US2301588A - Treatment of hydrocarbon fluids - Google Patents

Treatment of hydrocarbon fluids Download PDF

Info

Publication number
US2301588A
US2301588A US355089A US35508940A US2301588A US 2301588 A US2301588 A US 2301588A US 355089 A US355089 A US 355089A US 35508940 A US35508940 A US 35508940A US 2301588 A US2301588 A US 2301588A
Authority
US
United States
Prior art keywords
reagent
removal
hydrocarbon
solution
carbonyl sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US355089A
Inventor
Walter A Schulze
Graham H Short
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phillips Petroleum Co
Original Assignee
Phillips Petroleum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phillips Petroleum Co filed Critical Phillips Petroleum Co
Priority to US355089A priority Critical patent/US2301588A/en
Application granted granted Critical
Publication of US2301588A publication Critical patent/US2301588A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G19/00Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G19/00Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
    • C10G19/02Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment with aqueous alkaline solutions
    • C10G19/06Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment with aqueous alkaline solutions with plumbites or plumbates

Definitions

  • Hydrocarbon fluids such as those obtained from crude petroleum oils and other sources usually contain varying amounts of deleterious sulfur compounds as impurities.
  • the kinds and amounts of sulfur compounds occurring in any hydrocarbon fluid vary with the source material and with the method of manufacturing and processing said fluid. For example, thermal cracking operations have a tendency to convert hydrogen sulfide and open-chain sulfur compounds into cyclic compounds and to cause the combination of hydrogen sulfide with carbon compounds to form organic sulfur compounds including carbon sulfides.
  • Carbonyl sulfide is presumably formed by reaction of hydrogen sulfide with oxides of carbon under the conditions of heat and pressure and exposed metal surfaces encountered in thermal cracking and reforming operations.
  • the pure compound has a boiling point slightly lower than that of propane, although we have found its apparent boiling point is somewhat higher in hydrocarbon mixtures.
  • the fractionation of cracking still gases to segregate a propane-bu tane fraction results in the inclusion of substantially all the carbonyl sulfide present within that fraction.
  • propane-bu tane fraction Likewise a butane and heavier fraction containing only minor percentages of propane may contain appreciable amounts of carbonyl sulfide.
  • An object of this invention is to provide a more complete desulfurization of said hydrocarbons after conventional methods for the removal of hydrogen sulfide and mercaptans have been applied.
  • Carbonyl sulfide is relatively stable toward acidic reagents, and is only slowly affected by strongly alkaline treating reagents such as solution of caustic soda and the like.
  • the slow reaction with alkaline reagents is apparently based on the hydrolysis of the compound to form hydrogen sulfide which reacts with the alkaline medium.
  • incomplete removal of carbonyl sulfide results in a continuous-type treating system wherein the time of intimate contact of hydrocarbon with treating reagent is relatively short.
  • reaction mechanism involves the formation of a monothiocarbonic acid or the amine salt thereof, although we do not limit the present process to such a mechanism.
  • end product of the reaction may be quite different due to the tendency of the initial products to further react or rearrange when monoethanolamine is used for the reagent,
  • a further advantage of our reagent is that the formation of a metal sulfide by'the added metal salt prevents any possible oxidation of hydrogen sulfide or other resultant sulfur compounds as formed to produce elemental sulfur which would be carried away by the hydrocarbon fluid. Such oxidative reactions are apparently possible in our process due to the treating conditionsand to the presence of oxidizing agents in the ad sorbent carrier materials.
  • the time of contact of our reagent with the hydrocarbon fluid may be controlled as desired and ranges from 12 minutes to two hours at preferred liquid flow rates. This is in contrast to contact times of ordinarily less than three minutes in a treating process utilizing aqueous solutions.
  • Our reagent may be prepared by first impregnating an adsorbent carrier material with a lead salt solution such as sodium plumbite solution prepared by dissolving lead monoxide in a solution of sodium hydroxide of suitable strength. This solution is then sprayed onto the absorbent carrier.
