US2458277A - Control of electric discharge lamps - Google Patents

Control of electric discharge lamps Download PDF

Info

Publication number
US2458277A
US2458277A US751092A US75109247A US2458277A US 2458277 A US2458277 A US 2458277A US 751092 A US751092 A US 751092A US 75109247 A US75109247 A US 75109247A US 2458277 A US2458277 A US 2458277A
Authority
US
United States
Prior art keywords
lamp
winding
discharge
supply
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US751092A
Inventor
Lark Gordon Tremayne Kingsley
Davie Robert Boyd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STURDY ELECTRIC Co Ltd
Original Assignee
STURDY ELECTRIC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STURDY ELECTRIC Co Ltd filed Critical STURDY ELECTRIC Co Ltd
Application granted granted Critical
Publication of US2458277A publication Critical patent/US2458277A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/391Controlling the intensity of light continuously using saturable magnetic devices

Definitions

  • This invention relates to alternating current control apparatus for hot cathode discharge lamps of the type in which the two discharge electrodes are each associated with an electron emissive filament which is electrically heated during the starting up of the lamp to assist the subsequent striking of the main electric discharge between the two electrodes.
  • the control apparatus according to the present invention is used to control such lamps during starting up or striking and during the steady running condition. It is not material to the operation of the present invention whether or not the lamps used are provided with a fluorescent coating.
  • control apparatus for gas discharge lamps of the type described consists of a discharge current limiting choke connected at one end to one pole of the alternating current supply and at the other end to one end of one filament of the lamp.
  • the other end of this filament is connected through a starter switch, usually of a special form, to one end of the second filament.
  • the other end of the second filament is connected to the other pole of the alternating current supply, completing the series circuit across the alternating current supply.
  • An additional switch is also provided to make or break the connection of the series circuit with the live line of the supply. When this switch is closed a series circuit is made through the limiting choke and the two filaments connected in series through the closed starter switch.
  • the resistance of the filaments in series with the reactance of the choke are such that the rated heating current flows through the filaments. This current raises the temperature of the filaments, causing them to become electron emissive and producing local ionization of the gas in the lamp.
  • the starter switch connected between the two filaments, is usually arranged to open automatically after the filament heating current has been flowing for some time. This interruption of the current flowing through the limiting choke induces a high surge voltage, which appears between the electrodes of the lamp causing the main discharge to strike between them. After the lamp has lit, the discharge current is maintained at the rated value for the lamp by the discharge current limiting choke which has the correct reactance value for this purpose.
  • the object of the present invention is to provide a control apparatus by means of which a lamp of the type described may be continuously dimmed to extinction and, if required, at once relit and its brightness increased continuously to the normal operating brightness.
  • a control apparatus for operating a gas discharge lamp of the type described has a variable reactive element for controlling the discharge current of the lamp when running and means for providing an electric heating supply to each of the two filaments of the lamp and automatically reduces the heating supply as the discharge current increases from zero to the desired operational value and automatically increases the heating supply as the discharge current decreases.
  • such a control apparatus has a transformer and a discharge current limiting choke, the transformer having a primary winding wound for approximately the voltage of the alternating current supply and connected in series with the limiting choke across the alternating current supply and effectively in parallel with the gas discharge path of the lamp and having two secondary windings each supplying one of the lamp filaments and wound to supply the required heating current and voltage when nearly the full supply voltage is applied to the transformer primary; the two secondary windings are insulated from each other and applied between them is a voltage sufiicient to strike the lamp when the filaments are heated, the choke having an auxiliary direct current winding, the discharge current of the lamp, being determined by the magnitude of a uni-directional magnetic flux in the choke core due to the auxiliary winding.
