US2357706A - Heating and cooling system - Google Patents

Heating and cooling system Download PDF

Info

Publication number
US2357706A
US2357706A US449029A US44902942A US2357706A US 2357706 A US2357706 A US 2357706A US 449029 A US449029 A US 449029A US 44902942 A US44902942 A US 44902942A US 2357706 A US2357706 A US 2357706A
Authority
US
United States
Prior art keywords
steam
water
valve
molds
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US449029A
Inventor
Gustav A Toepperwein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US449029A priority Critical patent/US2357706A/en
Application granted granted Critical
Publication of US2357706A publication Critical patent/US2357706A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/007Tempering units for temperature control of moulds or cores, e.g. comprising heat exchangers, controlled valves, temperature-controlled circuits for fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/81Sound record

Definitions

  • This invention relates to heat control systems and particularly to a method of and means for increasing the efiiciency of systems wherein certain units are alternately heated with high temperature fluids and cooled with relatively low temperature fluids.
  • the record molds are cooled during the molding operation and heated during the remaining portion of the pressing cycle. In this manner the shellac compound or other record material flows evenly between the matrices without excessive pressure at any point during the heating portion of the cycle.
  • the record molds are generally heated by steam and cooled by cold water alternately passed through the interior of the molds.
  • the .procedure has been to pass the emergent steam and cold water into a common outlet pipe where it was fed to a cooling tower and used over again as the cold water supply with a certain amount being by-passed for boiler feed water. This arrangement of course, required a certain boiler capacity to maintain an adequate supply of steam at the desired temperature.
  • the present invention is directed to a diversion valve system whereby the steam and cold water are separated after passing through the molds, the steam condensate being returned to the boiler feedwater tank and the cooling water passing on to the cooling tower.
  • the principal object of the invention is to provide improved means for facilitating the manufacture of phonograph records.
  • Another object of the invention is to provide means for reducing the boiler capacity of a heating system for record presses.
  • a further object of the invention is to provide improved means for heating record molds and for conserving heat energy of the heating system.
  • a further object of the invention is to provide an improved phonograph record-pressing system having a minimum heat source capacity for a given number of presses operating in alternate short time cycles'of heating and cooling.
  • Fig. 1 is a diagrammatic arrangement of a phonograph record press heating and cooling system embodying the invention.
  • Fig. 2 is a cross-sectional view of a thermostatic valve unit used in the system of Fig. 1;
  • Fig. 3 is a detail view taken along the line 33 of Fig. 2.
  • a plurality of phonograph record presses are shown diagrammatically as having lower fixed molds, 5, 6, 'l and 8 and respective movable molds l3, ll, l2 and I3.
  • Each mold has an individual valve such as shown at IE to 22, inclusive, each valve being adjusted individually to vary the steam and cold water to its respective mold in accordance with the position and size of each mold. After these valves are once adjusted they remain fixed.
  • Steam is supplied to the molds from a steam generator or boiler over a pipe 26, the steam being fed to Valves 28, 29, and 3
  • Cold water from a supply tank 33 is fed over a pipe 3 shown in dotted lines to valves 28, 29, 30 and 3
  • thermostatic valve unit 31 Emergent steam and water from the molds 5 and i0 pass through a common pipe 36 to a thermostatic valve unit 31; the steam and water from molds 6 and I I pass through a common pipe 38 to thermostatic valve unit 39; the steam and water from molds l and I2 pass through common pipe 40 to thermostatic valve unit 4!; and the steam and water from molds 8 and I3 pass through pipe 42 to thermostatic valve unit 43.
  • and43 have two outlets, one shown by the solid line 45 which is a pipe leading to a feed-water tank 46, while the other outlet is shown by the dotted lines 48 which is a pipe leading to a cooling tower 49.
  • auxiliaries such as pumps and main valves have not been shown. It is also to be understood-that many more presses than the four illustrated may be connected to a single steam generator.
  • the shellac compound In the manufacture of shellac compound records with the above-described system, the shellac compound, after preheating, is placed on the lower fixed molds 5, 6, l and 8 and the upper molds I0, ll, l2 and I3 are moved in contact with the compound and pressure applied. During the period that the molds are separated, steam is passed therethrough to heat the stamping matrices to a certain temperature. This is accomplished by adjusting valves 28, 29, 30 and 3
