US2282058A - Electrolytic cell - Google Patents

Electrolytic cell Download PDF

Info

Publication number
US2282058A
US2282058A US252634A US25263439A US2282058A US 2282058 A US2282058 A US 2282058A US 252634 A US252634 A US 252634A US 25263439 A US25263439 A US 25263439A US 2282058 A US2282058 A US 2282058A
Authority
US
United States
Prior art keywords
anode
cell
cathode
partition
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US252634A
Inventor
Ralph M Hunter
Lawrence B Otis
Robert D Blue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Priority to US252634A priority Critical patent/US2282058A/en
Application granted granted Critical
Publication of US2282058A publication Critical patent/US2282058A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms

Definitions

  • This invention concerns an improved electrolytic cell for the production of chlorine and caustic soda from brine.
  • An object of the invention is to provide an electrolytic cell having a low internal resistance, a high power-efficiency, and a low heat loss. Another object is to devise a highly compact cell having large productive capacity per unitfloor area. Still another object is to provide a cell of rugged design which may be readily assembled, and on which maintenance charges are low. A further object is to .design a cell which requires a minimum of investment in associated equipment such as pipe lines, electrical connections, etc.
  • each unit cell is a pocket or interleaved cell.
  • the'anode of each unit cell also serves as the partition or separator between successive unit cells.
  • Fig. 1 is a plan view of an electrolytic cell assembly comprising for purpose of illustration four v unit cells and two end units, with the cell cover in place;
  • Fig. 2 is a transverse sectional elevation of the cell, with cover in place, taken along the line 2-2 in Figs. 1 and 3;
  • Fig. 3 is a longitudinal sectional elevation of the cell taken along the line 3-3 in Fig. 1;
  • Fig. 4 is another transverse sectional elevation of the cell, with cover removed, taken along the line 4-4 in Figs. 1 and 3, showing the cathode structure, and showing the cathode removed, exposing the anode partition;
  • Fig. 5 is a plan view 01' a unit cell
  • Fig. 6 is a sectional view of a unit cell, taken along the line 66 in Figs. 2 and 4;
  • Fig. 7 is a plan view of a single cathode fin showing portions of the cathode covering cutaway.
  • the electro ytic ce c sists oi a s of u t ce ls H four are shown
  • two dummy end cells I2 and I3 all resting on insulating skids I4 and held together between buckstays l5 by tie-bolts 6. All joints between unit cells are made fluidtight by suitable sealing compound.
  • Each unit cell is enclosed by a frame ll of mm conducting material, such as concrete, in which is mounted an anode partition I8 and a cathode structure I9, dividing the unit cell into an anode chamber 20 and a cathode chamber 2
  • Fresh electrolyte is supplied to and gaseous products are withdrawn from the anode chamber 20 through throats 22 opening into a header 23.
  • This header is formed by a cover 24 which extends the entire length of the cell assembly, and rests on each frame between lugs 25, the cover being made leak-proof by sealing compound 26.
  • the header 23 is divided by partitions 21 into a series of header chambers 28, one for each unit cell, the chambers being in communication with one another through an upper gas port 29 and a lower brine port 30 in each partition. Holes 3
  • the anode partition 18 in each unit cell is a segmented structure made up of alternate vertical spacers 4
  • are made of graphite or other electrically conducting chlorine-resistant material; thus providing a maximum effective anode area and an even distribution of current over the anode surface.
  • the spacers 40 lie in a common plane, but the plates 4
  • do not extend into the concrete frame throughout their entire' width, but are chamfered at top and bottom to permit free circulation of fluids within the anode chamber.
  • are compressed together to form a fluid-tight partition and the concrete cell frame is then cast around the anode structure to hold it rigidly in position.
  • the anode structure It! in each unit cell not only is a pocket-type anode, but also serves as the partition between the anode chamber of one unit cell and the cathode chamber of the adjacent cell. That is, the rear side of each anode itself serves as one wall of the cathode chamber of the ad- J'acent unit cell.