  • the control apparatus has a discharge current controlling reactance consisting of one or more reactive elements connected in series with the lamp and a transformer, the transformer having a primary winding connected in parallel with the series combination consisting of the lamp and at least one of the reactive elements and having two secondary windings each wound to supply the required heating current and volt- "the central limb of the core.
  • the reactance being arranged to induce into the two filament circuits a voltage increasing with the lamp discharge current and opposing the voltage from the transformer secondary windings, one reactive element having a magnetic core carrying a reactive winding and an auxiliary direct current winding, the discharge current of the lamp being controlled according to a uni-directional magnetic flux in the said magnetic core, due to the direct current flowing in the auxiliary Winding.
  • variable reactance which may be used is described in the specifications of the copending patent application No. 30,444/45.
  • an auto-transformer i has a primary w nding between the terminals 2, 3 wound for nearly the full voltage of the alternating current supply. At each end of the primary winding 2, '3, a portion of the winding between the terminals 2 and between the terminals 3, is tapped to form two secondary windings.
  • the secondary 2, i is connected across the filament iii of the gas discharge tube 9 and the secondar 3, ii is connected across the filament ll.
  • a condenser 8 of value 0.021. is connected across the lamp electrodes associated with the two fil- 521111811135 ii.
  • the end 8 of the transformer 2, 3 is connected to one pole of the alternat current supply i'l and the other end 2 is connected to the other pole of the A. C. supply l through a variable reactance E2.
  • the variable reactence i2 is a choke having a shell type laminated core, the choke winding prima being in two parts l3, it, one part on each of the outer limbs of the core, the two parts l3, [5 being connected in series astaticall so that little or no magnetic flux from them passes through
  • An auxiliary direct current winding i l wound on the central limb of the core and the unidirectional magnetic flux due to this winding i l is controlled by varying the direct current from a local D. C. supply I8 fiowing through the winding Hi. This control is effected by the adjustment of the variable resistance 56 connected in series with the winding M and the D. C. supply l8.
  • the free end of the choke winding i5 is connected to the transformer primary at the terminal 2 and the free end of the choke winding J53 is connected to the other pole of the A. C. supply- .l '7 as described.
  • the primary of the transformer I does not include the whole winding 6, 1 but is tapped ofi between the terminals 2, 3. Secondary windings 6, 4 at 1, 5 are tapped off and the ends of the winding and are connected respectively to the filaments l0 and H of the lamp 9 as in the circuit arrangement of Figure 1. While the output of the secondaries ll, 5 and 5, l are the same as for Figure 1, the voltage developed in the section of the winding 4, 5 available for striking the lamp is increased by the step-up action of the transformer i.
  • variable reactance l2 has additional windings 22, 23, one wound on each of the outer legs of the core.
  • the transformer I has its primary winding 2, 3 connected directly across the A. C. supply H.
  • the low-voltage secondary winding 6, i is connected in series with the choke winding 22 across the filament I! of the lamp 9.
  • the winding l, 5 is similarly connected in series with the choke winding 23 across the filament H.
  • the choke windings 22, 23 are connected into the lamp filament circuits in such sense as to provide a voltage increasing with the lamp discharge current flowing through the windings l3, l5, and opposing the voltage from the transformer secondary windings 6, 4 and 1, 5.
  • the transformer I has an additional winding I9, 20 which is connected across a bridge-connected rectifier 2
  • the variable resistance 1.6 is connected in series with this supply as in the circuits of Figure l and Figure 2.
  • the variable reactance I2 is designed for the type of lamp 9 used and the voltage and frequency of the A. C. supply 11 so that by the necessary adjustment of the direct current flowing in the winding M, the inductance of the variable reactance l2 may be increased to the point where the main discharge through the lamp 9 is extinguished.
  • the supply to the lamp filaments Ill, H is such that by reducing the inductance of the variable rcactance 12 once more, the lamp 9 may be at once rekindled, and the discharge current, and hence the brightness of the lamp 9 increased at will up to its maximum operating condition.
  • variable reactance used is a choke whose inductance value is varied by a direct current flowing through an auxiliary winding.
  • This form lends itself to easy remote control, but it will be appreciated that other forms of variable reactance, while not necessarily providing the advantage of remote control, may nevertheless be used for dim-- ming and rekindling the discharge lamp.
  • a variable resistance may be used in circuits similar to those described with reference to Figures 1 and 2, that is, those which do not require voltages induced by the variable reactance into the lamp filament circuits.
