US2319323A - Siliconized silicon carbide connection and method of making the same - Google Patents

Siliconized silicon carbide connection and method of making the same Download PDF

Info

Publication number
US2319323A
US2319323A US212540A US21254038A US2319323A US 2319323 A US2319323 A US 2319323A US 212540 A US212540 A US 212540A US 21254038 A US21254038 A US 21254038A US 2319323 A US2319323 A US 2319323A
Authority
US
United States
Prior art keywords
silicon carbide
silicon
joint
shapes
siliconized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US212540A
Inventor
Albert H Heyroth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unifrax 1 LLC
Original Assignee
Carborundum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carborundum Co filed Critical Carborundum Co
Application granted granted Critical
Publication of US2319323A publication Critical patent/US2319323A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/148Silicon, e.g. silicon carbide, magnesium silicide, heating transistors or diodes

Definitions

  • This invention relates to silicon carbide articles particularly those suitable for use as electrical resistors, and to a. method of making the same.
  • Silicon carbide resistors particularly those made by recrystallizing the silicon carbide, have been found to be highly useful, but their use has been limited by the fact that they could be made only in simple shapes, for example in straight rod-like shapes, and by the difliculty in providing such resistors with suitable cold ends at low cost.
  • Other objects oi. the in ventioo. will become apparent from the following disclosure.
  • Fig. l is a plan view of one type of resistor
  • Fig. 2 is a side plan view partly in section, oi another embodiment
  • Fig. 3 is a plan view of another embodiment.
  • Fig. i is a view of still another embodiment.
  • Silicon carbide rods made by recrystallizing the compact variety of silicon carbide, or mire tures of the compact and regular varieties by passing a current of electricity through the rod are one tom of resistor that can be used.
  • resistor that can be used.
  • it of the article illustrated in Figure i can made by subjecting rods of recrystallized silicon carbide, as referred to above, or of porous carbon, such as charcoal, bonded by a carbonizable material, such as casein, to a siliconizing treatment at the temperature at which molten silicon rapidly penetrates such bodies. This temperature is believed to be above approximately 1800 C.
  • Such rods will be referred to hereafter as being of siliconized silicon carbide, such reference being proper because silicon carbide is formed in the porous carbon body by the silicon treatment and, naturally, there is silicon carbide in the body made by siliconizing the recrystallized silicon carbide body referred to above.
  • the article illustrated in Figure l is made by welding the component parts into an integral structure through the use of silicon.
  • the ends to be joined are coated with a paste comprising carbon, a carbonizable binder, such as casein, and water and are then brought together on a plate of carbon, which can be heated to a high temperature by virtue of its being part of an electrical circuit.
  • a small quantity of granular silicon is placed at the joint in contact with the parts to be joined current is then passed through the carbon plate to raise its temperature rapidly.
  • the parts being joined and the granular silicon likewise are raised in temperature, until the silicon permeates the porous carbon rod to form substantial amounts of silicon carbide crystals within the rods.
  • the cementing substance used at the joints is likewise acted upon by the silicon to form a weld uniting the individual parts into an integral object.
  • a splicing or welding composition which 1 have found highly suitable for cementing the joints between the separate parts of the resistors is made up of the following ingredients:
  • a helical element i3 the central terminal rod l4 and the outer sleeve or terminal ii are made up separately from a mix of porous carbon and casein glue similar to that used in making'terminal elements ll of Figure 1.
  • These parts are then joined together at points l6 by means of a welding mixture and subjected to a temperature of at least 1800 C. in the presence of granular silicon, whereupon the individual parts are permeated by siliconand transformed into a siliconized silicon carbide body. At the same time the joint become welded to form an integral article.
  • the terminal rod I4 and terminal sleeve I are maintained in spaced relationship by means of an insulating refractory cement il.. If desired, the individual parts may be treated with silicon first to form the separate silicon carbide bodies and later welded together in the manner described.
  • Figure 3 illustrates a silicon carbide resistor element of conventional rod shape which has been cold-ended in accordance with the invention.
  • the main body portion of the rod l8 ismade of recrystallized silicon carbide formed by passing a. current of electricity through a rod formed from the regular or compact variety of silicon carbide.