  • and 43 are adjusted to cut off the steam from pipe 26 and feed cold water to the molds from the supply 33 over pipe 34.
  • the thermostatic units 31, 39, 4i and 43 the units automatically adjust themselves to pass the cold water to pipe 48 and to the cooling tower 48.
  • each press may be operated at 'difierent times, but in each case the respective thermostatic unit will divert the steam to the feed-water tank and the cold water to the cooling tower.
  • Fig. 2 wherein is shown any one of units 3'7, 38, 4! and 63 such as unit 37, having the common inlet pipe 36, a steam and condensation outlet pipe 45 and the cold water outlet pipe 48.
  • the valve assembly comprises a casing of two sections 50 and Si bolted together by bolts such as shown at 53. Longitudinally positioned within the casing is a thermostatic element 55 of the bellows type, one end of which is connected to an actuating rod 56 on which is mounted a valve 51 adjacent the other end of rod 56.
  • the valve 51 upon expansion of the element 55, will seat itself against valve seat 59 and upon contraction of the thermostatic element 55 will seat itself against valve seat 60.
  • the thermostatic element 55 is in a chamber 62, the chamber 62 being connected through a passage 63 with valve chamber 58.
  • connects chamber 58 with outlet pipe 45 while a passage 68 connects chamber 58 with outlet pipe 48.
  • a positioning and adjust ng plate 64 is provided at the end of the casing 58. Plugs ,65 and 66 are provided for cleaning the passage 63 when necessary.
  • the end of the actuating rod 56 for the valve 51 is supported in a spider 61, as shown in Fig. 3. Although the valve unit is shown in a horizontal position, it is to be understood that the valve will function in a vertical or any other position and that the exact form may not be as illustrated.
  • the present invention prevents the mixing of the high and low temperaturefluids by diverting or separating the steam and condensate from the i6 cold water immediately after each has served its purpose.
  • By returning the steam and co de back to the feed water for the boilers it increases the temperature of the feed water above what it would be if the mixture were returned, thus requirlng less fuel or boiler capacity to supply a given number of operating presses,
  • the cooling water is also not heated by the steam and less cooling tower capacity is required.
  • the invention provides better heating of the record molds, resulting in a longer life for the molds and the production of a higherpercentage of salable phonograph records.
  • This is accomplished by constructing the valve 51 and seat in the form of an orifice valve which holds the steam within the molds to approximately the condensation point.
  • This result may also be accomplished by the use of a conventional steam trap in conjunction with the diversion valve, in which event the steam outlet 51-458 could be the same as water outlet 51--59 Without the diversion valve unit, 'a steam trap is not practical because of its inability to adequately handle the amount of cooling water necessary.
  • a system for alternately heating and cooling an element with steam and water including a common outlet valve mechanism for both said steam and water, said mechanism comprising a casing having an entrance opening for passing both said steam and water, an exit opening for said water only and an exit opening for steam condensate, a thermostat in said casing, and a valve head actuated by said thermostat foralternately'opening and closing said exit openings, said exit openings for said condensate being proportioned to hold said steam within said element to substantially the condensation point thereof.
  • a valve mechanism comprising a casing having an inlet opening for steam and water, an exit opening for said water, said exit opening being sufficiently large to accommodate the passage of said water, and an exit opening for steam condensate, said exit opening for said condensate being in the form of an orifice valve to hold the steam within said mold to approximately the condensation point thereof, a thermostat; within said casing, and a valve head for alternately closmg and opening said exit openings.
  • a system for cyclically heating an elemen by steam and water, respectively, and diverting steam condensate and said water into separate channels including a valve mechanism comprising'a casing, a thermostat within said casing, a
  • pair of outlet ports in said casing one for steam bined condensate and steam, and said water.
  • valve head connected to said thermostat for closing said water outlet port and opening said condensate port when said thermostat is contacted by said steam and for closing said condensate outlet port and opening said water port when said thermostat is contacted by said water, said water outlet port being sufliciently large to permit the ready flow of said water therethrough, and said condensate outlet port being in the form of an orifice valve to hold said steam within said element to approximately the condensation point.