  • a lamp of the type described is fitted in a metal trough reflector or other metal fitting.
  • the metal fitting is earthed, and this has been found to assist the ready striking of the lamp.
  • control apparatus according to the present invention it is particularly desirable that the gas discharge lamp should be contained in a metal fitting in this way.
  • Control apparatus for a hot cathode gas discharge lamp of the type having two discharge electrodes, each associated with an electron emissive filament comprising in combination a reactive element, means for varying the reactance of said reactive element, means providing an electric heating current for each of said filaments, and means for applying a striking voltage between the said two discharge electrodes, said reactive element being connected in series with said discharge lamp across an alternating current supply, and said means for providing filament heating currents and said means for applying a striking voltage being controlled by the discharge current of said lamp to decrease the filament currents and said striking voltage from their operative values as the discharge current increases from zero to the required running value for said discharge lamp and to increase said currents and voltage to their operative values as the discharge current falls to zero.
  • Control apparatus for a hot cathode gas discharge lamp of the type having two discharge electrodes, each associated with an electron emissive filament comprising in combination a transformer and a variable reactive element, the said transformer having input terminals arranged in series with the said variable reactive element for connecting across an alternating current supply and having two output windings wound to supply the required heating current to the lamp filaments when nearly the full supply voltage is applied to the said input winding, one of the said output windings being connected to each end of a third output winding wound to provide a sufficient voltage to strike the said gas discharge lamp when the said filaments are heated and when nearly the full supply voltage is applied to the said input terminals.
  • Control apparatus for a hot cathode gas discharge lamp according to claim 2 in combination with a variable resistive element, the said variable reactive element having a magnetic core, and a reactive winding and an auxiliary winding both wound on said core, said auxiliary winding being arranged in series with said resistive element for connecting across a direct current supply.
  • variable reactive element having a. shell-type laminated magnetic core and a second reactive winding wound on said core and connected astatically in series with said reactive winding.
  • Control apparatus for a hot cathode gas discharge lamp of the type having two discharge electrodes, each associated with an electron emissive filament comprising in combination a transformer, a variable reactive element and a variable resistive element, the said transformer having input terminals for connecting across an alternating current supply, a first output winding wound to supply at least the striking voltage of said discharge lamp, and two further output windings wound to supply the required heating current for the lamp filaments, said reactive element having at least one reactive winding wound on a magnetic core, two output windings inductively coupled to said reactive winding and an auxiliary winding wound on said core and arranged in series with said variable resistive element for connecting across a direct current supply, said reactive winding being connected in series with said discharge lamp across said first output winding of said transformer and the output windings of said reactive element being wound to supply a voltage substantially equal to the filament supply voltage for said discharge lamp when the required operating discharge current of said discharge lamp fiows through said reactive winding and connected each in series with one of said further output windings of said transformer
  • Control apparatus for a hot cathode gas discharge lamp of the type having two discharge electrodes, each associated with an electron emissive filament comprising in combination means including a source of alternating current for supplying heating currents to said filaments, a variable impedance control element, a circuit connecting said lamp and said impedance element in series to said source whereby the discharge current of the lamp may be varied by varying the impedance of said control element, and means controlled by said discharge current for varying said heating currents inversely with variations in said discharge current.
  • variable impedance control element comprises a transformer device having a reactive winding connected in series with the discharge electrodes of said lamp, and including a pair of secondary windings arranged in inductive relation with said reactive winding and connected in the supply circuits of said filaments in opposing relation to the heating currents flowing therein.

