Fig. 1 is a simple, diagrammatic sketch of the embodiment of the invention, and Fig. 2 is a sectional view of a modified form of a detail.
Referring now to the drawing, a'sliver I containing an array of loose fibers is illustrated as being passed in the direction of the arrow 2 through the nip of a pair of rollers 3 to a subsequent stage in the process. The rollers 3 may be driven by any suitable driving means (not shown).
For the purpose of detecting variations in the ber density of the sliver, a flow tube device l is provided. Although the flow tube detecting device 4 may be made in any suitable manner, it is illustrated as comprising a pipe T member 4a which is provided with an insert 4b. The insert member is tapered from both ends toward the center to provide a flow tube passageway for the passage of the sliver l, and is recessed approximately midway between the enteringand delivery ends of the tube to provide a chamber 4c in communcation with the passageway through which the sliver I passes.
A fluid such as air is supplied from a suitable source, such as the mill supply, through a re-l 'ber 4c through the orce 5 is maintained substantially constant by means of a pressure regulating device 6, which is included in the pipe connections between the source and the orifice 5. This pressure regulator comprises a bleed valve 6a which is loaded by means of a-spring 6b. 'I'he bleed valve 6a. is fastened to one end of a lever 6c, of which the opposite end is provided with a knife edge which rests in the bottom of a V-shaped slot in a block 6d to provide for pivotal movement of the lever. One end of the loading spring 6b is secured to a stationary part such, for example. as the` pipe 'I and the other end is attached to a screw 6e which passes through the lever 6c and is provided with a nut 6f for adjusting the tension of the spring to provide the desired loading of the valve. The valve 6a has a' maximum movement of approximately .003 inch so that the change in spring gradient is negligible.
With variable inlet air pressure from the supply source through the throttling valve 8 the spring loading is adjusted for the desired pressure and the throttling valve is adjusted to give a. small opening of the bleed valve corresponding to the minimum inlet pressure. With increase in the inlet pressure the bleed valve opens a very small amount to dispose of the increased flow passed by the throttling valve and thereby maintains a substantial constant pressure to the orifice 5. The restricted orifice 5 is preferably mounted in one arm of a pipe elbow 9.
A pressure responsive indicating device, such as a Bourdon gauge I 0, is connected to the vertical pipe II leading to the pressure chamber 4c -for the purpose of providing a visual indication of the pressure in the chamber 4c and the density of the fibers of the sliver I passing through the passageway of the ow tube detecting device.
In operation, air passes through the restricted orice 5 to the chamber 4c. -From the chamber air passes in opposite directions through the .spaces between the fibers through the entering and delivery inserts of the flow tube. The rate of flow of air from the chamber 4c will remain constant as long as the density of the sliver flowing through the flow tube detecting device remains constant at the desired value.
However, if a relatively thicker portion of thel sliver approaches the detecting device, the density of the fibers entering the passageway of the flow tube tends to increase. As a result 'of this tendency of the ber density to increase, the flow of air from the chamber 4c through the flbers in both directionsA will be correspondingly restricted and this will cause the pressure in the chamber 4c to increase. When the fiber density of the sliver returns to the predetermined desired value, the pressure in the chamber 4c returns to the normal value.
If a portion of the sliver which is relatively thinner than the normal value approaches the flow tube detecting device, the density of the bers entering the passageway tends to decrease ,so that the fibers willoier less resistance to the flow of air from the chamber 4c to atmosphere. This will cause the pressure in the chamber 4c to decrease.
In Calibrating the dial of the Bourdon tube indicating device I0, it is feasible to use the total 'fiber cross-section of the sliver as a measure of density. When density is soA considered, the calibration is identical'for all types of fiber, except for insignificant differences owing to the variation in the air flow coefficient caused byA variation in fiber surface friction. The density of a given type of benis also frequently measured in terms of weight in grains per yard and a different calibration for each type of material is required on account of the varying specific gravities of fibers of different materials.
The ow tube detecting device may take the form illustrated in Fig. 2. As shown in Fig, 2, the flow tube detecting devicel I2 differs from the detecting device 4 of Fig. 1 in that the sizes of the sliver ow passages in the inserts I2a and 12b in the entering and delivery ends of the tube are different and also in the provision of a plurality of internal barriers I 2c and I2d which are substantially equally spaced between the ends to provide a plurality of air chambers I2e, I2f and |29. The barriers I2c and I2d are provided with centrally disposed passages which are graduated in size such that when centrally aligned with the passages in the inserts I2a and I2b there is provided for the sliver I a passageway of which the size decreases uniformly from the entering to the discharge end. The end inserts I2a and I 2b and the internal barriers I 2c and I2d may be made vof steel and their surfaces which constitute the passageway for the sliver may be chromium-plated to minimize resistance to the flow of the silver.
Air is supplied to the chambers I2e, I2f and I 2g from a manifold I3 which in turn is connected by means of a pipe I4 to the source of regulated air supply, i. e. to the pipe II of Fig. 1.
Although in accordance with the provisions of the patent statutes this invention is described in concrete form and the principle thereof is ex plained together withthe best mode in which it is now contemplated applying that principle, it will be understood that the elements shown and described are merely illustrative and that the invention is not limited thereto since alterations and modications will readily suggest themselves to persons skilled in the art without departing from the true spirit of this invention or. from the scope of the annexed claims.
What I claim as new and desire to secure by Letters Patent of the United States, is:
1. In combination, a tubular member provided with a passageway for a moving length of material containing an array of fibers and having an annular centrally disposed chamber in communication with said passageway, said passageway tapering from a relatively large opening at each end of said tubular member to a relatively small opening at the point of communication with said chamber, a source of substantially constant uid pressure for supplying fluid to said chamber and forcing fluid from said chamber through said fibers, thereby to produce variations in the fluid pressure in said chamber in response to variations in the density of said length of material, and means responsive to the fluid pressure in said chamber for indicating the density of said material.
2. In combination, a tubular member provided with a restricted passageway for a moving length of material containing an array of bers and having an annular centrally disposed chamber communicating with said passageway, said passageway tapering from a relatively large opening at each end of said tubular member to a relatively small opening at the point of communication with said chamber, an orifice,- a substantially,
constant source of fluid pressure for supplying fluid through said orifice to said chamber'and y forcing fluid from said chamber through said fibers thereby to produce variations in the uid pressure drop across said orifice in response to variations in the density of said fibers, and means responsive to the fluid pressure in said chamber for indicating the density of said material.
3. In combination, a tubular member provided with a passageway for a length of material containing an array of fibers recessed between the inlet and outlet of said passageway to form a compartmented chamber surrounding said passageway and in communicationv therewith, said passageway tapering from a relatively large opening at each end to a relatively small opening at the point of communication with said chamber, a source' of substantially constant fluid @essere y pressure for supplying iiuid to said chamber and v l forcing fluid from said chamber through said Y i Y REFERENCES CITED bers and out through said inlet and outlet y The following references are o f record in the thereby to produce variations in fluid pressure in me 0f this patent: said chamber in response to variations in density 5 UNITED of the fibers of said length of material, and means STATES PATENTS responsive to the iiuid pressure in said chamber Number N Bme Date for indicating the density ot said material. 1,599,964 Haven Sept. 14, 1928 f 2,014,998 Baguley et al. Sept. 17, 1935 ERNEST L. RICHARDSON. l0 2,077,525 Mennesson Apr. 20, 1937 2,276,036 Hanna et al, Mar. 10, 1942 2,348,985 Lewis May 16, 1944
US634793A 1943-06-26 1945-12-13 Device for measuring fiber density of a sliver Expired - Lifetime US2465818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US634793A US2465818A (en) 1943-06-26 1945-12-13 Device for measuring fiber density of a sliver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US492425A US2407100A (en) 1943-06-26 1943-06-26 Drafting of fibers
US634793A US2465818A (en) 1943-06-26 1945-12-13 Device for measuring fiber density of a sliver

