US2408033A - Coupling system - Google Patents

Coupling system Download PDF

Info

Publication number
US2408033A
US2408033A US435016A US43501642A US2408033A US 2408033 A US2408033 A US 2408033A US 435016 A US435016 A US 435016A US 43501642 A US43501642 A US 43501642A US 2408033 A US2408033 A US 2408033A
Authority
US
United States
Prior art keywords
guide
wave
folded
plane
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US435016A
Inventor
Alfred C Beck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Priority to US435016A priority Critical patent/US2408033A/en
Priority claimed from US435017A external-priority patent/US2401751A/en
Application granted granted Critical
Publication of US2408033A publication Critical patent/US2408033A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/103Hollow-waveguide/coaxial-line transitions

Definitions

  • This invention relates to microwave coupling devices and more particularly to wave-guide transmission line coupling arrangements.
  • impedance matching over a band of frequencies between a coaxial line or conductive channel and a main wave guide, and unilateral wave propagation in the wave guide may be effected without the use of a piston.
  • reflector by means of a rectangular wave guide folded or looped in the plane of its short transverse dimension, that is, in the plane of polarization of the propagated electric wave component.
  • the end apertures of the folded guide are superimposed and joined to an end orifice of the main guide and the coaxial line is connected to the longitudinal center point of the looped guide.
  • each of the two branches of the folded guide includes a twisted 90 degree polarity changer for securing colinearly polarized wave components in the superimposed folded guide apertures.
  • the folded guide coupling is suitable for use in many microwave systems, the polarity changers aside from being more or less difficult to manufacture, cause a certain amount of loss and it now appears desir. able to employ folded wave guide coupling sections having no quadrature polarity changers of l the twisted type.
  • rectangular wave guides may be bent or curved in the plane of the long transverse dimensions or, stated differently, in a plane perpendicular to the polarization plane of the electric component utilized in the wave guide, without substantial loss and, in fact, with only slightly greater loss than that sustained in guides folded or curved in the plane of polarization.
  • quadrilateral generically includes the terms rectangular and square, and the term rectangular excludes square.
  • the wave components or wavelets in the two branches of the loop section have, at the longitudinal center point mentioned above, equal phase angles and are similarly polarized.
  • the wavelets at the superimposed apertures are in phase angle agreement and are similarly polarized, whereby a wave of maximum intensity is propagated unilaterally in the main quadrilateral guide.
  • the coaxial line impedance equals th combined parallel impedance of the branches or folded guide sections, and the serially connected apertures of the loop section have a total impedance equal to that of the quadrilateral guide.
  • the folded guide section functions as a transformer for matching the impedances of the coaxial line and the main Wave-guid over a band of microwave carrier frequencies.
  • the line channel 2 is connected through a rectangular wave guide section 3 folded or looped in the plane of its long, transverse dimension b to a quadrilateral main wave guide or dielectric channel l and a radiating or receiving antenna such as a horn 5.
  • the inner conductor 6 of coaxial line 2 is attached to the folded guide Moreover, as explained in the copending' section 3 at the longitudinal mid-point I of the looped guide through a multi-frequency coupling device of the type disclosed in applicants copending application mentioned above and comprising an adjustable sleeve member 8. As explained in my application mentioned above, the sleeve is adjusted and a particular value for the short transverse dimension a of the loop 3 selected such that the exposed.
  • exciter portion 9 of the inner conductor 6 has the proper length and impedance for matching over a carrier band of frequencies the characteristic impedance Z of line 2 to the total folded guide impedance comprising the impedances of the two loop branches I and I I connected in parallel.
  • the line 2 has a characteristic impedance Z equal to 100 ohms
  • each of the loop branches II] and I I has a characteristic impedance 22 equal to 200 ohms
  • the two impedances in parallel equal the line impedance.
  • the main dielectric channel has a characteristic impedance, IZ, which may be taken as th value of its input or send end impedance since the length of the main guide 4 is great relative to the wave-length employed and may be considered infinite.
  • the characteristic impedances of the apertures are serially associated and their total impedance, GZ, equals the send end im edance and the characteristic impedance of guide 4.
  • the curvature in the coupling section 3 does not shift the polarity of these wavelets since the curvature is only in a plane perpendicular to the direction of polarization.
  • the branches I i) and II are of equal length so that in apertures I2 and I3 the wavelets are similarly polarized, as shown by arrows 20 and 2!. and combine to form a maximum vector. resultant 23 in the main wave-guide channel 4.
  • cou ling device a wave-guide coupling section folded in the plane perpendicular to the plane of polarization of the electric vector and a ma dielec ric channel. functions to match the impedances of a line channel and a dielectric channe without reflection losses and without losses due to chan ing the polaritv of the wave component. over a h nd of carrier fre uencies including several hundred me acycles.
  • the combination functions to produce ,unilateral or one way propagation in the quadrilateral wave guide 4.
  • the folded wave-guide coupling section and the main wave guide may each have a square instead of a rectangular cross section.
  • any other type of line such as a balanced line, and even a dielectric wave-guide channel, may be employed in place of the coaxial line; and the invention may be utilized for coupling a balanced line to a dielectric channel or for coupling two dielectric channels.
  • a dielectric channel-transmission line coupling device comprising a rectangular wave-guide section for conveying wave components polarized in the plane of one transverse dimension, said section being looped or curved in the plane of the nel and an aperture at an intermediate point for junction with said line, the two paths connecting said intermediate point with said channel being electrically equal, said guide being energized with waves polarized in the plane of its short transverse dimension and folded in the plane of its long transverse dimension.
  • a quadrilateral wave guide having a given impedance and an end orifice, a transmission line having a difierent impedance, and means for matching said impedances and for producing unilateral propagation in said guide comprising a rectangular wave-guide section having an impedance intermediate said impedances and a curvature in the plane'of its long transverse dimension, said section having superimposed end apertures joined to an end orifice of said quadrilateral guide, said line projecting into said section at its mid-point in a direction coincident with the short transverse dimension of said section.
  • a quadrilateral wave guide having an end orifice. a coaxial line, and means for connecting said guide and line and matching their ime nedances over a band of frequencies several hundred megacycles wide, said means comprising a rectan ular wave guide folded in the plane of the transverse dimension perpendicular to the polarization of the transverse e ectric wave and havin superim osed end apertures joined to an end orifice of said quadri ateral uide.