Description

P 1944 G. A. TOEPPERWEIN 2,357,706
HEATING AND COOLING SYSTEM Filed June 29, 1942 Fea L Water Tank .TV 29 18 6 E 19 .40 41 L p v 21 I i Cold Water Sup 6V 59 65 4a 64 i a \iifi 605% VA. YZEPPERWQM,
INVENTOR.
ATTORNEY.
Patented Sept. 5, 1944 HEATING AND COOLING SYSTEM Gustav A. Toepperwein, Los Angeles, Calif., assignor to Radio Corporation of America, a corporation of Delaware Application June 29, 1942, Serial No. 449,029
Claims.
This invention relates to heat control systems and particularly to a method of and means for increasing the efiiciency of systems wherein certain units are alternately heated with high temperature fluids and cooled with relatively low temperature fluids.
In the manufacture of many articles such as disc type phonograph records, the record molds are cooled during the molding operation and heated during the remaining portion of the pressing cycle. In this manner the shellac compound or other record material flows evenly between the matrices without excessive pressure at any point during the heating portion of the cycle. The record molds are generally heated by steam and cooled by cold water alternately passed through the interior of the molds. In the past the .procedure has been to pass the emergent steam and cold water into a common outlet pipe where it was fed to a cooling tower and used over again as the cold water supply with a certain amount being by-passed for boiler feed water. This arrangement of course, required a certain boiler capacity to maintain an adequate supply of steam at the desired temperature.
The present invention is directed to a diversion valve system whereby the steam and cold water are separated after passing through the molds, the steam condensate being returned to the boiler feedwater tank and the cooling water passing on to the cooling tower. By this arrangement the boiler capacity required for a given number of presses has been considerably reduced, while better and more eificient heating of the record molds has been obtained, as will be explained hereinafter. Better heating of the molds has resulted in longer life of the molds and the production of -a higher percentage of salable records.
The principal object of the invention, therefore, is to provide improved means for facilitating the manufacture of phonograph records.
Another object of the invention is to provide means for reducing the boiler capacity of a heating system for record presses.
A further object of the invention is to provide improved means for heating record molds and for conserving heat energy of the heating system.
A further object of the invention is to provide an improved phonograph record-pressing system having a minimum heat source capacity for a given number of presses operating in alternate short time cycles'of heating and cooling.
Although the novel features which are believed to be characteristic of this invention are pointed out with particularity in the claims appended hereto, the manner of its organization and the mode of its operation will be better understood by referring to the following description, read in conjunction with the accompanying drawing, in which:
Fig. 1 is a diagrammatic arrangement of a phonograph record press heating and cooling system embodying the invention.
Fig. 2 is a cross-sectional view of a thermostatic valve unit used in the system of Fig. 1; and,
Fig. 3 is a detail view taken along the line 33 of Fig. 2.
Referring now to Fig. 1, a plurality of phonograph record presses are shown diagrammatically as having lower fixed molds, 5, 6, 'l and 8 and respective movable molds l3, ll, l2 and I3. Each mold has an individual valve such as shown at IE to 22, inclusive, each valve being adjusted individually to vary the steam and cold water to its respective mold in accordance with the position and size of each mold. After these valves are once adjusted they remain fixed. Steam is supplied to the molds from a steam generator or boiler over a pipe 26, the steam being fed to Valves 28, 29, and 3|. Cold water from a supply tank 33 is fed over a pipe 3 shown in dotted lines to valves 28, 29, 30 and 3|, these valves being either manually or automatically operated so that either steam or cold water is fed to the respective molds 5 to 8 and Ill to l3.