  • the construction of the anode II! in each cell is not limited to the preferred segmented structure illustrated, but may take other forms, as for example, a solid graphite partition with parallel vertical graphite boards or vertical rows of pins fixed at regular intervals to one side thereof and extending into the anode chamber to form pockets.
  • the anode structure according to the invention can be considered as a graphite partition having a plurality of spaced parallel transversely disposed graphite members projecting from one face of said partition.
  • This novel pocketed anode construction is an essential feature in the compactness and efiiciency of the present electrolytic cell.
  • the cathode structure IQ of each unit cell consists essentially of a coarse steel wire screen 42 to which are secured a plurality of inwardly directed vertical hollow fins 43 spaced along the screen at intervals corresponding to the spaces or pockets between the plates 4
  • the cathode screen 42 is secured at its outer edges to a metal framework 44 which fits into a recess on one side of the unit cell so as to be flush with the face of the frame and is held in place by bolts 45 embedded in the concrete.
  • Th cathode fins 43 are also constructed of metal screen 46 folded to form narrow trough-like pockets open only along one vertical edge and of approximately the same height as the anode plates 4
  • This entire cathode assembly need not be made of wire screening but may, of course, be constructed of perforated sheet iron or other suitable foraminous material which is the substantial equivalent of screening.
  • the cathode structure thus comprises a metal screen having attached thereto on one face thereof a plurality of spaced parallel transversely dispersed hollow screen fins.
  • a permeable diaphragm 49 such as one or more layers of asbestos paper, which serves to prevent intermixing of fluids from the anode and cathode chambers.
  • each unit cell the cathode fins 43 project into the pockets between the anode plates 4 I, i. e. the cathode fins alternate in closely spaced relation with the anode plates.
  • Each unit cell is thus a pocket or interleaved cell as shown in Fig. 6..
  • and the cathode screen 42 and cathode fins 48 of each unit cell forms the anode chamber 20, and is filled at all times with electrolyte.
  • the space between the cathode screen 42 and the anode partition i8 of the adiacent unit cell is the cathode chamber 2
  • terminals 52 mounted on the dummy end cells I 2 and I3, and adapted to receive cables from any suitable source of direct current.
  • These terminals 52 extend through the dummy cells to distributor bars 53 which carry the electriccurrent to bus-bars 54 mounted on channel irons 55 embedded in the dummy cell frames.
  • are mounted on the bus-bars 54 in such positions as to make contact with the corresponding spring clips on the terminal unit cells.
  • the anode chambers 20 of the unit cells are kept full of electrolyte at all times, and the header chambers 28 are kept partly full, by introducing brine into the header 23 continuously at a controlled rate through one of the holes 3
  • the brine gradually percolates through the cathode diaphragm 49 into contact with the cathode screen 42 and cathode fins 43, and is there transformed by the electric current flowing through the cell into gaseous hydrogen and a solution of caustic soda.
  • escapes upwardly through the cathode slots 33 into the small header 34 and is withdrawn through suitable conduits not shown.
  • the caustic soda solution trickles down the walls of the cathode chamber 2
  • the brine in the anode compartment 20 of each unit cell is transformed at the surface of the anode spacers 40 and anode plates 4
  • An electrolytic cell series of the bipolar electrode filter-press'type comprising a plurality of unit cells, each unit including in ccmbintion: a frame of non-conducting material; an anode structure secured in the frame and functionin also as the sole partition between the unit cell and the adjacent unit and composed of an imperforate partition having a plurality of spaced parallel graphite members disposed transversely to and projecting from one face of said partition; a cathode structure secured in the" frame and comprising a flat metal screen having secured thereto on one face thereof a plurality of spaced parallel closed hollow screen fins disposed transversely to the screen and entering the spaces between the graphite members projecting from the anode partition; and a permeable diaphragm covering said cathode structure; electrical constructure in each unit cell with the rear face of the cathode structure in the adjacent unit by direct physical contact; and terminals connecting the end unit cells with a source of current.