Description

Jan. 4, G, T K, LARK ETAL CONTROL OF ELECTRIC DISCHARGE LAMPS Filed May 28, 1947 3 2 SheetsSheet 1 //7V5 /7Z0/"5 GORDON TK. LARK ROBERT E, DAV/E fiw mm Attorney Jam.4 ,1949. G. T. K. LARK ETAL. I 2,458,277
CONTROL OF ELECTRIC DISCHARGE LAMPS Filed May 28, 1947 2 Sheets-Sheet 2 //n e/7zor5 GURDON 77K. LARK ROBERT B. .DA VIE Afton/veg Patented Jan. 4, 1949 UNITED STATES PATENT OFFICE CONTROL OF ELECTRIC DISCHARGE LAMPS Application May 28, 1947, Serial No. 751,092 In Great Britain June 19, 1946 8 Claims.
This invention relates to alternating current control apparatus for hot cathode discharge lamps of the type in which the two discharge electrodes are each associated with an electron emissive filament which is electrically heated during the starting up of the lamp to assist the subsequent striking of the main electric discharge between the two electrodes. The control apparatus according to the present invention is used to control such lamps during starting up or striking and during the steady running condition. It is not material to the operation of the present invention whether or not the lamps used are provided with a fluorescent coating.
The usual form of control apparatus for gas discharge lamps of the type described consists of a discharge current limiting choke connected at one end to one pole of the alternating current supply and at the other end to one end of one filament of the lamp. The other end of this filament is connected through a starter switch, usually of a special form, to one end of the second filament. The other end of the second filament is connected to the other pole of the alternating current supply, completing the series circuit across the alternating current supply. An additional switch is also provided to make or break the connection of the series circuit with the live line of the supply. When this switch is closed a series circuit is made through the limiting choke and the two filaments connected in series through the closed starter switch. The resistance of the filaments in series with the reactance of the choke are such that the rated heating current flows through the filaments. This current raises the temperature of the filaments, causing them to become electron emissive and producing local ionization of the gas in the lamp. The starter switch, connected between the two filaments, is usually arranged to open automatically after the filament heating current has been flowing for some time. This interruption of the current flowing through the limiting choke induces a high surge voltage, which appears between the electrodes of the lamp causing the main discharge to strike between them. After the lamp has lit, the discharge current is maintained at the rated value for the lamp by the discharge current limiting choke which has the correct reactance value for this purpose.
The object of the present invention is to provide a control apparatus by means of which a lamp of the type described may be continuously dimmed to extinction and, if required, at once relit and its brightness increased continuously to the normal operating brightness.
The ability to dim such lamps is desirable for a number of specialised purposes requiring control of brightness such as the dimming of lighting in places of entertainment or, when a number of lamps of different colour are used, for the selective dimming of the lamps for colour control. Such dimming and re-lighting is not possible with the usual form of control gear described, because the striking voltage of the lamp is higher than the working voltage and because the operation of the starting switch and the heating of the filaments takes some time after the extinction of the lamp before the main discharge can be re-started.
According to the present invention, a control apparatus for operating a gas discharge lamp of the type described, has a variable reactive element for controlling the discharge current of the lamp when running and means for providing an electric heating supply to each of the two filaments of the lamp and automatically reduces the heating supply as the discharge current increases from zero to the desired operational value and automatically increases the heating supply as the discharge current decreases.
According to one form of the present invention, such a control apparatus has a transformer and a discharge current limiting choke, the transformer having a primary winding wound for approximately the voltage of the alternating current supply and connected in series with the limiting choke across the alternating current supply and effectively in parallel with the gas discharge path of the lamp and having two secondary windings each supplying one of the lamp filaments and wound to supply the required heating current and voltage when nearly the full supply voltage is applied to the transformer primary; the two secondary windings are insulated from each other and applied between them is a voltage sufiicient to strike the lamp when the filaments are heated, the choke having an auxiliary direct current winding, the discharge current of the lamp, being determined by the magnitude of a uni-directional magnetic flux in the choke core due to the auxiliary winding.
According to another form of the present invention, the control apparatus has a discharge current controlling reactance consisting of one or more reactive elements connected in series with the lamp and a transformer, the transformer having a primary winding connected in parallel with the series combination consisting of the lamp and at least one of the reactive elements and having two secondary windings each wound to supply the required heating current and volt- "the central limb of the core.
age to one of the lamp filaments, the reactance being arranged to induce into the two filament circuits a voltage increasing with the lamp discharge current and opposing the voltage from the transformer secondary windings, one reactive element having a magnetic core carrying a reactive winding and an auxiliary direct current winding, the discharge current of the lamp being controlled according to a uni-directional magnetic flux in the said magnetic core, due to the direct current flowing in the auxiliary Winding.