Publications (1)

Publication Number Publication Date
US2465818A true US2465818A (en) 1949-03-29

Family

ID=27050743

Family Applications (1)

Application Number Title Priority Date Filing Date
US634793A Expired - Lifetime US2465818A (en) 1943-06-26 1945-12-13 Device for measuring fiber density of a sliver

Country Status (1)

Country Link
US (1) US2465818A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2849875A (en) * 1957-01-29 1958-09-02 Chemical Products Corp Apparatus for measuring the viscosity of a coating liquid
US3055059A (en) * 1957-05-03 1962-09-25 Commw Scient Ind Res Org Combing of textile fibres
US3089497A (en) * 1958-09-15 1963-05-14 Molins Machine Co Ltd Tobacco manipulating machines
US3140724A (en) * 1960-11-07 1964-07-14 Dietert Co Harry W Pivoted pressure release valve for use with a permeability meter
US3172285A (en) * 1960-11-07 1965-03-09 Dietert Co Harry W Permeability meter
US3174486A (en) * 1960-05-10 1965-03-23 Molins Machine Co Ltd Tobacco-manipulating machines
US3306304A (en) * 1960-06-29 1967-02-28 Molins Organisation Ltd Tobacco-manipulating machines
US3435673A (en) * 1966-05-06 1969-04-01 Zellweger Uster Ag Method of,and an apparatus for,obtaining measurements which correspond to the substance cross-section of textile material
US3485095A (en) * 1967-01-10 1969-12-23 Tokyo Aircraft Instr Co Apparatus for examining conditions of filaments and yarns running at high speed
US3731693A (en) * 1960-05-10 1973-05-08 Molins Organisation Ltd Machine and method for manipulating shredded tobacco
WO1979000419A1 (en) * 1977-12-22 1979-07-12 Rieter Ag Maschf Apparatus for establishing measuring values corresponding to the material cross-section area of fibre slivers processed in spinning preparation
US4758968A (en) * 1985-05-16 1988-07-19 North Carolina State University Method and apparatus for continuously measuring the variability of textile strands