  • An electrolytic cell series of the bipolar electrode filter-press type comprising a plurality of unit cells, each unit including in combination: a frame of non-:conducting material; an anode structure rigidly secured in said frame and functioning also as the sole partition between the unit cell and the adjacent unit, and composed of an imperforate graphite partition having a plurality of spaced parallel graphite plates disposed transversely to and projecting from one face of said partition; an opposed cathode structure secured in said frame comprising a fiat metal screen having secured thereto on one face thereof a plurality of spaced parallel closed hollow screen fins disposed transversely to the screen and entering the spaces between the graphite plates projecting from the anode partition; and a permeable diaphragm covering said cathode structure; metal electrical contactors connecting the rear face of the anode structure in each unit cell to the rear face of the cathode structure in the adjacent unit by direct physical contact; and terminals for connecting the end unit cells with a source'of current.
  • An electrolytic cell series of the bipolar electrode filter-press type comprising a plural ty of abutting unit cells, each unit including in combination: a frame of non-conducting material; an anode structure rigidly secured wholly within the frame and functioning also as the sole partition betwen the unit cell and the adjacent unit, said structure being composed of an imperforate graphite partition having a plurality of spaced parallel graphite members disposed transversely to and projecting from one face of the partition; an opposed cathode structure secured wholly within the same frame and comprising a flat metal screen having secured thereto on one face thereof a plurality of spaced parallel closed hollow screen fins disposed transversely to the screen and entering the spaces between the graphite members projecting from the aforesaid anode partition; and a permeable diaphragm covering said cathode structure; flexible metal electrical contactors wholly within the assembled cell frame and connecting the rear face of the anode structure in each unit cell frame to the rear face of the cath
  • An electrolytic cell series of the bipolar electrode filter-press type comprising a plurality of abutting unit cells, each unit including in combination: a frame of non-conducting material; an anode structure rigidly secured wholly within the frame and functioning also as the sole partition between the unit cell and the adjacent unit, said structure being comprised of animperforate vertical graphite partition having a plurality of spaced parallel graphite members disposed transversely to.
  • an opposed cathode structure removably secured wholly within thesame flexible metal electrical contactors wholly within the assembled cell frames connecting the rear face of the anode structure in each unit cell frame to the rear face of the cathode structure in the adjacent cell frame by direct physical contact; and terminalsconnecting the end cells with a source of current.
  • An electrolytic cell series of the bipolar electrode filter-press type comprising a plurality of unit cells, each unit including in combination: a frame of non-conducting material; an anode structure rigidly secured in said frame and functioning also as the sole partition between the unit cell and the adjacent unit, and comprising an imperforate vertical segmented partition consisting of alternate graphite spacers and parallel graphite plates disposed transversely to the plane of the partition and projecting to one side thereof; an opposed cathode structure secured in said frame composed of a vertical flat metal screen having secured thereto on one face thereof a plurality of spaced parallel closed hollow screen fins disposed transversely to the screen and entering the spaces between the graphite plates projecting from the anode partition; and a permeable diaphragm covering said cathode structure; flexible metal electrical contactors connecting the rear face of the anode structure R in each unit cell to the rear face of the cathode structure in the adjacent unit by direct physical and projecting to one side thereof; an opposed catho
  • An electrolytic cell series of the bipolar elec-' trode filter-press type comprising a plurality of abutting unit cells, each unit including in combination: a frame of non-conducting material; an anode structure rigidly secured wholly within the frame and functioning also as the sole partition between the unit cell and the adjacent unit and being composed of an imperforate vertical graphite partition having a plurality of spaced parallel graphite members disposed transversely to and projecting from one face of said partition and a plurality of flexible metal electrical connectors secured to the opposite face thereof; an opposed cathode structure removably secured wholly within the same frame and comprising a vertical flat metal screen having removably secured thereto on one face thereof a plurality of spaced parallel closed hollow tins of the same screen material disposed-transversely to the screen and entering the spaces between the graphite members projecting from the anode partition, and having flexible metal electrical connectors secured to the opposite face of said screen and in direct physical contact with the electrical connectors secured to
  • An electrolytic cell series of the bipolar electrode filter-press type comprising a plurality of abutting unit cells, each unit comprising in comaaeaoua bination: a frame of non-conducting material; an anode structure secured wholly within the frame and functioning also as the sole partition between the unit cell and the adjacent unit and comprised of an imperforate vertical graphite partition having a plurality of spaced parallel graphite members disposed transversely to and projecting from one face of said partition; an opposed cathode structure removably secured wholly within the same frame and composed of a vertical flat metal screen having removably secured thereto on one face thereof a plurality of spaced parallel closed hollow flns of the same screen material disposed transversely to the screen and entering the spaces between the graphite members projecting from the anode partition; and a permeable diaphragm covering said cathode structure; flexible metal contactors wholly within the assembled cell frames electrically connecting the rear face of the anode structure in

Description