  • silicon carbide end pieces It made from the carbonaceous mix referred to above in Figure 2 are cemented by means of welding composition such as that referred to above to form joints 20.
  • the end pieces l9 and joints 20 are then subjected to a temperature above. approximately 1800 C. in
  • FIG. 4 illustrates a helical heating element having a main body portion 2! and the two straight and or contact portions 22 joined by welds at the points 22;
  • the parts 2i and 22 are siliconized silicon carbide bodies formed from pcrous carbon bodies which have been siliconized by subjecting them in the presence of silicon to a temperature in'excess of approximately 1800" C.
  • is formed by extrusion.
  • the separate parts 2i and 22 are cemented together at the points 23, before or after siliconizing, by means of a welding composition such as that previously given and subjected to a ternperature above approximately 1800 C. in the presence of silicon. When the assembly and the silicon are heated to such a' temperature the silicon permeates the joints and parts to integrally unite into an integral resistance element.
  • a welding composition such as that previously given and subjected to a ternperature above approximately 1800 C. in the presence of silicon.
  • silicon shows afinity for carbon as indicated by the formation of silicon carbide from silicon and lampblack at temperatures as low as 120W 0.
  • Silicon carbide with an excess of liquid silicon forms on solidification of the silicon a strong joint of comparatively high electrical con ductivity and high thermal conductivity.
  • a compound resistor comprising a plurality of bodies of predetermined size and contour composed principally of recrystallized silicon carbide and integrally united by means of welds containing silicon admixed with silicon carbide.
  • silicon carbide alrticles comprising a plurality of individually preformed silicon carbide shapes of predetermined size and contour
  • the process of welding a joint between two of the siilcon carbide shapes which comprises coating the joint with a carbonaceous composition and raising the temperature of the joint in the presence of silicon to such a degree and for such a time that the said silicon permeates the joint and the silicon carbide shapes adjacent the joint, and that anintegral article is formed on the solidification of the silicon.
  • the steps which comprise formshapes consisting essentially of silicon carbide, and other of said shapes consisting essentially of porous carbon and a carbonizable substance, placing a silicon carbide shape in approximate contact with a shape of porous carbon and carbonizable substance, joining the two shapes by means or a carbonaceous mix, raisng the temperature of the joint in the presence or silicon until the silicon penetrates the joint to integrally unite the two shapes and also heating the porous carbon shape in the presence of silicon to convert it to siliconized silicon carbide.
  • a cold-ended silicon carbide resistor comprising a main resistor of recrystallized silicon carbide, terminal bodies of siliconized silicon carbide having outwardly extending portions of reduced cross-section and joints of siliconized silicon caribde connecting said main resistor with said terminal bodies in which joints silicon carbide is formed in situ by impregnating a carbonaceous cementing mixture with silicon at tempeatures which cause a strong absorption of elemental silicon into the joint and the adjacent bodies.
  • steps which comprise placing one 01' the said shapes of silicon carbide in approximate contact with one of the said shapes of siliconized silicon carbide, joining the two shapes by means of a carbonaceous mix, and raising the temperature r of the joint just formed in the presence of silicon to such a degree and for such a time that the said silicon permeates the joint and the silicon carbide shapes adjacent the joint, and that an integral article is formed on the solidification of the silicon.
  • a compound resistor comprising a plurality of individually preformed z shapes composed principally of recrystallized silicon carbide, said shapes being of predetermined size and contour
  • steps which comprise placing two of the said shapes in approximate contact with one another, joining the two shapes by means of a carbonaceous mix, and raising the temperature of the joint just formed in the presence of silicon to such a degree and for such a time that the said silicon permeates the joint and the silicon carbide shapes adjacent the joint, and that an integral article is formed on the solidification of the silicon.
  • a cold-ended silicon carbide resistor comprising a main resistor 01 recrystallized silicon carbide, terminal bodies of siliconized silicon carbide, and welded joints of siliconized silicon carbide connecting said main resistor with said terminal bodies in which welded joints silicon carbide is formed in situ by impregnating a carbonaceous cementing mixture wtih silicon at temperatures which cause a strong absorption of elemtal silicon into the joint and the adjacent ALBERT H. HEYROTH.