Emergent steam and water from the molds 5 and i0 pass through a common pipe 36 to a thermostatic valve unit 31; the steam and water from molds 6 and I I pass through a common pipe 38 to thermostatic valve unit 39; the steam and water from molds l and I2 pass through common pipe 40 to thermostatic valve unit 4!; and the steam and water from molds 8 and I3 pass through pipe 42 to thermostatic valve unit 43. The thermostatic valve units 31, 39, 4| and43 have two outlets, one shown by the solid line 45 which is a pipe leading to a feed-water tank 46, while the other outlet is shown by the dotted lines 48 which is a pipe leading to a cooling tower 49. In the above description and drawing, auxiliaries such as pumps and main valves have not been shown. It is also to be understood-that many more presses than the four illustrated may be connected to a single steam generator.
In the manufacture of shellac compound records with the above-described system, the shellac compound, after preheating, is placed on the lower fixed molds 5, 6, l and 8 and the upper molds I0, ll, l2 and I3 are moved in contact with the compound and pressure applied. During the period that the molds are separated, steam is passed therethrough to heat the stamping matrices to a certain temperature. This is accomplished by adjusting valves 28, 29, 30 and 3| so as to connect pipe 26 to the molds, thus passing steam from boiler 25 to the molds, the upper and lower molds receiving a quantity of steam proportioned by the setting of valves l to 22. If all presses are operating, steam passes through common pipes 36, 38, 48 and 42 to the thermostatic valve units 31, 39, 4| and 43, these units operating to pass the steam and condensation through pipe 45 to the feed-water tank 46. During the nextportion of the cycle of operation the valves 28, 29, 30 and 3| are adjusted to cut off the steam from pipe 26 and feed cold water to the molds from the supply 33 over pipe 34. When the cold water is passed to the thermostatic units 31, 39, 4i and 43, the units automatically adjust themselves to pass the cold water to pipe 48 and to the cooling tower 48. In actual operation each press may be operated at 'difierent times, but in each case the respective thermostatic unit will divert the steam to the feed-water tank and the cold water to the cooling tower.
To illustrate the automatic operation of the diversion valve unit, reference is made to Fig. 2, wherein is shown any one of units 3'7, 38, 4! and 63 such as unit 37, having the common inlet pipe 36, a steam and condensation outlet pipe 45 and the cold water outlet pipe 48. The valve assembly comprises a casing of two sections 50 and Si bolted together by bolts such as shown at 53. Longitudinally positioned within the casing is a thermostatic element 55 of the bellows type, one end of which is connected to an actuating rod 56 on which is mounted a valve 51 adjacent the other end of rod 56. The valve 51, upon expansion of the element 55, will seat itself against valve seat 59 and upon contraction of the thermostatic element 55 will seat itself against valve seat 60. The thermostatic element 55 is in a chamber 62, the chamber 62 being connected through a passage 63 with valve chamber 58. A passage 6| connects chamber 58 with outlet pipe 45 while a passage 68 connects chamber 58 with outlet pipe 48. A positioning and adjust ng plate 64 is provided at the end of the casing 58. Plugs ,65 and 66 are provided for cleaning the passage 63 when necessary. The end of the actuating rod 56 for the valve 51 is supported in a spider 61, as shown in Fig. 3. Although the valve unit is shown in a horizontal position, it is to be understood that the valve will function in a vertical or any other position and that the exact form may not be as illustrated.
When steam passes to the thermostatic element 55 through the pipe 36, the valve expands, moving the rod 56 and the valve 51 to the right. This movement of the valve 51 closes the outlet from chamber 58 to passage 68 and to the pipe 48 and permits the steam to pass from the chamber 58 to passage 6| and to the pipe 45 and back to the feed-water tank 46. When the cold water enters the chamber 62, it contracts the thermostatic element 55, moving the rod 56 to the left to close the steam outlet 51-68. This movement opens the cold water outlet 51-59 to pipe 48, and the cold water is permitted to flow to the pipe 48 and to the cooling tower 48.
From the above it is readily realized that the present invention prevents the mixing of the high and low temperaturefluids by diverting or separating the steam and condensate from the i6 cold water immediately after each has served its purpose. By returning the steam and co de back to the feed water for the boilers, it increases the temperature of the feed water above what it would be if the mixture were returned, thus requirlng less fuel or boiler capacity to supply a given number of operating presses, The cooling water is also not heated by the steam and less cooling tower capacity is required.