R. M. HUNTER ETAL May 5, 1942.
ELECTROLYTIC CELL Filed Jan. 24, 1939 3 Sheets-Sheet 1 III 5 s W M 16 M W m vv m 7 Nm N v nni 5 w m m MM Em I A n A E E E r wfi E E E 3 3 E B E 3 E 3 3 Z Y 2 E E 3 my 3 E 3 F/ E 2 E 3 3 3 E 2 E 3 3 E =3 E 3 a |Y6 MW 5 w May 5, 1942. R. M. HUNTER ETAL ELECTROLYTIC CELL Filed Jan. 24, 1959 3 Sheets-Sheet 3 9 4 5 9 5 w m d; 1; 3w 0 o o M\ o, m 5r 5 W E 0 5 p 0 0 m 0 a E O 7 f L m 5 2 M 4 6 5 5 u, i 5 H 5 1d 5 w .10 z w m; w
INVENTORSI n/ A. ner @2 ago Patented May 1942 T OFFlCE ELECTROLYTIC CELL Ralph M. Hunter, Lawrence B. Otis, and Robert I D. Blue, Midland, Mich assignors to The Dow Chemical Company, Midland, Mich., a corporation of Michigan Application January 24, 1939, Serial No. 252,634
8 Claims.
This invention concerns an improved electrolytic cell for the production of chlorine and caustic soda from brine.
An object of the invention is to provide an electrolytic cell having a low internal resistance, a high power-efficiency, and a low heat loss. Another object is to devise a highly compact cell having large productive capacity per unitfloor area. Still another object is to provide a cell of rugged design which may be readily assembled, and on which maintenance charges are low. A further object is to .design a cell which requires a minimum of investment in associated equipment such as pipe lines, electrical connections, etc.
In attaining these objects, we employ an improved cell of the filter-press, bipolar electrode type. This type of cell, as is well known, consists of a series of abutting frames or unit cells, each comprising one cathode and one anode, the anode of one unit cell being electrically connected within the cell frames to the cathode of the succeeding unit cell. In the present invention, each unit cell is a pocket or interleaved cell. Further, in the invention, the'anode of each unit cell also serves as the partition or separator between successive unit cells.
One form of cell embodying the principles of the invention is shown in the accompanying drawings in which: I
Fig. 1 is a plan view of an electrolytic cell assembly comprising for purpose of illustration four v unit cells and two end units, with the cell cover in place;
Fig. 2 is a transverse sectional elevation of the cell, with cover in place, taken along the line 2-2 in Figs. 1 and 3;
Fig. 3 is a longitudinal sectional elevation of the cell taken along the line 3-3 in Fig. 1;
Fig. 4 is another transverse sectional elevation of the cell, with cover removed, taken along the line 4-4 in Figs. 1 and 3, showing the cathode structure, and showing the cathode removed, exposing the anode partition;
Fig. 5 is a plan view 01' a unit cell;
Fig. 6 is a sectional view of a unit cell, taken along the line 66 in Figs. 2 and 4;
Fig. 7 is a plan view of a single cathode fin showing portions of the cathode covering cutaway; and
tion.
