Connect public, paid and private patent data with Google Patents Public Datasets

Tube for color television

Download PDF

Info

Publication number
US2422937A
US2422937A US51270943A US2422937A US 2422937 A US2422937 A US 2422937A US 51270943 A US51270943 A US 51270943A US 2422937 A US2422937 A US 2422937A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
color
tube
disc
screen
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Constantin S Szegho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rauland Borg Corp
Original Assignee
Rauland Borg Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/16Picture reproducers using cathode ray tubes
    • H04N9/22Picture reproducers using cathode ray tubes using the same beam for more than one primary colour information

Description

June 24, c. SZEGHQ TUBE FOR COLOR TELEVISION Filed Dec. 3, 1943 disadvantages.

Patented June24, 1947 Constantin S. Szegho, Chicago, 111., asslgnor to The Rauland Corporation, Chicago, a, corporation of Illinois Application December a, 1943, Serial No. 512,709

11 Claims. (cl. 250-164) This invention relates to cathode ray tubes in which the optical imageappearing on the fluorescent screen is displayed in more than one color. More particularly this invention relates to a cathode ray tube for use in the reproduction of television images in color.

One method commonly used at presentin the art employs, in conjunction with the receiving cathode ray tube, a number of color filters, which are sequentially inserted at some point along the path between a fluorescent screen, upon which the received image appears in black and white, and the eye of theobserver. These filters are commonly used in the form of color segments of a disc which is rotated, for example between the fluorescent screen and the projection screen. As well-knownin color optics, it is possible synthetically to reconstruct a color image by first analyzing it into a certain number of primary elemental colors, usually two or three. The color segments lust referred to are therefore chosen to correspond to the color elements into which the image is analyzed at the television transmitter.

The method just described sufiers from several The use of color filters inevitably leads to the absorption of a certain amount of light, therefore demanding upon the fluorescent screen an image having greater brilliance than would otherwise be necessary. Likewise, as at present used in the art, the cathode ray tube employs a fluorescent screen of a translucent nature, and the image consequently must be directly projected through the body of such screen. This brings about the disadvantage that some of the light which is produced upon the inner surface of the fluorescent screen is absorbed by the fluorescent material itself, in the passage of such light through the screen. Furthermore, the need of a transparent or translucent supporting material upon which to place the screen, greatly limits the range of materials from which such support may be constructed. Since the screen and its support must dissipate a considerable amount of energy in the form of heat, it has been found that the use of material such as glass, sets a practical limit to the accelerating voltages and beam current densities which may be employed, thus in turn limiting thedegree of brightness which may be imparted to the image produced upon the fluorescent screen.

In an effort to overcome certain of the disadvantages just pointed out, it has been proposed to use a screen support formed of an opaque material and toview the screen from the same side upon which the electron beam impinges.

Such type of tube will hereinafter be referred to as a front surface projectiontube.

However, when a tube oi' this last-mentioned type is employed in connection with a rotating color filter disc, as above-described, .for color television purposes, certain difliculties are encountered. The color filter disc can nolonger be placed at a relatively short distance from the fluorescent screen, since the transparent window through which the light to be color filtered leaves the cathode ray tube, is situated at a relatively great distance from the screen. This leads to a considerable divergence of the light emanating from any single illuminated elemental point located upon the fluorescent screen. In fact such divergence is so great that each spot of light on the fluorescent screen spreads out so as substantially to cover the entire area of such transparent window. From this last consideration it can be, seen that a color filter must have each elemental color thereof distributed over an area approximately equal to the size of the entire transparent window, bringing it about that when it is necessary for a change to occur, from one color to another, the whole surface of the filter in front and, consequently, compromised solutions have been been proposed in which the time of overlap between two successive filters has been made as small as practicable. In order to bring about such reduction of overlap, an increase in the diameter of the color filter disc may be made.

However, with standards of picture transmission at present employed, it can be computed that for a picture size of approximately 4 inches x 5 inches, and a permissible color overlapping time of about 5 per cent of the duration oi. each color image, the diameter of such color filter disc would have to be somewhat greater than 50 inches. Therefore, it can be seen that such'a solution of the problems involved would be wholly impracticable, in comparison with the color filter disc having a diameter of a little over 8 inches, which would be needed for this same picture size, were a direct projection cathode ray tube to be employed therewith.