As mentioned above, it has also been found that the invention provides better heating of the record molds, resulting in a longer life for the molds and the production of a higherpercentage of salable phonograph records. This is accomplished by constructing the valve 51 and seat in the form of an orifice valve which holds the steam within the molds to approximately the condensation point. This result may also be accomplished by the use of a conventional steam trap in conjunction with the diversion valve, in which event the steam outlet 51-458 could be the same as water outlet 51--59 Without the diversion valve unit, 'a steam trap is not practical because of its inability to adequately handle the amount of cooling water necessary.
Thus, from the above, it will be noted that a more efficient transfer of the potential heat of the steam to the mold is obtained which, of itself, reduces the boiler capacity over that heretofore required. However, in addition a more uniform and rapid heating of the molds is obtained, which produces records in shorter time cycles. By the combination of the orifice steam valve or trap and the automatic diversion of the steam condensate and cooling water to their respective sources, more and a higher percentage of good records are obtainable.
I claim as my invention:
1. In a system for alternately heating and cooling an element with steam and water, respectively, including a common outlet valve mechanism for both said steam and water, said mechanism comprising a casing having an entrance opening for passing both said steam and water, an exit opening for said water only and an exit opening for steam condensate, a thermostat in said casing, and a valve head actuated by said thermostat foralternately'opening and closing said exit openings, said exit openings for said condensate being proportioned to hold said steam within said element to substantially the condensation point thereof. 6
2. In a system for alternately heating and cooling a mold with steam and water, respectively, and for diverting said Waterto its, source and steam condensate to its source, said system including a valve mechanism comprising a casing having an inlet opening for steam and water, an exit opening for said water, said exit opening being sufficiently large to accommodate the passage of said water, and an exit opening for steam condensate, said exit opening for said condensate being in the form of an orifice valve to hold the steam within said mold to approximately the condensation point thereof, a thermostat; within said casing, and a valve head for alternately closmg and opening said exit openings.
3. The method of cyclically heating and cooling an element by steam and water, respectively, and separating said water and steam and steam condensate which is formed, comprising passing said steam and water alternately through said element, passing said steam and condensate formed therefrom, and water from said element through a common passage with separate exits for said cooling water and combined steam and aas'moo steam condensate, releasing said water through said water-exit at the rate of flow of said water through said element, releasing said combined steam and condensate at a rate to hold said steam within said element to approximately the condensation point thereof, and controlling the releasing of said water and said combined steam and condensate by the temperature of said 'comand said waterby the temperature of said steam and said water.
5. A system for cyclically heating an elemen by steam and water, respectively, and diverting steam condensate and said water into separate channels including a valve mechanism comprising'a casing, a thermostat within said casing, a
. pair of outlet ports in said casing, one for steam bined condensate and steam, and said water.
and controlling the diverting of said condensate condensate and the otherfor said water, and a valve head connected to said thermostat for closing said water outlet port and opening said condensate port when said thermostat is contacted by said steam and for closing said condensate outlet port and opening said water port when said thermostat is contacted by said water, said water outlet port being sufliciently large to permit the ready flow of said water therethrough, and said condensate outlet port being in the form of an orifice valve to hold said steam within said element to approximately the condensation point.
GUSTAV A. TOEPPERWEIN.
US449029A 1942-06-29 1942-06-29 Heating and cooling system Expired - Lifetime US2357706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US449029A US2357706A (en) 1942-06-29 1942-06-29 Heating and cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US449029A US2357706A (en) 1942-06-29 1942-06-29 Heating and cooling system