Description

Sept. 24, 1946. A. c. Em
COUPLING- SYSTEM Filed March l7,' 1942 v INVENTOR A. C. BECK I BYQ A TTOR/VEV Patented Sept. 24, 1946 COUPLING SYSTEM Alfred 0. Beck, Red Bank, N. J., assignor to Bell Telephone Laboratories, Incorporated, New York, N. 2., a corporation of New York Application March 17, 19h, Serial No. 435,016
(Cl. 17s-44) 4 Claims.
This invention relates to microwave coupling devices and more particularly to wave-guide transmission line coupling arrangements.
As disclosed in the copending application of H. T. Friis, Serial No. 435,017, filed concurrently with the instant application, impedance matching over a band of frequencies between a coaxial line or conductive channel and a main wave guide, and unilateral wave propagation in the wave guide, may be effected without the use of a piston. reflector by means of a rectangular wave guide folded or looped in the plane of its short transverse dimension, that is, in the plane of polarization of the propagated electric wave component. In this arrangement the end apertures of the folded guide are superimposed and joined to an end orifice of the main guide and the coaxial line is connected to the longitudinal center point of the looped guide. Also, for multifrequency operation, each of the two branches of the folded guide includes a twisted 90 degree polarity changer for securing colinearly polarized wave components in the superimposed folded guide apertures. While the folded guide coupling is suitable for use in many microwave systems, the polarity changers aside from being more or less difficult to manufacture, cause a certain amount of loss and it now appears desir. able to employ folded wave guide coupling sections having no quadrature polarity changers of l the twisted type. In this connection applicant has discovered that, contrary to the teaching of the prior art, rectangular wave guides may be bent or curved in the plane of the long transverse dimensions or, stated differently, in a plane perpendicular to the polarization plane of the electric component utilized in the wave guide, without substantial loss and, in fact, with only slightly greater loss than that sustained in guides folded or curved in the plane of polarization.
It is one object of this invention to secure in single frequency and multifrequency systems, each comprising a wave guide coupled to a transmission line, unilateral propagation in the wave guide without utilizing a reflecting piston and with minimum loss.
It is another object of this invention to match the impedances of a dielectric channel and a line channel Without using auxiliary adjustable apparatus or quadrature polarity changers of the twisted wave-guide type.
It is still another object of this invention to obtain a multifrequency folded wave-guide coupler which does not include twisted portions and which is simpler in construction than the couplers heretofore utilized.
As used herein the term quadrilateral generically includes the terms rectangular and square, and the term rectangular excludes square.
In accordance with the preferred embodiment guide having a considerably larger impedance as,
for example, l-Z, through a rectangular wave guide having characteristic impedance of 22 and folded in the plane containing its long transverse dimension which plane is perpendicular to the plane of polarization of the electric vector. The end apertures of the'folded wave guide section are superimposed so that their short trans verse dimensions are aligned. The coaxial line is coupled through aimultifrequency matching device of the type disclosed in applicants copending application, Serial No. 429,358, filed February 1942, to the longitudinal center point of the rectangular folded wave guide; and the superimposed end apertures are joined to an end orifice of the main quadrilateral wave guide. In operation, the wave components or wavelets in the two branches of the loop section have, at the longitudinal center point mentioned above, equal phase angles and are similarly polarized. Since the end apertures of the loop are equally distant from the center point and since the folded guide is not bent in the plane of polarization, the wavelets at the superimposed apertures are in phase angle agreement and are similarly polarized, whereby a wave of maximum intensity is propagated unilaterally in the main quadrilateral guide. Friis application, the coaxial line impedance equals th combined parallel impedance of the branches or folded guide sections, and the serially connected apertures of the loop section have a total impedance equal to that of the quadrilateral guide. Hence, the folded guide section functions as a transformer for matching the impedances of the coaxial line and the main Wave-guid over a band of microwave carrier frequencies.
Th invention will be more fully understood from a perusal of the followingspecification taken in conjunction with the drawing on which like reference characters denote elements of similar function and on which:
a conductive channel or coaxial line connected thereto. The line channel 2 is connected through a rectangular wave guide section 3 folded or looped in the plane of its long, transverse dimension b to a quadrilateral main wave guide or dielectric channel l and a radiating or receiving antenna such as a horn 5. The inner conductor 6 of coaxial line 2 is attached to the folded guide Moreover, as explained in the copending' section 3 at the longitudinal mid-point I of the looped guide through a multi-frequency coupling device of the type disclosed in applicants copending application mentioned above and comprising an adjustable sleeve member 8. As explained in my application mentioned above, the sleeve is adjusted and a particular value for the short transverse dimension a of the loop 3 selected such that the exposed. exciter portion 9 of the inner conductor 6 has the proper length and