Referring particularly to Figs. 1 to 4, the electro ytic ce c sists oi a s of u t ce ls H (four are shown), and two dummy end cells I2 and I3, all resting on insulating skids I4 and held together between buckstays l5 by tie-bolts 6. All joints between unit cells are made fluidtight by suitable sealing compound.
Each unit cell is enclosed by a frame ll of mm conducting material, such as concrete, in which is mounted an anode partition I8 and a cathode structure I9, dividing the unit cell into an anode chamber 20 and a cathode chamber 2|. Fresh electrolyte is supplied to and gaseous products are withdrawn from the anode chamber 20 through throats 22 opening into a header 23. This header is formed by a cover 24 which extends the entire length of the cell assembly, and rests on each frame between lugs 25, the cover being made leak-proof by sealing compound 26. The header 23 is divided by partitions 21 into a series of header chambers 28, one for each unit cell, the chambers being in communication with one another through an upper gas port 29 and a lower brine port 30 in each partition. Holes 3| in the cover, normally closed with plugs '32, permit cleaning of the throats 22. Gaseous products formed in the cathode chamber 2| are collected through slots 33 into a smaller header 34 formed by hollow heads 35 cast integral with the cell frames I1, and provided with cleaning holes 36 which are ordinarly plugged. Both anode and cathode chambers have drains 31 and 38, the cathode drain 31 being always open through a suitable liquid seal and the anode drain 38 being opened only when the cell is cleaned. Each unit cell may be handled by metal lugs 39 anchored firmly in the frame l1.
The anode partition 18 in each unit cell, as particularly illustrated in Figs. 3 to 6, is a segmented structure made up of alternate vertical spacers 4|] and vertical boards or plates 4| cast securely at topv and bottom into the concrete frame near one face thereof and extending across the entire frame. Both the spacers 40 and the plates 4| are made of graphite or other electrically conducting chlorine-resistant material; thus providing a maximum effective anode area and an even distribution of current over the anode surface. As will be seen from Fig. 6, the spacers 40 lie in a common plane, but the plates 4| are thin boards extending normally to the plane of the spacers, thus forming a series of anode pockets, into-which the cathode fins hereinafter described may project. As shown in Fig.
3, the anode plates 4| do not extend into the concrete frame throughout their entire' width, but are chamfered at top and bottom to permit free circulation of fluids within the anode chamber. In fabricating a unit cell, the spacers and anode plates 4| are compressed together to form a fluid-tight partition and the concrete cell frame is then cast around the anode structure to hold it rigidly in position.
. As will be evident from the foregoing, the anode structure It! in each unit cell not only is a pocket-type anode, but also serves as the partition between the anode chamber of one unit cell and the cathode chamber of the adjacent cell. That is, the rear side of each anode itself serves as one wall of the cathode chamber of the ad- J'acent unit cell. The construction of the anode II! in each cell is not limited to the preferred segmented structure illustrated, but may take other forms, as for example, a solid graphite partition with parallel vertical graphite boards or vertical rows of pins fixed at regular intervals to one side thereof and extending into the anode chamber to form pockets. In essence, the anode structure according to the invention can be considered as a graphite partition having a plurality of spaced parallel transversely disposed graphite members projecting from one face of said partition. This novel pocketed anode construction is an essential feature in the compactness and efiiciency of the present electrolytic cell.