Publications (1)

Publication Number Publication Date
US2357706A true US2357706A (en) 1944-09-05

Family

ID=23782584

Family Applications (1)

Application Number Title Priority Date Filing Date
US449029A Expired - Lifetime US2357706A (en) 1942-06-29 1942-06-29 Heating and cooling system

Country Status (1)

Country Link
US (1) US2357706A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2580566A (en) * 1948-09-04 1952-01-01 American Viscose Corp Bra forming device
US2620635A (en) * 1950-09-09 1952-12-09 Erwin W Mautner Cooling system and control
US2915298A (en) * 1955-04-22 1959-12-01 Phillips Petroleum Co Temperature control system
US2952446A (en) * 1958-09-17 1960-09-13 Melvin L Holland Heating and cooling alternator valve
US3024008A (en) * 1958-01-23 1962-03-06 Borg Warner Three-pipe air conditioning systems
US3166121A (en) * 1961-01-27 1965-01-19 Svenska Flaektfabriken Ab Space heat exchange unit
US3191668A (en) * 1960-12-29 1965-06-29 Trane Co Pump control system
US3191667A (en) * 1960-12-29 1965-06-29 Trane Co Air conditioning system and pump controls therefor
US3259175A (en) * 1964-06-15 1966-07-05 Robert A Kraus Heating and cooling system for molds
US3288205A (en) * 1964-11-02 1966-11-29 Borg Warner Three-pipe air conditioning system and control arrangement therefor
US3318371A (en) * 1963-07-01 1967-05-09 Borg Warner Air conditioning systems
US3384159A (en) * 1966-12-21 1968-05-21 Frank Corp Alan I W Plastic molding apparatus
US3406744A (en) * 1965-09-01 1968-10-22 Sulzer Ag Heating and air-conditioning apparatus
US3630686A (en) * 1965-01-15 1971-12-28 Horst Rothert Apparatus for continuously polycondensing and polymerizing monomers
US3847209A (en) * 1972-04-21 1974-11-12 Churchill Instr Co Ltd Temperature controlled systems
US4145176A (en) * 1971-02-26 1979-03-20 Townsend & Townsend Cable molding apparatus for accomplishing same
US4945980A (en) * 1988-09-09 1990-08-07 Nec Corporation Cooling unit
US4975766A (en) * 1988-08-26 1990-12-04 Nec Corporation Structure for temperature detection in a package
US5014777A (en) * 1988-09-20 1991-05-14 Nec Corporation Cooling structure
US5023695A (en) * 1988-05-09 1991-06-11 Nec Corporation Flat cooling structure of integrated circuit
US5036384A (en) * 1987-12-07 1991-07-30 Nec Corporation Cooling system for IC package
US5293754A (en) * 1991-07-19 1994-03-15 Nec Corporation Liquid coolant circulating system
US5522452A (en) * 1990-10-11 1996-06-04 Nec Corporation Liquid cooling system for LSI packages
US6026896A (en) * 1997-04-10 2000-02-22 Applied Materials, Inc. Temperature control system for semiconductor processing facilities
US6102113A (en) * 1997-09-16 2000-08-15 B/E Aerospace Temperature control of individual tools in a cluster tool system
US6775996B2 (en) 2002-02-22 2004-08-17 Advanced Thermal Sciences Corp. Systems and methods for temperature control
US20070295013A1 (en) * 2004-04-07 2007-12-27 Albert Bauer Cooling And/or Heating Device
US20100187709A1 (en) * 2008-10-16 2010-07-29 Zhong Wang System and method for rapidly heating and cooling a mold
US9156198B2 (en) 2011-07-27 2015-10-13 Flextronics Ap, Llc Temperature controlled molding of composite components
US9270940B1 (en) 2014-09-30 2016-02-23 International Business Machines Corporation Remote object sensing in video