The variable reactance which may be used is described in the specifications of the copending patent application No. 30,444/45. The alternative filament circuit arrangements for supplying a heating current for the two filaments of a lamp of the type described and for reducing the filament supply as the main discharge current of the lamp increases, are described in the provisional specifications accompanying the co-pending patout applications Nos. 39,4.45/45 and 2,552/46' In order that the 1y understood and ion may be more clearly carried into efiect,
three examples of control apparatus will now be described with reference to the accompanying rangement using a step-up auto-transformer associated. with the lamp and Figure 3 is a circuit diagram of an alternative form of apparatus, the I). C. supply being obtained through rectifier from the A. C. supply.
In Figure 1 an auto-transformer i has a primary w nding between the terminals 2, 3 wound for nearly the full voltage of the alternating current supply. At each end of the primary winding 2, '3, a portion of the winding between the terminals 2 and between the terminals 3, is tapped to form two secondary windings.
The secondary 2, i is connected across the filament iii of the gas discharge tube 9 and the secondar 3, ii is connected across the filament ll. A condenser 8 of value 0.021. is connected across the lamp electrodes associated with the two fil- 521111811135 ii.
The end 8 of the transformer 2, 3 is connected to one pole of the alternat current supply i'l and the other end 2 is connected to the other pole of the A. C. supply l through a variable reactance E2.
The variable reactence i2 is a choke having a shell type laminated core, the choke winding prima being in two parts l3, it, one part on each of the outer limbs of the core, the two parts l3, [5 being connected in series astaticall so that little or no magnetic flux from them passes through An auxiliary direct current winding i l wound on the central limb of the core and the unidirectional magnetic flux due to this winding i l is controlled by varying the direct current from a local D. C. supply I8 fiowing through the winding Hi. This control is effected by the adjustment of the variable resistance 56 connected in series with the winding M and the D. C. supply l8.
The free end of the choke winding i5 is connected to the transformer primary at the terminal 2 and the free end of the choke winding J53 is connected to the other pole of the A. C. supply- .l '7 as described.
ply to the lamp filaments H), H.
In Figure 2, the primary of the transformer I does not include the whole winding 6, 1 but is tapped ofi between the terminals 2, 3. Secondary windings 6, 4 at 1, 5 are tapped off and the ends of the winding and are connected respectively to the filaments l0 and H of the lamp 9 as in the circuit arrangement of Figure 1. While the output of the secondaries ll, 5 and 5, l are the same as for Figure 1, the voltage developed in the section of the winding 4, 5 available for striking the lamp is increased by the step-up action of the transformer i.
In an alternative form of the invention shown in Figure 3, the variable reactance l2 has additional windings 22, 23, one wound on each of the outer legs of the core. For this reason a different form of schematic representation of the reactance l2 has been adopted in Figure 3 to show more clearly the disposition of the various windings of the variable reactance !2. The transformer I has its primary winding 2, 3 connected directly across the A. C. supply H. The low-voltage secondary winding 6, i is connected in series with the choke winding 22 across the filament I!) of the lamp 9. The winding l, 5 is similarly connected in series with the choke winding 23 across the filament H. The choke windings 22, 23 are connected into the lamp filament circuits in such sense as to provide a voltage increasing with the lamp discharge current flowing through the windings l3, l5, and opposing the voltage from the transformer secondary windings 6, 4 and 1, 5.
The transformer I has an additional winding I9, 20 which is connected across a bridge-connected rectifier 2| in order to provide a D. C. supply for the auxiliary winding I 4. The variable resistance 1.6 is connected in series with this supply as in the circuits of Figure l and Figure 2.
The operation of the alternative circuit arrangements described with reference to Figure 1, Figure 2 and Figure 3 is similar and detailed differences will be appreciated more fully by reference to the co-pending applications No. 30,445/ and No. 2,552/46.
As the direct current flowing through the auxiliary winding M of the variable reactance i2 is reduced by increasing the value of the variable resistance l6, the inductance of the variable reactance I2 is increased and the discharge current of the lamp 9 is reduced. This reduction of the lamp discharge current increases the sup- In the case of the circuits of Figure 1 and Figure 2, this results from the increased voltage appearing across the transformer primary 2, 3. In the case of the circuit of Figure 3, this results from the reduction of the opposing voltage in the choke windings 22, 23.
The variable reactance I2 is designed for the type of lamp 9 used and the voltage and frequency of the A. C. supply 11 so that by the necessary adjustment of the direct current flowing in the winding M, the inductance of the variable reactance l2 may be increased to the point where the main discharge through the lamp 9 is extinguished. In this conditon, the supply to the lamp filaments Ill, H is such that by reducing the inductance of the variable rcactance 12 once more, the lamp 9 may be at once rekindled, and the discharge current, and hence the brightness of the lamp 9 increased at will up to its maximum operating condition.
In the forms of control apparatus described with reference to the accompanying drawings, the variable reactance used is a choke whose inductance value is varied by a direct current flowing through an auxiliary winding. This form lends itself to easy remote control, but it will be appreciated that other forms of variable reactance, while not necessarily providing the advantage of remote control, may nevertheless be used for dim-- ming and rekindling the discharge lamp. Similarly, a variable resistance may be used in circuits similar to those described with reference to Figures 1 and 2, that is, those which do not require voltages induced by the variable reactance into the lamp filament circuits.