impedance for matching over a carrier band of frequencies the characteristic impedance Z of line 2 to the total folded guide impedance comprising the impedances of the two loop branches I and I I connected in parallel. Thus, assuming the line 2 has a characteristic impedance Z equal to 100 ohms, each of the loop branches II] and I I has a characteristic impedance 22 equal to 200 ohms, and the two impedances in parallel equal the line impedance. The main dielectric channel has a characteristic impedance, IZ, which may be taken as th value of its input or send end impedance since the length of the main guide 4 is great relative to the wave-length employed and may be considered infinite. Inasmuch as the apertures l2 and I3 are superimposed with their transverse dimensions a aligned, the characteristic impedances of the apertures are serially associated and their total impedance, GZ, equals the send end im edance and the characteristic impedance of guide 4.
In operation, assuming device I is a transmitter, while the energies conveyed between the device I and the horn 5, and propagated in the branches I0 and I I, flow relative to point 1 in opposite or bilateral directions, the combination including looped section 3 functions to produce only unilateral propagation in the dielectric channel 4. Arrows I4, I5, I6 and I1 denote the directions of propa ation in line 2. branch I0, 'branch I I and guide 4. respectively. The wavelets propagated in directions [5 and I6 have, at center point I, the same (zero) phase angle and are similarly polarized as shown by arrows I8 and IS in a'direction ali ned with the short transverse dimension a and the exposed exciter 9. that is. in a vertical direction in the plane of the drawing. Contrary to the effect secured in a system of the copending Friis application, the curvature in the coupling section 3 does not shift the polarity of these wavelets since the curvature is only in a plane perpendicular to the direction of polarization. Moreover. the branches I i) and II are of equal length so that in apertures I2 and I3 the wavelets are similarly polarized, as shown by arrows 20 and 2!. and combine to form a maximum vector. resultant 23 in the main wave-guide channel 4.
Thus. in accordance with the invention the system or combination illustrated by Figs. 1 and 2 and comprising a multi-frequency coaxial lineto-wave guide. cou ling device, a wave-guide coupling section folded in the plane perpendicular to the plane of polarization of the electric vector and a ma dielec ric channel. functions to match the impedances of a line channel and a dielectric channe without reflection losses and without losses due to chan ing the polaritv of the wave component. over a h nd of carrier fre uencies including several hundred me acycles. At the same time the combination functions to produce ,unilateral or one way propagation in the quadrilateral wave guide 4.
Although the invention has been explained in connection with a certain embodiment thereof, it should be understood that it is not to be limited to this arrangement inasmuch as other apparatus may be employed in successfully practicing the invention. More particularly, the folded wave-guide coupling section and the main wave guide may each have a square instead of a rectangular cross section. Also, any other type of line, such as a balanced line, and even a dielectric wave-guide channel, may be employed in place of the coaxial line; and the invention may be utilized for coupling a balanced line to a dielectric channel or for coupling two dielectric channels.
What is claimed is:
1. A dielectric channel-transmission line coupling device comprising a rectangular wave-guide section for conveying wave components polarized in the plane of one transverse dimension, said section being looped or curved in the plane of the nel and an aperture at an intermediate point for junction with said line, the two paths connecting said intermediate point with said channel being electrically equal, said guide being energized with waves polarized in the plane of its short transverse dimension and folded in the plane of its long transverse dimension.
3. In combination, a quadrilateral wave guide having a given impedance and an end orifice, a transmission line having a difierent impedance, and means for matching said impedances and for producing unilateral propagation in said guide comprising a rectangular wave-guide section having an impedance intermediate said impedances and a curvature in the plane'of its long transverse dimension, said section having superimposed end apertures joined to an end orifice of said quadrilateral guide, said line projecting into said section at its mid-point in a direction coincident with the short transverse dimension of said section. a
4. In a system for transmitting transverse electric waves. a quadrilateral wave guide having an end orifice. a coaxial line, and means for connecting said guide and line and matching their ime nedances over a band of frequencies several hundred megacycles wide, said means comprising a rectan ular wave guide folded in the plane of the transverse dimension perpendicular to the polarization of the transverse e ectric wave and havin superim osed end apertures joined to an end orifice of said quadri ateral uide. the c aracteristic impedance of t e rectan ular guide bein equal to twice t at of said line and to one-half that of the cuadrilateral guide, a multifreouency impeda ce ou er co nectin said line to the mid-point of said fo ded guide. whereby corn-
US435016A 1942-03-17 1942-03-17 Coupling system Expired - Lifetime US2408033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US435016A US2408033A (en) 1942-03-17 1942-03-17 Coupling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US435017A US2401751A (en) 1942-03-17 1942-03-17 Coupling system
US435016A US2408033A (en) 1942-03-17 1942-03-17 Coupling system