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2580566A (en) * 1948-09-04 1952-01-01 American Viscose Corp Bra forming device
US2620635A (en) * 1950-09-09 1952-12-09 Erwin W Mautner Cooling system and control
US2915298A (en) * 1955-04-22 1959-12-01 Phillips Petroleum Co Temperature control system
US3024008A (en) * 1958-01-23 1962-03-06 Borg Warner Three-pipe air conditioning systems
US2952446A (en) * 1958-09-17 1960-09-13 Melvin L Holland Heating and cooling alternator valve
US3191668A (en) * 1960-12-29 1965-06-29 Trane Co Pump control system
US3191667A (en) * 1960-12-29 1965-06-29 Trane Co Air conditioning system and pump controls therefor
US3166121A (en) * 1961-01-27 1965-01-19 Svenska Flaektfabriken Ab Space heat exchange unit
US3318371A (en) * 1963-07-01 1967-05-09 Borg Warner Air conditioning systems
US3259175A (en) * 1964-06-15 1966-07-05 Robert A Kraus Heating and cooling system for molds
US3288205A (en) * 1964-11-02 1966-11-29 Borg Warner Three-pipe air conditioning system and control arrangement therefor
US3630686A (en) * 1965-01-15 1971-12-28 Horst Rothert Apparatus for continuously polycondensing and polymerizing monomers
US3406744A (en) * 1965-09-01 1968-10-22 Sulzer Ag Heating and air-conditioning apparatus
US3384159A (en) * 1966-12-21 1968-05-21 Frank Corp Alan I W Plastic molding apparatus
US4145176A (en) * 1971-02-26 1979-03-20 Townsend & Townsend Cable molding apparatus for accomplishing same
US3847209A (en) * 1972-04-21 1974-11-12 Churchill Instr Co Ltd Temperature controlled systems
US5036384A (en) * 1987-12-07 1991-07-30 Nec Corporation Cooling system for IC package
US5023695A (en) * 1988-05-09 1991-06-11 Nec Corporation Flat cooling structure of integrated circuit
US4975766A (en) * 1988-08-26 1990-12-04 Nec Corporation Structure for temperature detection in a package
US4945980A (en) * 1988-09-09 1990-08-07 Nec Corporation Cooling unit
US5014777A (en) * 1988-09-20 1991-05-14 Nec Corporation Cooling structure
US5522452A (en) * 1990-10-11 1996-06-04 Nec Corporation Liquid cooling system for LSI packages
US5293754A (en) * 1991-07-19 1994-03-15 Nec Corporation Liquid coolant circulating system
US6026896A (en) * 1997-04-10 2000-02-22 Applied Materials, Inc. Temperature control system for semiconductor processing facilities
US6499535B2 (en) 1997-09-16 2002-12-31 B/E Aerospace Temperature control of individual tools in a cluster tool system
US6247531B1 (en) 1997-09-16 2001-06-19 B/E Aerospace Temperature control of individual tools in a cluster tool system
US6102113A (en) * 1997-09-16 2000-08-15 B/E Aerospace Temperature control of individual tools in a cluster tool system
US6775996B2 (en) 2002-02-22 2004-08-17 Advanced Thermal Sciences Corp. Systems and methods for temperature control
US20070295013A1 (en) * 2004-04-07 2007-12-27 Albert Bauer Cooling And/or Heating Device
US8051903B2 (en) * 2004-04-07 2011-11-08 Albert Bauer Cooling and/or heating device
US20100187709A1 (en) * 2008-10-16 2010-07-29 Zhong Wang System and method for rapidly heating and cooling a mold
US9005495B2 (en) * 2008-10-16 2015-04-14 Flextronics Ap, Llc System and method for rapidly heating and cooling a mold
US9156198B2 (en) 2011-07-27 2015-10-13 Flextronics Ap, Llc Temperature controlled molding of composite components
US9270940B1 (en) 2014-09-30 2016-02-23 International Business Machines Corporation Remote object sensing in video

Similar Documents

Publication Publication Date Title
US2357706A (en) Heating and cooling system
US1582704A (en) Die for phonograph records
US2813683A (en) Combination hot water heating and room heating system
US2555012A (en) Fluid flow control system and valve therefor
US2268361A (en) Heat exchange apparatus
US2231090A (en) Ejector
US4586531A (en) Valve arrangement
US3396783A (en) Temperature-controlled press platen
US2942858A (en) Heat exchange apparatus
US1403493A (en) Temperature-controlling apparatus for internal-combustion engines
US2372502A (en) Inner tube radiation with internal metallic conduction
US2409376A (en) Method and means for controlling the cooling of convective fluid streams
US2444711A (en) Oil temperature control valve
US2119153A (en) Regulation of state values
US2664275A (en) Tankless heater and by-passing valve construction therefor
US3406744A (en) Heating and air-conditioning apparatus
US3144208A (en) Controlled fluid unit
US1504422A (en) Molding die
US2328874A (en) Refrigerating apparatus
US2307341A (en) System for providing hot wash water
US1854750A (en) Pressure and temperature valve device for hot water supplies
US1385450A (en) Radiator
US2214147A (en) Mixing device
US1407130A (en) bowman
US2414953A (en) Valve control for fuel oil heaters