Description

M 1943 H. HEYROTH 2,319,323
SILICQNIZED SILICON CARBIDE CONNECTIONS AND METHOD OF MAKING THE SAME Filed June 8, 191,8
J5 9 1s 14 ..-.:i=:---.::=--:-.= @:-.=$1 fl' -tjjii" I F" 3 19 20 57: 18 2 19 d r Y 1 :5
INVENTOK A/berf He ro/h ATTORNEY Patented May 18, 1943 SILICONIZED SILICON CARBIDE CONNEC- l'ION AND METHOD OF MAKING THE SAME 'Albert II. Heyroth, Niagara Falls, N. Y., asslgnor to The Carborundum Company, Niagara Falls, N. Y., a corporation of Delaware Application June 8, 1938, Serial No. 212,540 In Great Britain April 11, 1938 10 Claims.
This invention relates to silicon carbide articles particularly those suitable for use as electrical resistors, and to a. method of making the same.
Silicon carbide resistors, particularly those made by recrystallizing the silicon carbide, have been found to be highly useful, but their use has been limited by the fact that they could be made only in simple shapes, for example in straight rod-like shapes, and by the difliculty in providing such resistors with suitable cold ends at low cost.
The "cold ends referred to are the ends of the rod that engage the holding means by which the resistors are supported and by which the electrical energy is supplied to the rod. They ,are called cold ends because they have been made to have a lower specific resistance than that oi the rod proper in order that they might not get as hot as the main body of the resistor. A lower temperature at the ends of the rod has been found to be highly desirable because otherwise the contact between the rod and the supporting member itself, for that matter, would soon destroyed by the high temperature at= tained in the main body of the rod.
@ne object of the present invention is to pro= vide silicon carbide resistors not restricted to the simple shapes heretofore made and to pro= vide suitable terminal portions, or cold ends) at a reasonable cost. Other objects oi. the in ventioo. will become apparent from the following disclosure.
a better understanding the invention may be had by referring to the appended drawing.
Fig. l is a plan view of one type of resistor;
Fig. 2 is a side plan view partly in section, oi another embodiment;
Fig. 3 is a plan view of another embodiment; and
Fig. i is a view of still another embodiment.
Figure 1 represents an embodiment of the present invention comprising a resistor oi hex agonal shape made by integrally uniting a plu= rality of straight, rod-like resistors l0, and terminal members It by means of welds l2.
Silicon carbide rods made by recrystallizing the compact variety of silicon carbide, or mire tures of the compact and regular varieties by passing a current of electricity through the rod are one tom of resistor that can be used. to advantage in the construction of an article such is iiiustrated in Figure 1 members it of the article illustrated in Figure i can made by subjecting rods of recrystallized silicon carbide, as referred to above, or of porous carbon, such as charcoal, bonded by a carbonizable material, such as casein, to a siliconizing treatment at the temperature at which molten silicon rapidly penetrates such bodies. This temperature is believed to be above approximately 1800 C. Such rods will be referred to hereafter as being of siliconized silicon carbide, such reference being proper because silicon carbide is formed in the porous carbon body by the silicon treatment and, naturally, there is silicon carbide in the body made by siliconizing the recrystallized silicon carbide body referred to above.
The article illustrated in Figure l is made by welding the component parts into an integral structure through the use of silicon. The ends to be joined are coated with a paste comprising carbon, a carbonizable binder, such as casein, and water and are then brought together on a plate of carbon, which can be heated to a high temperature by virtue of its being part of an electrical circuit. A small quantity of granular silicon is placed at the joint in contact with the parts to be joined current is then passed through the carbon plate to raise its temperature rapidly. The parts being joined and the granular silicon likewise are raised in temperature, until the silicon permeates the porous carbon rod to form substantial amounts of silicon carbide crystals within the rods. The cementing substance used at the joints is likewise acted upon by the silicon to form a weld uniting the individual parts into an integral object.
A splicing or welding composition which 1 have found highly suitable for cementing the joints between the separate parts of the resistors is made up of the following ingredients:
Grams Flour 200 Carbon 500 Charcoal 200 ture control device.