  • a lead salt solution such as sodium plumbite solution prepared by dissolving lead monoxide in a solution of sodium hydroxide of suitable strength.
  • Other means of impregnating the carrier with a lead salt will be obvious to those skilled inthe art. Since the solubility of lead monoxide in sodium hydroxide'is limited, the weight per cent of lead salt on the reagent maybe increased by adding powdered lead monoxide directly to the moist particles of the carrier immediately after the initial spraying.
  • a reagent consisting of about 1-3 per cent by weight of lead monoxide in solution as sodium plumbite, and 1-3 per cent'or more by [weight of the dry powdered material.
  • the powder adheres to the dampened particles of the carrier and a satisfactory reagent results;
  • the adsorbent material is impregnated with monoethanolamine by the addition of from about l to 15 per cent by weightof'this liquid, depending on the adsorptive capacity of the carrier.
  • monoethanolamine instead of the amine itself, a concentratedaqueous amine solution may be used, but we prefer to use as little water as possible at this stage in order that the finishedreagent may appear dry and not ball or crumble during handling.
  • adsorbent carriers for the reagent we may use fullers earth of suitable size and hardness. A grade of earth which has resistance to crumbling is preferable. Other suitable carriers are highly adsorbent materials such as activated alumina and the like, depending upon cost and availability.
  • lead salts which may be used are those which are soluble in water or in alkaline media, for it is highly desirable for a substantial proportion of the lead salt to be in the adsorbed solution at all times during the use of the reagent.
  • the solid lead monoxide may either go into solution in the adsorbed caustic solution or it may react directly given sufiicient contact time.
  • metal salts which may replace the lead salt in my reagent are those forming water and oil-insoluble sulfides which have no deleterious effect on the hydrocarbons being treated. Suitable examples are salts of cadmium, preferably the sulfates or chlorides.
  • Example Fuller's earth of 8-20 mesh size was impregnated with a solution of sodium plumbite in 15 per cent sodium hydroxide solution. The solution was saturated while hot with lead monoxide and the quantity of sodium plumbite thus applied to the fullers earth corresponded to 1.2 per cent by weight of the reagent. While the earth was still damp, an additional 2 per cent by weight of dry powdered lead monoxide was mixed in with substantially all being boundto the earth particles. The reagent was then sprayed with monoethanolamine; the quantity added was per cent by weight of the weight of the fullers earth before impregnation. This reagent was loaded into towers without drying.
  • a propane-butane fraction from refinery cracked gas was passed over the reagent described above, after preliminary treatment for the removal of hydrogen sulfide and mercaptans.
  • the hydrocarbon liquid contained 0.002 per cent by weight of carbonyl sulfide before contact with the reagent, and less than 0.0001 per cent by weight after treatment.
  • the flow rate was maintained between 1 and 2 volumes of liquid hydrocarbon per hour per volume of reagent, Complete removal of carbonyl sulfide was accomplished throughout the life of the reagent which was considered spent when the theoretical quantity of sulfur had been extracted.
  • the temperatures of treatment using our process are ordinary atmospheric temperatures between 30 and 110 F,
  • the pressures at which we prefer to operate may be low super-atmospheric pressures between 50 and 500 pounds gage.
  • the operating pressure may depend on the fluid being treated; for example, in treating propane and/or butane in liquid phase, suflicient pressure is used to avoid vaporization.
  • the process for the removal of carbonyl sulfide from hydrocarbon liquids containin the same which comprises contacting said liquids with a reagent comprising an adsorbent carrier impregnated with a solution of a lead salt and monoethanolamine.
  • a process for the desulfurization of lowboiling hydrocarbon liquids which comprises treating said liquids in successive stages to remove hydrogen sulfide mercaptans and other sulfur compounds, the step of contacting said liquids subsequent to the removal of hydrogen sulfide and mercaptans with a reagent comprising an adsorbent carrier impregnated with a solution of a lead salt and monoethanolamine.
  • a process for the removal of carbonyl sulfide from liquefied petroleum gases which comprises treating said liquefied gases subsequent to treatment for removal of hydrogen sulfide and mercaptans and at atmospheric temperature over a reagent comprising a solid adsorbent carrier impregnated with sodium plumbite solution, lead monoxide and monoethanolamine.