Publications (1)

Publication Number Publication Date
US2408033A true US2408033A (en) 1946-09-24

Family

ID=27030393

Family Applications (1)

Application Number Title Priority Date Filing Date
US435016A Expired - Lifetime US2408033A (en) 1942-03-17 1942-03-17 Coupling system

Country Status (1)

Country Link
US (1) US2408033A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2479650A (en) * 1944-11-01 1949-08-23 Philco Corp Selective wave guide energy meter
US2504333A (en) * 1944-04-29 1950-04-18 Rca Corp Radio wave device
US2531447A (en) * 1947-12-05 1950-11-28 Bell Telephone Labor Inc Hybrid channel-branching microwave filter
US2619539A (en) * 1945-10-03 1952-11-25 Roberto M Fano Mode changer
US4712110A (en) * 1985-12-26 1987-12-08 General Dynamics, Pomona Division Five-port monopulse antenna feed structure with one dedicated transmit port

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2504333A (en) * 1944-04-29 1950-04-18 Rca Corp Radio wave device
US2479650A (en) * 1944-11-01 1949-08-23 Philco Corp Selective wave guide energy meter
US2619539A (en) * 1945-10-03 1952-11-25 Roberto M Fano Mode changer
US2531447A (en) * 1947-12-05 1950-11-28 Bell Telephone Labor Inc Hybrid channel-branching microwave filter
US4712110A (en) * 1985-12-26 1987-12-08 General Dynamics, Pomona Division Five-port monopulse antenna feed structure with one dedicated transmit port

Similar Documents

Publication Publication Date Title
US2593120A (en) Wave guide transmission system
US2445896A (en) Dielectric wave guide coupling arrangement for use in two-way signaling systems
US2540839A (en) Wave guide system
US2436828A (en) Coupling arrangement for use in wave transmission systems
US2232179A (en) Transmission of guided waves
US2682610A (en) Selective mode transducer
US3731235A (en) Dual polarized diplexer
US2531447A (en) Hybrid channel-branching microwave filter
US2795763A (en) Microwave filters
US2531419A (en) Hybrid branching circuits
GB597662A (en) Improvements in and relating to ultra high frequency coupling devices and systems
US2728050A (en) Device for modulating ultra-short waves in a transmission line
TW201633601A (en) Dual band antenna configuration
US2748352A (en) Non-reciprocal wave transmission networks
US3715688A (en) Tm01 mode exciter and a multimode exciter using same
US2408032A (en) Coupling arrangement
US2530818A (en) Variable phase shifter for circularly polarized microwaves
US2704351A (en) Wave guide junction matching device
US2408033A (en) Coupling system
US2961618A (en) Selective mode transducer
US2410838A (en) Coupling system
US2401751A (en) Coupling system
JPS6014502A (en) 4-port circuit
GB635760A (en) Improvements in electric signalling systems incorporating wave-guide connections
US2897457A (en) Resonant directional coupler with square guide