The present invention overcomes the difliculties abovedescribed and at the same time allows the advantages of front surface projection to be obtained, without necessitatingv the employment of iilter discsofsuch prohibitive size as the one Just mentioned by way of illustration.

ments of the color filter disc have been replaced by corresponding segments of fluorescent materials, yielding, respectively, the desired discrete elemental colors. Furthermore, there is provided an arrangement for rotating this polychromatically fluorescing disc within the envelope of the cathode ray tube, so that the electron beam can impinge directly upon the various fluorescent materials with which one side of the disc is coated. In order to secure rotation of the disc within the body of the tube itself, there are employed devices familiar in the art for the construction of X-ray tubes having rotating anodes, for example an induction motor, the stator of which motor is located outside the tube and the rotor of which is located within the tube. The speed of rotation, which must correspond with that employed for color analysis at the transmitter, may be synchronized therewith by means familiar in the art. Likewise, the present invention contemplates the use of a disc formed of metal, which is better able to withstand relatively high accelerating voltages and beam current densities, since front surface projection may be employed with such disc. Likewise, the rotation of such fludrescent screen, causing the utilization at a given moment of only a fractional part herewith, still further facilities heat dissipation therefrom, since only a portion thereof is at one time subjected to heating.

One object of this invention is to provide a polychromatically reproducing cathode ray tube in which relatively high accelerating voltages and beam current densities maybe employed, without causing undue heating of the image screen of the tube.

Another object of this invention is to provide a cathode ray tube for use as a color television receiver, in which moving color filter elements external to the tube are eliminated.

Still another purpose of this invention is to provide, in a cathode ray tube, an image screen having a number of discrete portions which are successively placed in the path of the electron beam and removed therefrom, each of these discrete portions yielding a luminous output differing from that yielded by any other portion thereof, and each portion corresponding to an elemental analytic color used in transmission.

Still another object of this invention is to provide a color television cathode ray tube receiver in which a direct projection type fluorescent screen is provided with discrete portions, each fluorescing so as to yield a different color, and in which a device is provided for moving such screen within the tube so that only a portion thereof is subjected to impact by the electron beam at any given moment.

Yet another purpose of this invention is to provide a color television cathode ray tube receiver in which the overlapping time between successive colors is greatly reduced, without the need of employing moving elements of prohibitively great size.

I quence at the transmitter and controlled by any suitable means, as well-known in the art.

Another purpose of this invention is to provide a polychromatically reproducing cathode ray tube in which the successive images, having diverse color values, are each directly produced in the respective colors and are directly viewed, without the interposition between the eye of the observer and the fluorescent screen of any light absorbing color filter, so that luminous efllciency of reproduction is greatly enhanced thereby.

Reference is now made to the accompanying drawing where:

Fig. 1 shows a color television cathode ray tube employing front surface projection and embodying this invention;

Fig. 2 shows another embodiment of this invention in which a direct projection type cathode ray tube is used;

Fig. 3 shows a diagrammatic plan view of the disc.

Referring now to Fig. 1, the cathode ray tube I0 is formed with a longitudinal section I I and an off-set section iii. In section l2, are located devices for producing, projecting and scanningly moving an electron beam. Such devices may be of any form familiar in the art and are here schematically represented by electron gun ll, electron lens or accelerating electrode l4, and two pair of deflection coils ii and I8 respectively.

The electron beam enteringlongitudinal section ll of the tube impinges upon a fluorescent coating I! carried upon one surface of a rotating disc ll. This surface of disc is is not coated uniformly with a single fluorescent material, but is divided into a number of segments corresponding to the number or a multiple thereof of synthetical color elements employed, and each of these segments is coated with a phosphor yielding a color corresponding to one of these synthetical elements used by the particular transmitter from which signals are being received and from which a given image is to be reconstituted. As shown in Fig. 3, disc I 8 may be conveniently divided into three segments colored red, green and blue.

Tube i0 is provided with another elongated off-set portion l9, housing approximately onehalf of disc it, the portion so housed being shielded from any possible heating action due to impingement thereupon of the electron stream. Disc i8 is mounted upon a shaft 20, rotating in suitable bearings 2| and 22. Between such bearings, shaft 20 carries thereupon the rotor 23, which is actuated by the rotary electro-magnetic inductive field derived from an external stator 24, and passing through wall 25 of tube to. Such method of driving a rotating element within an evacuated tube is well-known in the X-ray art and therefore detailed description of the motor drive is considered to be unnecessary. The speed of rotation is synchronized with the speed of color se- For example, with actual standards of transmission now in use, disc i8 may, for example, be divided into six color segments and the driving motor may make 1200 R. P. M., such particular values being understood to be purely illustrative.