Description

Patented Nov. 10, 1942 UNITED STATES PATENT OFFICE TREATMENT OF HYDROCARBON FLUIDS Walter A. Schulze and Graham H. Short, Bartiesville, kla., assignors to Phillips Petroleum Company, a corporation of Delaware No Drawing. Application August 31, 1940, Serial No. 355,089
6 Claims.
Hydrocarbon fluids such as those obtained from crude petroleum oils and other sources usually contain varying amounts of deleterious sulfur compounds as impurities. The kinds and amounts of sulfur compounds occurring in any hydrocarbon fluid vary with the source material and with the method of manufacturing and processing said fluid. For example, thermal cracking operations have a tendency to convert hydrogen sulfide and open-chain sulfur compounds into cyclic compounds and to cause the combination of hydrogen sulfide with carbon compounds to form organic sulfur compounds including carbon sulfides.
Many of the sulfur compounds present in hydrocarbon fluids are detrimental to the processing or marketing of said fluids or of products derivable therefrom. Thus, there are conventional methods for removing hydrogen sulfide from hydrocarbon fluids and for converting mercaptans to less obnoxious form. Further, there are means known to the art for extracting mercaptans as such. However, carbonyl sulfide, a sulfur compound occurring in the lower'boiling products from the thermal processing of hydrocarbon oils does not belong in the classifications mentioned, and being relatively inert is not satisfactorily removed by conventional treating processes employed by the industry for the removal of hydrogen sulfide, mercaptans, and the like.
Carbonyl sulfide is presumably formed by reaction of hydrogen sulfide with oxides of carbon under the conditions of heat and pressure and exposed metal surfaces encountered in thermal cracking and reforming operations. The pure compound has a boiling point slightly lower than that of propane, although we have found its apparent boiling point is somewhat higher in hydrocarbon mixtures. Thus, the fractionation of cracking still gases to segregate a propane-bu tane fraction results in the inclusion of substantially all the carbonyl sulfide present within that fraction. Likewise a butane and heavier fraction containing only minor percentages of propane may contain appreciable amounts of carbonyl sulfide.
The necessity for selectively removing carbonyl sulfide arises when a hydrocarbon fluid, e, g., a C4 fraction from refinery gases, is to be substantially completely desulfurized prior to processing to effect polymerization, alkylation or the like. An object of this invention, then, is to provide a more complete desulfurization of said hydrocarbons after conventional methods for the removal of hydrogen sulfide and mercaptans have been applied.
Carbonyl sulfide is relatively stable toward acidic reagents, and is only slowly affected by strongly alkaline treating reagents such as solution of caustic soda and the like. The slow reaction with alkaline reagents is apparently based on the hydrolysis of the compound to form hydrogen sulfide which reacts with the alkaline medium. In view of the relatively slow rate of the hydrolysis reaction, incomplete removal of carbonyl sulfide results in a continuous-type treating system wherein the time of intimate contact of hydrocarbon with treating reagent is relatively short. For example, in washing a propane-butane mixture with a solution of caustic soda to remove hydrogen sulfide, we have found that with caustic solutions of normal strength-say 10-20 per cent by weight of sodium hydroxide, only 20-30 per cent of the carbonyl sulfide is hydrolyzed and extracted even with multi-stage contacting.
We have now discovered a method of treatment and a reagent which effects complete removal of carbonyl sulfide from hydrocarbon fluids of the type described. Since our reagent effects direct combination with the carbonyl sulfide, no intermediate hydrolysi is involved and removal is substantially complete on contact.
We have found that when hydrocarbon fluids containing carbonyl sulfide are brought into contact with adsorbent reagents impregnated with monoethanolamine or with alkylene polyamines, or in general with organic bases having at least one primary amine group a reaction takes place by which carbonyl sulfide is removed from the hydrocarbon in the form of an oil-insoluble compound. This compound is retained by the adsorbent reagent.
We presume that the reaction mechanism involves the formation of a monothiocarbonic acid or the amine salt thereof, although we do not limit the present process to such a mechanism. We have further discovered that the end product of the reaction may be quite different due to the tendency of the initial products to further react or rearrange when monoethanolamine is used for the reagent,