readily be adapted as an element for a tempera- In Figure 2, a helical element i3, the central terminal rod l4 and the outer sleeve or terminal ii are made up separately from a mix of porous carbon and casein glue similar to that used in making'terminal elements ll of Figure 1. These parts are then joined together at points l6 by means of a welding mixture and subjected to a temperature of at least 1800 C. in the presence of granular silicon, whereupon the individual parts are permeated by siliconand transformed into a siliconized silicon carbide body. At the same time the joint become welded to form an integral article. The terminal rod I4 and terminal sleeve I are maintained in spaced relationship by means of an insulating refractory cement il.. If desired, the individual parts may be treated with silicon first to form the separate silicon carbide bodies and later welded together in the manner described.
Figure 3 illustrates a silicon carbide resistor element of conventional rod shape which has been cold-ended in accordance with the invention.
In Figure 3, the main body portion of the rod l8 ismade of recrystallized silicon carbide formed by passing a. current of electricity through a rod formed from the regular or compact variety of silicon carbide. To each end of this rod silicon carbide end pieces It made from the carbonaceous mix referred to above in Figure 2 are cemented by means of welding composition such as that referred to above to form joints 20. The end pieces l9 and joints 20 are then subjected to a temperature above. approximately 1800 C. in
' the presence of granular silicon which when heatsilicon carbide and/or parts of siliconized silicon carbide made from a mixture of porous car-' bon and carbonizable materials. The latter type of body can be treated prior to the welding operation to form a body containing silicon carbide such resistor bodies. Most important of properties in this respect is its extremely low specific resistance (as compared to recrystallized silicon carbide bodies), whereby in operation considerably less watts are generated and the resulting temperature of the cold-end considerabb' lowered. Such material also has a much lower electrical contact resistance whichtends to prevent it from arcing at the points of contact with the terminals or terminal rods and therefore cuts down on localized heating or hot spots. When such arcs do occur through a faulty mechanical contact there is less tendency to sustain the arc than in the former type ofcold-ended resistor.
It is possible also by the present method of cold-ending resistors to cut down on heat losses through overheating of the terminal portions of resistor elements and also to eliminate costly water-cooling units used with the former type of resistor set-ups.
These and other advantages which readily become apparent are obtained by the use of resised permeates the and rods and joints to integrally unite them to the main rod giving a coldended resistance element.
\ Figure 4 illustrates a helical heating element having a main body portion 2! and the two straight and or contact portions 22 joined by welds at the points 22; The parts 2i and 22 are siliconized silicon carbide bodies formed from pcrous carbon bodies which have been siliconized by subjecting them in the presence of silicon to a temperature in'excess of approximately 1800" C. The helical part 2| is formed by extrusion. The separate parts 2i and 22 are cemented together at the points 23, before or after siliconizing, by means of a welding composition such as that previously given and subjected to a ternperature above approximately 1800 C. in the presence of silicon. When the assembly and the silicon are heated to such a' temperature the silicon permeates the joints and parts to integrally unite into an integral resistance element. At,
such temperatures and even at much lower temperatures silicon shows afinity for carbon as indicated by the formation of silicon carbide from silicon and lampblack at temperatures as low as 120W 0. Silicon carbide with an excess of liquid silicon forms on solidification of the silicon a strong joint of comparatively high electrical con ductivity and high thermal conductivity.
In addition to the specific examples already given, many other shaped articles can m made by welding together parts made oi recrystallized tor elements cold-ended by welding terminal portions of siliconized silicon carbide to a recrystallized central heating portion by means of a weldingcompound and treatment herein presented.
Having described my invention, what I claim is 1. A compound resistor comprising a plurality of bodies of predetermined size and contour composed principally of recrystallized silicon carbide and integrally united by means of welds containing silicon admixed with silicon carbide.
2. In the manufacture of silicon carbide alrticlescomprising a plurality of individually preformed silicon carbide shapes of predetermined size and contour, the process of welding a joint between two of the siilcon carbide shapes which comprises coating the joint with a carbonaceous composition and raising the temperature of the joint in the presence of silicon to such a degree and for such a time that the said silicon permeates the joint and the silicon carbide shapes adjacent the joint, and that anintegral article is formed on the solidification of the silicon.