The cathode structure IQ of each unit cell, shown in assembly in Figs. 3, 4 and 6 and in detail in Figs. 7 and 8, consists essentially of a coarse steel wire screen 42 to which are secured a plurality of inwardly directed vertical hollow fins 43 spaced along the screen at intervals corresponding to the spaces or pockets between the plates 4| of the anode partition l8. The cathode screen 42 is secured at its outer edges to a metal framework 44 which fits into a recess on one side of the unit cell so as to be flush with the face of the frame and is held in place by bolts 45 embedded in the concrete. Th cathode fins 43 are also constructed of metal screen 46 folded to form narrow trough-like pockets open only along one vertical edge and of approximately the same height as the anode plates 4|. These fins are secured at their open edge along the cathode screen 42 by bolts 41 welded at spaced intervals to the inside of the pocket screen 46. To permit ready flow of catholyte and gases formed within the cathode fins 43 into the cathode chamber 2|, narrow slots 48 are cut in the cathode screen 42 to register with the space inside the leaves. This entire cathode assembly need not be made of wire screening but may, of course, be constructed of perforated sheet iron or other suitable foraminous material which is the substantial equivalent of screening. The cathode structure thus comprises a metal screen having attached thereto on one face thereof a plurality of spaced parallel transversely dispersed hollow screen fins. In the assembled cell, all portions of the cathode screen 42 and fins 43 exposed to the anode chamber are covered with a permeable diaphragm 49, such as one or more layers of asbestos paper, which serves to prevent intermixing of fluids from the anode and cathode chambers.
In each unit cell, the cathode fins 43 project into the pockets between the anode plates 4 I, i. e. the cathode fins alternate in closely spaced relation with the anode plates. Each unit cell is thus a pocket or interleaved cell as shown in Fig. 6.. The space between the anode partition I8 and the anode plates 4| and the cathode screen 42 and cathode fins 48 of each unit cell forms the anode chamber 20, and is filled at all times with electrolyte. The space between the cathode screen 42 and the anode partition i8 of the adiacent unit cell is the cathode chamber 2|.
In the assembled electrolytic cell, electrical connection between abutting unit cells in the series is made by a plurality of male and female copper spring clips or contaetors 50 and 5| which fit together by frictional contact as shown in detail in Fig. 8. In the assembly shown, (Figs; 2 to 6), three female clips 5| are secured to each anode plate 4|, and the same number of male clips 50 are secured to the cathode screen ciently flexible for adjusting slight variations in alignment of the frames II when these are assembled into the complete electrolytic cell. In our invention, all electrical contact between unit cells is made within the cell frame, the cathode assembly I 9 of one unit cell and the anode structure l8 of the adjacent unit electrically connected thereto forming in effect a bipolar electrode, no
external connections being necessary.
Electrical energy for the entire electrolytic cell enters and leaves through terminals 52 mounted on the dummy end cells I 2 and I3, and adapted to receive cables from any suitable source of direct current. These terminals 52 extend through the dummy cells to distributor bars 53 which carry the electriccurrent to bus-bars 54 mounted on channel irons 55 embedded in the dummy cell frames. Spring clips 50 and 5|, identical with those employed between unit cells, are mounted on the bus-bars 54 in such positions as to make contact with the corresponding spring clips on the terminal unit cells.
In operating the electrolytic cell, the anode chambers 20 of the unit cells are kept full of electrolyte at all times, and the header chambers 28 are kept partly full, by introducing brine into the header 23 continuously at a controlled rate through one of the holes 3| by means not illustrated. In each unit cell, the brine gradually percolates through the cathode diaphragm 49 into contact with the cathode screen 42 and cathode fins 43, and is there transformed by the electric current flowing through the cell into gaseous hydrogen and a solution of caustic soda. The hydrogen thus liberated in the cathode chamber 2| escapes upwardly through the cathode slots 33 into the small header 34 and is withdrawn through suitable conduits not shown. The caustic soda solution trickles down the walls of the cathode chamber 2| and out the cathode drain 31 to a trough or other collecting means. Likewise during electrolysis, the brine in the anode compartment 20 of each unit cell is transformed at the surface of the anode spacers 40 and anode plates 4| into gaseous chlorine which bubbles upwardly through the anode throats 22 into the intercommunicating header chambers 28 from which it may be removed and collected by any desired means.
Other modes of applying the principle of the invention may be employed instead of those explained, change being made as regard the details aasaoea disclosed, provided the elements stated in any of the following claims or the equivalent of such elements be employed.