The exact nature of the reactions involved in the rearrangement of the reaction product of monoethanolamine and a carbonyl sulfide are not known but we think it likely that a compound of the alkyl isothiocyanate type is formed which under certain conditions tends to split out hydrogen sulfide to produce alkyl isocyanates which in turn are further convertible by hydrolysis into the carbonic acid salt of the original amine. Such a chain of reactions makes possible at least a partial regeneration of the amine for further reaction with carbonyl sulfide under the conditions of our process. We have therefore discovered that a superior reagent for the removal of carbonyl sulfide results when we use monoethanolamine in combination with a material which combines with nascent hydrogen sulfide according to the projected reaction mechanism described above, and thereby promotes the successive reactions. For this added material we prefer to use a lead salt such as sodium plumbite although other metal salts which form insoluble metal sulfides are operative under chosen conditions.
A further advantage of our reagent is that the formation of a metal sulfide by'the added metal salt prevents any possible oxidation of hydrogen sulfide or other resultant sulfur compounds as formed to produce elemental sulfur which would be carried away by the hydrocarbon fluid. Such oxidative reactions are apparently possible in our process due to the treating conditionsand to the presence of oxidizing agents in the ad sorbent carrier materials. a
We have noted that our process is much more efiicient in the removal of carbonyl sulfide because of certain advantages obtained by the use of a solid-type reagent. We not only obtain a more complete removal of carbonyl sulfide, but also a more eflicient utilization of the active ingredients, of our reagent. This latter effect may be due in part to the great amount of reagent exposed on the surfaces of the carrier material. Thus, while a portion of the carbonyl sulfide present in a hydrocarbon fiuidmight be extracted by an aqueous solution of the reagents disclosed, the capacity of such a solution for carbonyl sulfide is far below the theoretical capacity during the relatively short period of complete removal.
An additional advantage of our solid-type reagent -is that ideal counter-current treating conditions are obtained. Our reagent is gradually and uniformly spent in the direction of hydrocarbon flow, a condition that is not obtainable in contacting hydrocarbons with an aqueous treating solution .the entire volume of Which is spent to the same degree. In treating with our solid reagent, the section of the reagent bed adjacent to the hydrocarbon exit port remains in the most active condition to effect the removal of the last traces of carbonyl sulfide.
Further, in our method of passing the hydrocarbon stream over a bed of solid reagent we have the advantage of prolonged contact time to aid in the completion of the removal reaction. Thus, the time of contact of our reagent with the hydrocarbon fluid may be controlled as desired and ranges from 12 minutes to two hours at preferred liquid flow rates. This is in contrast to contact times of ordinarily less than three minutes in a treating process utilizing aqueous solutions.
Since our reagent combines with hydrogen sulfide and mercaptans we contemplate using our process to treat hydrocarbon fluids which have already been given treatment for the removal of hydrogen sulfide and mercaptans. Thus we avoid the uneconomic spending of our reagent with these impurities which are ordinarily present in quantities far exceeding the quantity of carbonyl sulfide in hydrocarbon fluids. By this sequence of operations only the very minor amounts of hydrogen sulfide and/or 'mercaptans remaining after conventional methods of removal could be present in a hydrocarbon fluid treated by our process.
Our reagent may be prepared by first impregnating an adsorbent carrier material with a lead salt solution such as sodium plumbite solution prepared by dissolving lead monoxide in a solution of sodium hydroxide of suitable strength. This solution is then sprayed onto the absorbent carrier. Other means of impregnating the carrier with a lead salt will be obvious to those skilled inthe art. Since the solubility of lead monoxide in sodium hydroxide'is limited, the weight per cent of lead salt on the reagent maybe increased by adding powdered lead monoxide directly to the moist particles of the carrier immediately after the initial spraying. In such a case, we prefer to use a reagent consisting of about 1-3 per cent by weight of lead monoxide in solution as sodium plumbite, and 1-3 per cent'or more by [weight of the dry powdered material. The powder adheres to the dampened particles of the carrier and a satisfactory reagent results;
After the application of the lead salt to the reagent, the adsorbent material is impregnated with monoethanolamine by the addition of from about l to 15 per cent by weightof'this liquid, depending on the adsorptive capacity of the carrier. Instead of the amine itself, a concentratedaqueous amine solution may be used, but we prefer to use as little water as possible at this stage in order that the finishedreagent may appear dry and not ball or crumble during handling.
As adsorbent carriers for the reagent, we may use fullers earth of suitable size and hardness. A grade of earth which has resistance to crumbling is preferable. Other suitable carriers are highly adsorbent materials such as activated alumina and the like, depending upon cost and availability.