In a normal installation practice, a lamp of the type described is fitted in a metal trough reflector or other metal fitting. The metal fitting is earthed, and this has been found to assist the ready striking of the lamp. With control apparatus according to the present invention, it is particularly desirable that the gas discharge lamp should be contained in a metal fitting in this way.
We claim:
1. Control apparatus for a hot cathode gas discharge lamp of the type having two discharge electrodes, each associated with an electron emissive filament, comprising in combination a reactive element, means for varying the reactance of said reactive element, means providing an electric heating current for each of said filaments, and means for applying a striking voltage between the said two discharge electrodes, said reactive element being connected in series with said discharge lamp across an alternating current supply, and said means for providing filament heating currents and said means for applying a striking voltage being controlled by the discharge current of said lamp to decrease the filament currents and said striking voltage from their operative values as the discharge current increases from zero to the required running value for said discharge lamp and to increase said currents and voltage to their operative values as the discharge current falls to zero.
2. Control apparatus for a hot cathode gas discharge lamp of the type having two discharge electrodes, each associated with an electron emissive filament, comprising in combination a transformer and a variable reactive element, the said transformer having input terminals arranged in series with the said variable reactive element for connecting across an alternating current supply and having two output windings wound to supply the required heating current to the lamp filaments when nearly the full supply voltage is applied to the said input winding, one of the said output windings being connected to each end of a third output winding wound to provide a sufficient voltage to strike the said gas discharge lamp when the said filaments are heated and when nearly the full supply voltage is applied to the said input terminals.
3. Control apparatus for a hot cathode gas discharge lamp according to claim 2 in combination with a variable resistive element, the said variable reactive element having a magnetic core, and a reactive winding and an auxiliary winding both wound on said core, said auxiliary winding being arranged in series with said resistive element for connecting across a direct current supply.
4. Control apparatus for a hot cathode gas discharge lamp according to claim 3, said variable reactive element having a. shell-type laminated magnetic core and a second reactive winding wound on said core and connected astatically in series with said reactive winding.
5. Control apparatus for a hot cathode gas discharge lamp of the type having two discharge electrodes, each associated with an electron emissive filament, comprising in combination a transformer, a variable reactive element and a variable resistive element, the said transformer having input terminals for connecting across an alternating current supply, a first output winding wound to supply at least the striking voltage of said discharge lamp, and two further output windings wound to supply the required heating current for the lamp filaments, said reactive element having at least one reactive winding wound on a magnetic core, two output windings inductively coupled to said reactive winding and an auxiliary winding wound on said core and arranged in series with said variable resistive element for connecting across a direct current supply, said reactive winding being connected in series with said discharge lamp across said first output winding of said transformer and the output windings of said reactive element being wound to supply a voltage substantially equal to the filament supply voltage for said discharge lamp when the required operating discharge current of said discharge lamp fiows through said reactive winding and connected each in series with one of said further output windings of said transformer in the sense to oppose the output voltage of said further output windings, each such series combination being connected across one of the filaments of said discharge lamp.
6. Control apparatus for a hot cathode gas discharge lamp of the type having two discharge electrodes, each associated with an electron emissive filament, comprising in combination means including a source of alternating current for supplying heating currents to said filaments, a variable impedance control element, a circuit connecting said lamp and said impedance element in series to said source whereby the discharge current of the lamp may be varied by varying the impedance of said control element, and means controlled by said discharge current for varying said heating currents inversely with variations in said discharge current.
7. Control apparatus according to claim 6 wherein said filament heating currents are supplied from a transformer connected in shunt to the discharge electrodes of said lamp.
8. Control apparatus according to claim 6 wherein said variable impedance control element comprises a transformer device having a reactive winding connected in series with the discharge electrodes of said lamp, and including a pair of secondary windings arranged in inductive relation with said reactive winding and connected in the supply circuits of said filaments in opposing relation to the heating currents flowing therein.
GORDON 'I'REMAYNE KINGSLEY LARK. ROBERT BOYD DAVIE.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 2,142,837 Edwards Jan. 3, 1939 2,298,589 Reitherman et a1. Oct. 13, 1942
US751092A 1946-06-19 1947-05-28 Control of electric discharge lamps Expired - Lifetime US2458277A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2458277X 1946-06-19