Reference is now made to Fig. 2, where cathode ray tube 30 is formed so that one extremity thereof 3|, has a diameter somewhat greater than twice that of the portion of the tube which the electron beam actually traverses. Electron gun l3 and electron lens or accelerating electrode it, may be of any convenient types familiar in the art, There is here shown by way of an illustral and I6, but it is to be understood that electromagnetically deflecting coils, similar to those shown in Fig. 1, may alternatively be employed.

In this form of invention, rotating disc 3| is formed of transparent material, the fluorescent coating 32 is placed upon the inner surface thereof and the light from such coating passes, outwardly from the tube, by transmission through the body of the disc and the outer wall of portion 3| of the tube. The inner surface of disc 3| is divided into segments, each coated with a phosphor emitting a different color, as described in connection with Fig. 1.

Disc 3| is mounted upon shaft 33, held in a suitable bearing, 34, and driven by bevel'gears 35 and 36, gear 36 being in turn mounted upon shaft 31, which latter is held in suitable bearings 38 and 39, and driven by an external-internal motor of the induction type which may be similar to that already described in Fig. 1, and whichhere bears corresponding reference numerals upon the various elements thereof.

It will-be evident that the color cathode ray tube shown in Fig. 2 is of the direct projection type, instead of the front surface projection type shown in the embodiment of Fig. 1'. By placing the disc normal to the plane of incidence of the electron'beam. maximum spread angle thereof is secured, this being accomplished by the useof an indirect mechanical drive of the disc.

' In the case of both embodiments of this invention here shown, the fluorescent screen is constituted by several discrete segments and accordingly it is possible, if so desired, to-introduce the screen into the glass envelope of the cathode ray tube in separate portions, which portions may be assembled with one another to build up the disc and screen, after such insertion has taken place. This yields the further advantage that the glass envelope, which must house a fluorescent screen support of approximately twice the diameter 0f the support which would'be employed in the case of black and white television, can be provided with a relatively small aperture for in sertlon of the various elements therewithin. This necessitates the employment of only relatively small size glass seals duringthe course of manufacture, thus facilitating construction of the tube. It is likewise to be noted that the power needed for rotating the fluorescent color screensof this invention will be much less than that which would be required to drive color filter discs ofthe usual types, since such color filter discs would be located externally to the tube and therefore would encounter air resistance when being rotated.

When high power tubes are employed, the enhanced cooling effects afforded by this invention become of increasing importance. -This is due, inter alia, to the fact that certain phosphors may lose, for example, as much as 80 percent of their luminosity, if the temperature of the phosphor be raised from ordinary room temperature to 300 C. Accordingly. a screen which would have its luminosity greatly decreased, which effect would therefore entail a loss of brilliancy of the repro.-- duced image, if such screen were employed in the stationary manner of the prior art, may satisfactorily be used while kept in motion by means of the apparatus employed in carrying out the present invention, due to the cooling eifect, previously described, secured by the use of a rotating and partly shielded fluorescent screen.

Another advantage of this invention is that color reproduction is obtained by an additive method. so that the electronic energy is more emciently employed, by being wholly converted, at any given instant, into the desired color, instead of being spread over the entire spectrum of white light and then only a portion of this spectrum being actually used, as is done by sub- Of course, in all such tubes tractive processes. the afterglow should be of very short duration.

What is claimed is:

1. In a cathode ray tube, the method of securv ing polychromatic reproduction with discrete phosphors exhibiting diverse colors when excited by an electron stream, which includes the steps of subjecting a first phosphor to the electron stream, removing said phosphor from the path of said stream, and placing another phosphor in said path, said discrete phosphors being selected so as to yield respective luminous outputs located in different portions of the visible spectrum.

2. Method according to claim 1, in which said discrete phosphors yield luminous outputs corresponding to the analytic color elements employed in color reproduction electro-optical devices.

- 3. Method according to claim 1, in which said discrete phosphors, when excited by said electron stream, are viewed from the same side upon which they are respectively struck by said electron stream.

4. Method according to'claim 1, in which said discrete phosphors, when excited by said electron stream, are viewed from the opposite side from the side upon which they are respectively trum from the portion wherein is located the luminous output of the remaining phosphors, and means for determining a coincidental temporal and spatial relationship of said electron stream and each of said phosphors, in a predetermined sequential manner.

7. Cathode ray tube according to claim 6, in which said means for the determination of said coincidental spatial and temporal relationship includes means for giving to said phosphors translatory motion in a circular path, the plane of which path is substantially normal to the angle of incidence or said electron stream thereupon, in at least two dimensions.