Other lead salts which may be used are those which are soluble in water or in alkaline media, for it is highly desirable for a substantial proportion of the lead salt to be in the adsorbed solution at all times during the use of the reagent. As the lead from the sodium plumbite is precipitated by the action of the sulfur compounds, the solid lead monoxide may either go into solution in the adsorbed caustic solution or it may react directly given sufiicient contact time.
Other metal salts which may replace the lead salt in my reagent are those forming water and oil-insoluble sulfides which have no deleterious effect on the hydrocarbons being treated. Suitable examples are salts of cadmium, preferably the sulfates or chlorides.
The following example will serve to illustrate one method of practicing our invention:
Example Fuller's earth of 8-20 mesh size was impregnated with a solution of sodium plumbite in 15 per cent sodium hydroxide solution. The solution was saturated while hot with lead monoxide and the quantity of sodium plumbite thus applied to the fullers earth corresponded to 1.2 per cent by weight of the reagent. While the earth was still damp, an additional 2 per cent by weight of dry powdered lead monoxide was mixed in with substantially all being boundto the earth particles. The reagent was then sprayed with monoethanolamine; the quantity added was per cent by weight of the weight of the fullers earth before impregnation. This reagent was loaded into towers without drying.
A propane-butane fraction from refinery cracked gas was passed over the reagent described above, after preliminary treatment for the removal of hydrogen sulfide and mercaptans. The hydrocarbon liquid contained 0.002 per cent by weight of carbonyl sulfide before contact with the reagent, and less than 0.0001 per cent by weight after treatment. The flow rate was maintained between 1 and 2 volumes of liquid hydrocarbon per hour per volume of reagent, Complete removal of carbonyl sulfide was accomplished throughout the life of the reagent which was considered spent when the theoretical quantity of sulfur had been extracted.
The temperatures of treatment using our process are ordinary atmospheric temperatures between 30 and 110 F, The pressures at which we prefer to operate may be low super-atmospheric pressures between 50 and 500 pounds gage. The operating pressure may depend on the fluid being treated; for example, in treating propane and/or butane in liquid phase, suflicient pressure is used to avoid vaporization.
We usually prefer to treat in liquid phase since the volume of reagent required for nominal flow rates. say 0.5 to 5 volumes per hour per volume of reagent is not excessive. However, gas or vapor phase treating of normally gaseous hydrocarbons is satisfactory if provision is made in the size of the reagent bed to allow contact times corresponding to linear vapor velocities under five feet per minute.
We claim:
1. The process for the removal of carbonyl sulfide from hydrocarbon fluids subsequent to treatment for removal of hydrogen sulfide and mercaptans which comprises contacting said fluids with a reagent comprising an adsorbent carrier impregnated with a solution of a lead salt and monoethanolamine,
2. The process for the removal of carbonyl sulfide from hydrocarbon fluids subsequent to treatment for removal of hydrogen sulfide and mercaptans which comprises contacting said fluids with a reagent comprising an adsorbent carrier impregnated with a lead salt and monoethanolamine.
3. The process for the removal of carbonyl sulfide from hydrocarbon fluids subsequent to treatment for removal of hydrogen sulfide and mercaptans which comprises contacting said fluids with a reagent comprising fullers earth impregnated with a solution of sodium plumbite, lead monoxide and monoethanolamine.
4. The process for the removal of carbonyl sulfide from hydrocarbon liquids containin the same which comprises contacting said liquids with a reagent comprising an adsorbent carrier impregnated with a solution of a lead salt and monoethanolamine.
5. In a process for the desulfurization of lowboiling hydrocarbon liquids which comprises treating said liquids in successive stages to remove hydrogen sulfide mercaptans and other sulfur compounds, the step of contacting said liquids subsequent to the removal of hydrogen sulfide and mercaptans with a reagent comprising an adsorbent carrier impregnated with a solution of a lead salt and monoethanolamine.
6. A process for the removal of carbonyl sulfide from liquefied petroleum gases which comprises treating said liquefied gases subsequent to treatment for removal of hydrogen sulfide and mercaptans and at atmospheric temperature over a reagent comprising a solid adsorbent carrier impregnated with sodium plumbite solution, lead monoxide and monoethanolamine.
WALTER A. SCHULZE. GRAHAM H. SHORT.
US355089A 1940-08-31 1940-08-31 Treatment of hydrocarbon fluids Expired - Lifetime US2301588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US355089A US2301588A (en) 1940-08-31 1940-08-31 Treatment of hydrocarbon fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US355089A US2301588A (en) 1940-08-31 1940-08-31 Treatment of hydrocarbon fluids