Publications (1)

Publication Number Publication Date
US2458277A true US2458277A (en) 1949-01-04

Family

ID=10907442

Family Applications (1)

Application Number Title Priority Date Filing Date
US751092A Expired - Lifetime US2458277A (en) 1946-06-19 1947-05-28 Control of electric discharge lamps

Country Status (1)

Country Link
US (1) US2458277A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2554648A (en) * 1949-01-01 1951-05-29 Ekco Ensign Electric Ltd Circuit arrangement for electric discharge lamps
US2565234A (en) * 1948-10-15 1951-08-21 Essex Wire Corp Electrical apparatus
US2650326A (en) * 1948-10-26 1953-08-25 Gen Electric Dimming circuit and apparatus for fluorescent lamps
US2665394A (en) * 1949-06-20 1954-01-05 Asea Ab Means for controlling the candle power of luminous tubes
US2683241A (en) * 1951-02-23 1954-07-06 Thorn Electric Ind Ltd Electric lamp circuits
US2683240A (en) * 1949-09-20 1954-07-06 Thorn Electrical Ind Ltd Electric lamp circuits
US2786968A (en) * 1953-03-16 1957-03-26 Daniel M Kabak Circuit means for automatically varying current through a load
US2829314A (en) * 1954-08-30 1958-04-01 Ward Leonard Electric Co Dimming of fluorescent lamps
US2830232A (en) * 1955-06-02 1958-04-08 Superior Electric Co Electrical control apparatus
US2866133A (en) * 1949-09-20 1958-12-23 Thorn Electrical Ind Ltd Electric lamp circuit
US2885598A (en) * 1956-08-01 1959-05-05 Superior Electric Co Lighting control
US2901673A (en) * 1954-12-14 1959-08-25 Thomas H Wiancko Relay circuit
US2910610A (en) * 1956-05-24 1959-10-27 Superior Electric Co Lighting control system
US3032682A (en) * 1959-10-22 1962-05-01 Gen Electric Three-phase saturable reactor type ballast
US3631317A (en) * 1970-01-16 1971-12-28 Kuroi Electric Ind Co System for lighting a fluorescent lamp
FR2388454A1 (en) * 1977-04-21 1978-11-17 Honeywell Ltd BALLAST WITH TWO-WIRE DISTRIBUTION FOR FLUORESCENT TUBE
US4587591A (en) * 1983-09-23 1986-05-06 Degremont Power supply for ozone generator
US4622496A (en) * 1985-12-13 1986-11-11 Energy Technologies Corp. Energy efficient reactance ballast with electronic start circuit for the operation of fluorescent lamps of various wattages at standard levels of light output as well as at increased levels of light output
US5239239A (en) * 1992-03-26 1993-08-24 Stocker & Yale, Inc. Surrounding a portion of a lamp with light regulation apparatus
US5345150A (en) * 1992-03-26 1994-09-06 Stocker & Yale, Inc. Regulating light intensity by means of magnetic core with multiple windings