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1599964A (en) * 1926-01-09 1926-09-14 Albany Felt Co Method of and means for measuring porosity
US2014998A (en) * 1932-02-27 1935-09-17 Courtaulds Ltd Apparatus for testing the thickness of threads, wires, strips, and the like
US2077525A (en) * 1934-12-12 1937-04-20 Solex Pneumatic safety device for thread working machines
US2276036A (en) * 1940-11-23 1942-03-10 Westinghouse Electric & Mfg Co Pneumatic thickness gauge
US2348985A (en) * 1940-04-19 1944-05-16 Core Lab Inc Method for determining permeability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1599964A (en) * 1926-01-09 1926-09-14 Albany Felt Co Method of and means for measuring porosity
US2014998A (en) * 1932-02-27 1935-09-17 Courtaulds Ltd Apparatus for testing the thickness of threads, wires, strips, and the like
US2077525A (en) * 1934-12-12 1937-04-20 Solex Pneumatic safety device for thread working machines
US2348985A (en) * 1940-04-19 1944-05-16 Core Lab Inc Method for determining permeability
US2276036A (en) * 1940-11-23 1942-03-10 Westinghouse Electric & Mfg Co Pneumatic thickness gauge

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2849875A (en) * 1957-01-29 1958-09-02 Chemical Products Corp Apparatus for measuring the viscosity of a coating liquid
US3055059A (en) * 1957-05-03 1962-09-25 Commw Scient Ind Res Org Combing of textile fibres
US3089497A (en) * 1958-09-15 1963-05-14 Molins Machine Co Ltd Tobacco manipulating machines
US3731693A (en) * 1960-05-10 1973-05-08 Molins Organisation Ltd Machine and method for manipulating shredded tobacco
US3174486A (en) * 1960-05-10 1965-03-23 Molins Machine Co Ltd Tobacco-manipulating machines
US3306304A (en) * 1960-06-29 1967-02-28 Molins Organisation Ltd Tobacco-manipulating machines
US3140724A (en) * 1960-11-07 1964-07-14 Dietert Co Harry W Pivoted pressure release valve for use with a permeability meter
US3172285A (en) * 1960-11-07 1965-03-09 Dietert Co Harry W Permeability meter
US3435673A (en) * 1966-05-06 1969-04-01 Zellweger Uster Ag Method of,and an apparatus for,obtaining measurements which correspond to the substance cross-section of textile material
DE1648798B1 (en) * 1966-05-06 1971-09-16 Zellweger Uster Ag DEVICE FOR OBTAINING MEASURED SIZES DEPENDING ON THE SUBSTANCE CROSS SECTION OF STRANDED TEXTILE MATERIAL
US3485095A (en) * 1967-01-10 1969-12-23 Tokyo Aircraft Instr Co Apparatus for examining conditions of filaments and yarns running at high speed
WO1979000419A1 (en) * 1977-12-22 1979-07-12 Rieter Ag Maschf Apparatus for establishing measuring values corresponding to the material cross-section area of fibre slivers processed in spinning preparation
US4758968A (en) * 1985-05-16 1988-07-19 North Carolina State University Method and apparatus for continuously measuring the variability of textile strands

Similar Documents

Publication Publication Date Title
US2465818A (en) Device for measuring fiber density of a sliver
US2843882A (en) Evener
US3083924A (en) Yarn furnishing device
GB624765A (en) Improvements in and relating to apparatus for the drafting of fibres
US1159214A (en) Apparatus for controlling the flow of fluids through conduits.
US3435673A (en) Method of,and an apparatus for,obtaining measurements which correspond to the substance cross-section of textile material
US2486052A (en) Pneumatic comparator gauge
US3176502A (en) Pneumatic gage
US3854330A (en) Apparatus for measuring mass density variations in a staple fiber sliver on spinning preparatory machines
US2509078A (en) Fluid meter
US4184361A (en) Sliver density sensing apparatus
US3209589A (en) Yarn friction measuring instrument
US2357569A (en) Gauge
US3710421A (en) Pneumatic device for automatic control system of sliver{40 s thickness
US4318299A (en) Measuring funnel for determining the tension of slivers
US2846871A (en) Air gage apparatus
US2014998A (en) Apparatus for testing the thickness of threads, wires, strips, and the like
US2905976A (en) Drafting of textile fibres
US2610813A (en) Apparatus for regulating yarn tension
US2813535A (en) Purged web edge detector
US3324719A (en) Method for simultaneously measuring frictional properties and static generation rate of yarn
US3728894A (en) Fluidic gaging device
US2989837A (en) Twisting spindle balloon control
US2909920A (en) Pneumatic gauging apparatus
US3683608A (en) Fluid texturizing apparatus and method of use