8. Cathode ray tube for color television reproduction, including an evacuated envelope, means for producing an electron stream therewithin, a disc-like support located within said tube and segmentally coated with phosphors exhibiting discrete color output from one another, said support being shielded at any one instant for at least which said disc-like support is formed of trans- 5 parent material such as glass, and said evacuated envelope includes a transparent window located on the side of said support which is not coated,

through which support and which window the light yielded by said phosphors is, in turn, projected.

11. Cathode ray tube for color television reception, including an evacuated envelope, means for producing therewithin an electron stream, means for scanning with said stream, a disc, means for rotating said disc so that substantially all portions of one surface thereof pass successively across the scanning field, at least two phosphors yielding diiferent colors and segmentally coated upon said surface of said disc, and means for utilizing the luminous output of the electron excited portion of said disc coating excited at a given instant.

CONSTANTLN S. SZEGHO.

REFERENCES CITED The following references are of record in the file of this patent:

UNITED STATES PATENTS Number Name Date 2,086,718 Knoll July 13, 1937 2,268,523 Clothier et al Dec. 30, 1941 2,330,682 Clothier et al. Sept. 28, 1943 2,281,638 Sukumlyn May 5, 1942 I 2,104,862 Henroteau Jan. 11, 1938 1,974,911 Becker Sept. 25, 1934 2,289,978 Malter July 14, 1942 2,303,563 Law Dec. 1, 1942 2,277,009 Von Ardenne Mar. 17, 1942 2,319,789 Chambers May 25, 1943 2,335,180 Goldsmith Nov. 23, 1943 FOREIGN PATENTS Number Country Date 508,712 Great Britain Feb. 20, 1939 328,680 Great Britain Feb. 1, 1929 395.578 Great Britain Dec. 5, 1932 318,331 Great Britain 'Apr. 22, 1929

US2422937A 1943-12-03 1943-12-03 Tube for color television Expired - Lifetime US2422937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US2422937A US2422937A (en) 1943-12-03 1943-12-03 Tube for color television

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2422937A US2422937A (en) 1943-12-03 1943-12-03 Tube for color television

Publications (1)

Publication Number Publication Date
US2422937A true US2422937A (en) 1947-06-24

Family

ID=24040212

Family Applications (1)

Application Number Title Priority Date Filing Date
US2422937A Expired - Lifetime US2422937A (en) 1943-12-03 1943-12-03 Tube for color television

Country Status (1)

Country Link
US (1) US2422937A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2602903A (en) * 1950-11-13 1952-07-08 Kenneth T Snow Cathode-ray tube
US2644031A (en) * 1949-04-22 1953-06-30 Time Inc Scanning device
US2681946A (en) * 1949-09-24 1954-06-22 Rca Corp Color image reproduction system
US2687450A (en) * 1954-08-24 Color television
US3121872A (en) * 1958-03-14 1964-02-18 Telefunken Ag Signal recording system and method
US3138796A (en) * 1958-09-03 1964-06-23 Edward L Withey Three-dimensional display apparatus
US3140415A (en) * 1960-06-16 1964-07-07 Hughes Aircraft Co Three-dimensional display cathode ray tube
US3231746A (en) * 1961-06-09 1966-01-25 Bendix Corp Image intensifier device using electron multiplier
US3599026A (en) * 1968-08-28 1971-08-10 Tokyo Shibaura Electric Co Projection tube with rotatable cooled display screen
US3600625A (en) * 1968-08-31 1971-08-17 Tokyo Shibaura Electric Co Projection picture tube with rotating fluorescent screen

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB318331A (en) * 1928-06-22 1929-09-05 Coryton Ernest Carr Roberts Improvements in television and telephotographic apparatus
GB328680A (en) * 1930-07-22 1930-05-05 John Henry Owen Harries Improvements in and relating to the production and/or modulation of periodic electric currents
GB395578A (en) * 1931-12-03 1933-07-20 Ig Farbenindustrie Ag Improvements relating to radioscopy
US1974911A (en) * 1929-12-27 1934-09-25 Buecker Heinrich Television
US2086718A (en) * 1934-01-27 1937-07-13 Telefunken Gmbh Electron tube
US2104862A (en) * 1934-01-04 1938-01-11 Electronic Television Company Television method and apparatus
GB508712A (en) * 1938-01-18 1939-07-05 Scophony Ltd Improvements in or relating to cathode ray tube apparatus
US2268523A (en) * 1938-03-15 1941-12-30 Stewart L Clothier Method and apparatus for television communication
US2277009A (en) * 1938-12-06 1942-03-17 Ardenne Manfred Von Television image projection tube
US2281638A (en) * 1940-05-17 1942-05-05 Thomas W Sukumlyn Electron camera
US2289978A (en) * 1940-11-30 1942-07-14 Rca Corp Television picture tube screen
US2303563A (en) * 1941-05-09 1942-12-01 Rca Corp Cathode ray tube and luminescent screen
US2319789A (en) * 1941-10-03 1943-05-25 Chambers Torrcnce Harrison Television
US2330682A (en) * 1938-03-15 1943-09-28 Stewart L Clothier Method and apparatus for television communication
US2335180A (en) * 1942-01-28 1943-11-23 Alfred N Goldsmith Television system