3. In the manufacture of silicon carbide articles comprising a plurality of individually pre-.
carbonaceous mix, and raising the temperature of the joint in the presence of silicon to such a v degree and for such a time that the said'silicon permeates the joint and the silicon carbide shapes adjacent the joint, and that an integral article is formed on the solidification of the silicon.
4. In the manufacture of silicon carbide resistance elements, the steps which comprise formshapes consisting essentially of silicon carbide, and other of said shapes consisting essentially of porous carbon and a carbonizable substance, placing a silicon carbide shape in approximate contact with a shape of porous carbon and carbonizable substance, joining the two shapes by means or a carbonaceous mix, raisng the temperature of the joint in the presence or silicon until the silicon penetrates the joint to integrally unite the two shapes and also heating the porous carbon shape in the presence of silicon to convert it to siliconized silicon carbide.
5. A cold-ended silicon carbide resistor comprising a main resistor of recrystallized silicon carbide, terminal bodies of siliconized silicon carbide having outwardly extending portions of reduced cross-section and joints of siliconized silicon caribde connecting said main resistor with said terminal bodies in which joints silicon carbide is formed in situ by impregnating a carbonaceous cementing mixture with silicon at tempeatures which cause a strong absorption of elemental silicon into the joint and the adjacent bodies.
6. In the manufacture of silicon carbide reand contour of siliconized silicon carbide, the
steps which comprise placing one 01' the said shapes of silicon carbide in approximate contact with one of the said shapes of siliconized silicon carbide, joining the two shapes by means of a carbonaceous mix, and raising the temperature r of the joint just formed in the presence of silicon to such a degree and for such a time that the said silicon permeates the joint and the silicon carbide shapes adjacent the joint, and that an integral article is formed on the solidification of the silicon. Y
7. In the maniacture of silicon carbide resistance elements comprising at least one individually preformed recrystallized silicon carbide shape predetermine size and contour and at least one individually preformed siliconized silicon carbide shape of predetermined size and contour, the steps which comprise placing one of the said shapes of recrystallized silicon carbide in approximate contact with one of the said shapes 0! siliconized silicon carbide, joining the two shapes by means of a carbonaceous mix. and raising the temperature of the joint just formed in the presence of silicon to such a degree and for such a time that the said silicon permeates the joint and the silicon carbide shapes adjacent the joint, and that an integral article is formed on the solidification oi the silicon.
body with both in the presence of silicon to such a degree and for such a time that the said silicon permeates the Joint and the porous carbon body adjacent the joint, and that an integral article is formed on the solidification oi. the silicon, and until the porous carbon body is converted to a siliconized silicon carbide body.
9. In the manufacture of a compound resistor comprising a plurality of individually preformed z shapes composed principally of recrystallized silicon carbide, said shapes being of predetermined size and contour, the steps which comprise placing two of the said shapes in approximate contact with one another, joining the two shapes by means of a carbonaceous mix, and raising the temperature of the joint just formed in the presence of silicon to such a degree and for such a time that the said silicon permeates the joint and the silicon carbide shapes adjacent the joint, and that an integral article is formed on the solidification of the silicon.
10. A cold-ended silicon carbide resistor comprising a main resistor 01 recrystallized silicon carbide, terminal bodies of siliconized silicon carbide, and welded joints of siliconized silicon carbide connecting said main resistor with said terminal bodies in which welded joints silicon carbide is formed in situ by impregnating a carbonaceous cementing mixture wtih silicon at temperatures which cause a strong absorption of elemtal silicon into the joint and the adjacent ALBERT H. HEYROTH.
US212540A 1938-04-11 1938-06-08 Siliconized silicon carbide connection and method of making the same Expired - Lifetime US2319323A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2319323X 1938-04-11