Publications (1)

Publication Number Publication Date
US2301588A true US2301588A (en) 1942-11-10

Family

ID=23396189

Family Applications (1)

Application Number Title Priority Date Filing Date
US355089A Expired - Lifetime US2301588A (en) 1940-08-31 1940-08-31 Treatment of hydrocarbon fluids

Country Status (1)

Country Link
US (1) US2301588A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315003A (en) * 1960-08-26 1967-04-18 Sun Oil Co Process for removing carbonyl sulfide from normally gaseous hydrocarbons
US3696162A (en) * 1971-05-26 1972-10-03 Lummus Co Aqueous amine acid gas absorption

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315003A (en) * 1960-08-26 1967-04-18 Sun Oil Co Process for removing carbonyl sulfide from normally gaseous hydrocarbons
US3696162A (en) * 1971-05-26 1972-10-03 Lummus Co Aqueous amine acid gas absorption

Similar Documents

Publication Publication Date Title
US4204947A (en) Process for the removal of thiols from hydrocarbon oils
JPH05507310A (en) Removal of sulfur contaminants from hydrocarbons using N-halogeno compounds
US3185641A (en) Removal of elemental sulfur from hydrocarbons
US2309871A (en) Treatment of hydrocarbon fluids
US2434868A (en) Process for the removal of carbonyl sulfide from a hydrocarbon fluid
US2713077A (en) Removal of carbonyl sulfide from hydrocarbon gases
CA2120046C (en) Separately removing mercaptans and hydrogen sulfide from gas streams
US2490840A (en) Gas purification process
US2377546A (en) Process for treating hydrocarbon containing organically combined fluorine
US2616833A (en) Treatment of hydrocarbon distillates
US2301588A (en) Treatment of hydrocarbon fluids
US2206921A (en) Process for desulphurization of hydrocarbons
US3320157A (en) Desulfurization of residual crudes
US2425414A (en) Regeneration of spent caustic solutions for treating gasoline
US2543953A (en) Sweetening hydrocarbon mixtures
US2042052A (en) Process for treating mineral oils
US2362669A (en) Process for the removal of carbonyl sulphide from low-boiling hydrocarbon fluids
US2409372A (en) Removal of organic fluorine
US2319738A (en) Refining mineral oils
US2522065A (en) Catalytic desulfurization and reforming process
US2577824A (en) Process of removing mercaptans from hydrocarbons with alkali impregnated charcoal
US2726992A (en) Process for removing carbonyl sulfide from liquefied petroleum gases
US2037792A (en) Treatment of hydrocarbon oils
US2315663A (en) Treatment of hydrocarbons
US2204234A (en) Treatment of hydrocarbon oils