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2142837A (en) * 1937-03-27 1939-01-03 Gen Electric Discharge lamp system
US2298589A (en) * 1939-10-12 1942-10-13 Frank F Rowell Sr Electric discharge apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2142837A (en) * 1937-03-27 1939-01-03 Gen Electric Discharge lamp system
US2298589A (en) * 1939-10-12 1942-10-13 Frank F Rowell Sr Electric discharge apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2565234A (en) * 1948-10-15 1951-08-21 Essex Wire Corp Electrical apparatus
US2650326A (en) * 1948-10-26 1953-08-25 Gen Electric Dimming circuit and apparatus for fluorescent lamps
US2554648A (en) * 1949-01-01 1951-05-29 Ekco Ensign Electric Ltd Circuit arrangement for electric discharge lamps
US2665394A (en) * 1949-06-20 1954-01-05 Asea Ab Means for controlling the candle power of luminous tubes
US2683240A (en) * 1949-09-20 1954-07-06 Thorn Electrical Ind Ltd Electric lamp circuits
US2866133A (en) * 1949-09-20 1958-12-23 Thorn Electrical Ind Ltd Electric lamp circuit
US2683241A (en) * 1951-02-23 1954-07-06 Thorn Electric Ind Ltd Electric lamp circuits
US2786968A (en) * 1953-03-16 1957-03-26 Daniel M Kabak Circuit means for automatically varying current through a load
US2829314A (en) * 1954-08-30 1958-04-01 Ward Leonard Electric Co Dimming of fluorescent lamps
US2901673A (en) * 1954-12-14 1959-08-25 Thomas H Wiancko Relay circuit
US2830232A (en) * 1955-06-02 1958-04-08 Superior Electric Co Electrical control apparatus
US2910610A (en) * 1956-05-24 1959-10-27 Superior Electric Co Lighting control system
US2885598A (en) * 1956-08-01 1959-05-05 Superior Electric Co Lighting control
US3032682A (en) * 1959-10-22 1962-05-01 Gen Electric Three-phase saturable reactor type ballast
US3631317A (en) * 1970-01-16 1971-12-28 Kuroi Electric Ind Co System for lighting a fluorescent lamp
FR2388454A1 (en) * 1977-04-21 1978-11-17 Honeywell Ltd BALLAST WITH TWO-WIRE DISTRIBUTION FOR FLUORESCENT TUBE
US4163925A (en) * 1977-04-21 1979-08-07 Honeywell Ltd. Two-wire ballast for fluorescent tube dimming
USRE31146E (en) * 1977-04-21 1983-02-08 Honeywell Ltd. Two-wire ballast for fluorescent tube dimming
US4587591A (en) * 1983-09-23 1986-05-06 Degremont Power supply for ozone generator
US4622496A (en) * 1985-12-13 1986-11-11 Energy Technologies Corp. Energy efficient reactance ballast with electronic start circuit for the operation of fluorescent lamps of various wattages at standard levels of light output as well as at increased levels of light output
US5239239A (en) * 1992-03-26 1993-08-24 Stocker & Yale, Inc. Surrounding a portion of a lamp with light regulation apparatus
US5345150A (en) * 1992-03-26 1994-09-06 Stocker & Yale, Inc. Regulating light intensity by means of magnetic core with multiple windings

Similar Documents

Publication Publication Date Title
US2458277A (en) Control of electric discharge lamps
US2429162A (en) Starting and operating of fluorescent lamps
US2020731A (en) Starting device for low voltage discharge tubes
US2268512A (en) Series lamp circuit
US2683241A (en) Electric lamp circuits
US2358810A (en) Apparatus for starting and controlling discharge devices
US2757318A (en) Rectifying circuit for discharge lamps
US2241261A (en) Transformer
US2774917A (en) Electric lamp circuits
US2444408A (en) Electric gaseous discharge lamp circuit
US2337992A (en) High power factor high intensity lamp circuit
US2363868A (en) Apparatus for starting and controlling discharge devices
US2231584A (en) Electric discharge apparatus
US2179795A (en) Transformer
US2253185A (en) Electric discharge apparatus
US2683240A (en) Electric lamp circuits
US2866133A (en) Electric lamp circuit
US2334567A (en) Apparatus for starting and controlling discharge devices
US2465103A (en) Lighting system and apparatus
US2960624A (en) Transformer for electric discharge lamps
US2439976A (en) Fluorescent lamp circuit
US2170456A (en) Electric discharge apparatus
US2305474A (en) Low voltage starting circuit
US3629650A (en) Method and apparatus for operating a gas discharge tube
US2620459A (en) Discharge lamp circuit