Publications (1)

Publication Number Publication Date
US2319323A true US2319323A (en) 1943-05-18

Family

ID=10903755

Family Applications (1)

Application Number Title Priority Date Filing Date
US212540A Expired - Lifetime US2319323A (en) 1938-04-11 1938-06-08 Siliconized silicon carbide connection and method of making the same

Country Status (1)

Country Link
US (1) US2319323A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3047826A (en) * 1957-03-29 1962-07-31 Julie Res Lab Inc Precision wire-wound resistance apparatus and resistors
US3094679A (en) * 1960-01-13 1963-06-18 Carborundum Co Silicon carbide resistance body and method of making the same
US3522574A (en) * 1968-01-11 1970-08-04 Kanthal Corp High temperature electric resistance device
US4070197A (en) * 1975-06-25 1978-01-24 Norton Company Gas tight silicon carbide body
DE3311553A1 (en) * 1983-03-30 1984-10-11 Kernforschungsanlage Jülich GmbH, 5170 Jülich METHOD FOR JOINING MOLDED PARTS WITH A SILICON CARBIDE SURFACE
DE3412332A1 (en) * 1983-04-12 1984-10-18 United Kingdom Atomic Energy Authority, London Method for joining silicon carbide bodies
US4487644A (en) * 1981-10-02 1984-12-11 Kernforschungsanlage J/u/ lich Binderless weld-bonding of preshaped sic-base parts into solid bodies
US4762269A (en) * 1985-05-24 1988-08-09 Kernforschungsanlage Julich Gmbh Method of joining molded silicon carbide parts
EP0388666A1 (en) * 1989-03-11 1990-09-26 Bayer Ag Graphite adhesive and process for producing bonded joints between graphite particles
US5139594A (en) * 1990-06-26 1992-08-18 The United States Of America As Represented By The United States Department Of Energy Method for joining ceramic shapes
US6033788A (en) * 1996-11-15 2000-03-07 Case Western Reserve University Process for joining powder metallurgy objects in the green (or brown) state
US6692597B2 (en) * 2001-12-03 2004-02-17 Frederick M. Mako Ceramic joining
US20080131665A1 (en) * 2006-11-30 2008-06-05 Shoko Suyama Ceramics composite member and method of producing the same
WO2009147436A1 (en) * 2008-06-06 2009-12-10 Sandvik Materials Technology Uk Limited Electrical resistance heating elements
US10293424B2 (en) 2015-05-05 2019-05-21 Rolls-Royce Corporation Braze for ceramic and ceramic matrix composite components
US10364195B2 (en) 2014-07-28 2019-07-30 Rolls-Royce Corporation Braze for ceramic and ceramic matrix composite components