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB318331A (en) * 1928-06-22 1929-09-05 Coryton Ernest Carr Roberts Improvements in television and telephotographic apparatus
US1974911A (en) * 1929-12-27 1934-09-25 Buecker Heinrich Television
GB328680A (en) * 1930-07-22 1930-05-05 John Henry Owen Harries Improvements in and relating to the production and/or modulation of periodic electric currents
GB395578A (en) * 1931-12-03 1933-07-20 Ig Farbenindustrie Ag Improvements relating to radioscopy
US2104862A (en) * 1934-01-04 1938-01-11 Electronic Television Company Television method and apparatus
US2086718A (en) * 1934-01-27 1937-07-13 Telefunken Gmbh Electron tube
GB508712A (en) * 1938-01-18 1939-07-05 Scophony Ltd Improvements in or relating to cathode ray tube apparatus
US2330682A (en) * 1938-03-15 1943-09-28 Stewart L Clothier Method and apparatus for television communication
US2268523A (en) * 1938-03-15 1941-12-30 Stewart L Clothier Method and apparatus for television communication
US2277009A (en) * 1938-12-06 1942-03-17 Ardenne Manfred Von Television image projection tube
US2281638A (en) * 1940-05-17 1942-05-05 Thomas W Sukumlyn Electron camera
US2289978A (en) * 1940-11-30 1942-07-14 Rca Corp Television picture tube screen
US2303563A (en) * 1941-05-09 1942-12-01 Rca Corp Cathode ray tube and luminescent screen
US2319789A (en) * 1941-10-03 1943-05-25 Chambers Torrcnce Harrison Television
US2335180A (en) * 1942-01-28 1943-11-23 Alfred N Goldsmith Television system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2687450A (en) * 1954-08-24 Color television
US2644031A (en) * 1949-04-22 1953-06-30 Time Inc Scanning device
US2681946A (en) * 1949-09-24 1954-06-22 Rca Corp Color image reproduction system
US2602903A (en) * 1950-11-13 1952-07-08 Kenneth T Snow Cathode-ray tube
US3121872A (en) * 1958-03-14 1964-02-18 Telefunken Ag Signal recording system and method
US3138796A (en) * 1958-09-03 1964-06-23 Edward L Withey Three-dimensional display apparatus
US3140415A (en) * 1960-06-16 1964-07-07 Hughes Aircraft Co Three-dimensional display cathode ray tube
US3231746A (en) * 1961-06-09 1966-01-25 Bendix Corp Image intensifier device using electron multiplier
US3599026A (en) * 1968-08-28 1971-08-10 Tokyo Shibaura Electric Co Projection tube with rotatable cooled display screen
US3600625A (en) * 1968-08-31 1971-08-17 Tokyo Shibaura Electric Co Projection picture tube with rotating fluorescent screen

Similar Documents

Publication Publication Date Title
US3715611A (en) Cathode-ray tube containing cerium activated yttrium silicate phosphor
US5233183A (en) Color image intensifier device and method for producing same
US2296908A (en) Color television system
US2446440A (en) Color television tube
US2532511A (en) Television
US2335180A (en) Television system
US2821637A (en) Light image reproduction devices
US2577368A (en) Color television receiving apparatus
US3229089A (en) An x-ray system for producing a specimen image in color
US2446791A (en) Color television tube
US2804500A (en) Color interpretation system
US2543477A (en) Kinescope for the reproduction of color images
USRE25169E (en) Colored light system
US2297478A (en) Device for the production of visible or photographic images with the aid of a beam of neutrons as depicting radiation
US5463433A (en) Image projector
US2337980A (en) System for color television receivers
US2330171A (en) Television receiving system
US2605335A (en) Light amplifier
US2200285A (en) Television in natural color
US2461515A (en) Color television system
US2415226A (en) Method of and apparatus for producing luminous images
US2555545A (en) Image intensifier
US2479820A (en) Color television system
US2476619A (en) Cascade phosphor screen
US2590764A (en) Color television image tube