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3047826A (en) * 1957-03-29 1962-07-31 Julie Res Lab Inc Precision wire-wound resistance apparatus and resistors
US3094679A (en) * 1960-01-13 1963-06-18 Carborundum Co Silicon carbide resistance body and method of making the same
US3522574A (en) * 1968-01-11 1970-08-04 Kanthal Corp High temperature electric resistance device
US4070197A (en) * 1975-06-25 1978-01-24 Norton Company Gas tight silicon carbide body
US4487644A (en) * 1981-10-02 1984-12-11 Kernforschungsanlage J/u/ lich Binderless weld-bonding of preshaped sic-base parts into solid bodies
DE3311553A1 (en) * 1983-03-30 1984-10-11 Kernforschungsanlage Jülich GmbH, 5170 Jülich METHOD FOR JOINING MOLDED PARTS WITH A SILICON CARBIDE SURFACE
US4526649A (en) * 1983-03-30 1985-07-02 Kernforschungsanlage Julich Gmbh Method of molding bonded parts with silicon carbide surfaces
DE3412332A1 (en) * 1983-04-12 1984-10-18 United Kingdom Atomic Energy Authority, London Method for joining silicon carbide bodies
US4762269A (en) * 1985-05-24 1988-08-09 Kernforschungsanlage Julich Gmbh Method of joining molded silicon carbide parts
EP0388666A1 (en) * 1989-03-11 1990-09-26 Bayer Ag Graphite adhesive and process for producing bonded joints between graphite particles
US5139594A (en) * 1990-06-26 1992-08-18 The United States Of America As Represented By The United States Department Of Energy Method for joining ceramic shapes
US6033788A (en) * 1996-11-15 2000-03-07 Case Western Reserve University Process for joining powder metallurgy objects in the green (or brown) state
US6692597B2 (en) * 2001-12-03 2004-02-17 Frederick M. Mako Ceramic joining
US20040154725A1 (en) * 2001-12-03 2004-08-12 Mako Frederick M. Ceramic joining
US8337648B2 (en) * 2001-12-03 2012-12-25 F.M. Technologies, Inc. Ceramic joining
CN100393509C (en) * 2001-12-03 2008-06-11 A·M·舒瓦茨 Ceramic joining
US20080131665A1 (en) * 2006-11-30 2008-06-05 Shoko Suyama Ceramics composite member and method of producing the same
EP1930306A1 (en) * 2006-11-30 2008-06-11 Kabushiki Kaisha Toshiba Ceramics composite member and method of producing the same
US8956482B2 (en) 2006-11-30 2015-02-17 Kabushiki Kaisha Toshiba Ceramics composite member and method of producing the same
WO2009147436A1 (en) * 2008-06-06 2009-12-10 Sandvik Materials Technology Uk Limited Electrical resistance heating elements
US20110089161A1 (en) * 2008-06-06 2011-04-21 Sandvik Materials Technology Uk Limited Electrical Resistance Heating Element
CN102067720A (en) * 2008-06-06 2011-05-18 山特维克材料技术英国有限公司 Electrical resistance heating elements
RU2477025C2 (en) * 2008-06-06 2013-02-27 Сандвик Матириалз Текнолоджи Ю Кей Лимитед Heating elements of electric resistance
CN102067720B (en) * 2008-06-06 2014-12-17 山特维克材料技术英国有限公司 Electrical resistance heating elements
TWI468067B (en) * 2008-06-06 2015-01-01 Sandvik Materials Technology Uk Ltd Electrical resistance heating elements
US10129931B2 (en) * 2008-06-06 2018-11-13 Sandvik Materials Technology Uk Limited Electrical resistance heating element
US10364195B2 (en) 2014-07-28 2019-07-30 Rolls-Royce Corporation Braze for ceramic and ceramic matrix composite components
US10293424B2 (en) 2015-05-05 2019-05-21 Rolls-Royce Corporation Braze for ceramic and ceramic matrix composite components
US11027351B2 (en) 2015-05-05 2021-06-08 Rolls-Royce Corporation Braze for ceramic and ceramic matrix composite components

Similar Documents

Publication Publication Date Title
US2319323A (en) Siliconized silicon carbide connection and method of making the same
US2093390A (en) Means and method of making electrode joints
EP0016156A4 (en) Porous vitreous carbon heater and method.
US4334350A (en) Method utilizing a porous vitreous carbon body particularly for fluid heating
US2356237A (en) Heating unit
TW457830B (en) Electrical resistance ceramic heating element
US1989736A (en) Method of manufacturing heating elements
US2678370A (en) Method and means for butt welding large metallic surfaces
US3536460A (en) Connections between electrical conductors and carbon bodies and method of making same
US1173688A (en) Method of making a vitreous body of variable composition.
US2993111A (en) Manufacture of electric resistance elements
US2296045A (en) Spark plug electrode
US2158845A (en) Cementing process
US1736745A (en) Electrical heating body and method of manufacturing the same
US1671953A (en) Process for making x-ray anodes
US2680771A (en) High-temperature resistor for
US3345597A (en) Electric heating resistors
US2944239A (en) Electrically conductive element for use at elevated temperatures
US1979052A (en) Electric resistance furnace
US1528388A (en) Resistor for electric heating
US1841537A (en) Electric furnace resistor
US3636620A (en) Porous fluid-cooled electrical conductors and method for making same
US4701933A (en) Method of supplying heat energy to a metal melt or the like and a heating element for use with said method
JP2706726B2 (en) Electric joining method of ceramics
US2357072A (en) Electrical insulating compositions