We claim:
1. An electrolytic cell series of the bipolar electrode filter-press'type comprising a plurality of unit cells, each unit including in ccmbintion: a frame of non-conducting material; an anode structure secured in the frame and functionin also as the sole partition between the unit cell and the adjacent unit and composed of an imperforate partition having a plurality of spaced parallel graphite members disposed transversely to and projecting from one face of said partition; a cathode structure secured in the" frame and comprising a flat metal screen having secured thereto on one face thereof a plurality of spaced parallel closed hollow screen fins disposed transversely to the screen and entering the spaces between the graphite members projecting from the anode partition; and a permeable diaphragm covering said cathode structure; electrical constructure in each unit cell with the rear face of the cathode structure in the adjacent unit by direct physical contact; and terminals connecting the end unit cells with a source of current.
2. An electrolytic cell series of the bipolar electrode filter-press type comprising a plurality of unit cells, each unit including in combination: a frame of non-:conducting material; an anode structure rigidly secured in said frame and functioning also as the sole partition between the unit cell and the adjacent unit, and composed of an imperforate graphite partition having a plurality of spaced parallel graphite plates disposed transversely to and projecting from one face of said partition; an opposed cathode structure secured in said frame comprising a fiat metal screen having secured thereto on one face thereof a plurality of spaced parallel closed hollow screen fins disposed transversely to the screen and entering the spaces between the graphite plates projecting from the anode partition; and a permeable diaphragm covering said cathode structure; metal electrical contactors connecting the rear face of the anode structure in each unit cell to the rear face of the cathode structure in the adjacent unit by direct physical contact; and terminals for connecting the end unit cells with a source'of current.
3. An electrolytic cell series of the bipolar electrode filter-press type comprising a plural ty of abutting unit cells, each unit including in combination: a frame of non-conducting material; an anode structure rigidly secured wholly within the frame and functioning also as the sole partition betwen the unit cell and the adjacent unit, said structure being composed of an imperforate graphite partition having a plurality of spaced parallel graphite members disposed transversely to and projecting from one face of the partition; an opposed cathode structure secured wholly within the same frame and comprising a flat metal screen having secured thereto on one face thereof a plurality of spaced parallel closed hollow screen fins disposed transversely to the screen and entering the spaces between the graphite members projecting from the aforesaid anode partition; and a permeable diaphragm covering said cathode structure; flexible metal electrical contactors wholly within the assembled cell frame and connecting the rear face of the anode structure in each unit cell frame to the rear face of the cathode structure in the adjacent cell tact means connecting the rear face of the anode frame by directphysical contact; and terminals connecting the end cells with a source of current.
4. An electrolytic cell series of the bipolar electrode filter-press type comprising a plurality of abutting unit cells, each unit including in combination: a frame of non-conducting material; an anode structure rigidly secured wholly within the frame and functioning also as the sole partition between the unit cell and the adjacent unit, said structure being comprised of animperforate vertical graphite partition having a plurality of spaced parallel graphite members disposed transversely to. and projecting from one face of the partition; an opposed cathode structure removably secured wholly within thesame flexible metal electrical contactors wholly within the assembled cell frames connecting the rear face of the anode structure in each unit cell frame to the rear face of the cathode structure in the adjacent cell frame by direct physical contact; and terminalsconnecting the end cells with a source of current.
5. An electrolytic cell series of the bipolar electrode filter-press type comprising a plurality of unit cells, each unit including in combination: a frame of non-conducting material; an anode structure rigidly secured in said frame and functioning also as the sole partition between the unit cell and the adjacent unit, and comprising an imperforate vertical segmented partition consisting of alternate graphite spacers and parallel graphite plates disposed transversely to the plane of the partition and projecting to one side thereof; an opposed cathode structure secured in said frame composed of a vertical flat metal screen having secured thereto on one face thereof a plurality of spaced parallel closed hollow screen fins disposed transversely to the screen and entering the spaces between the graphite plates projecting from the anode partition; and a permeable diaphragm covering said cathode structure; flexible metal electrical contactors connecting the rear face of the anode structure R in each unit cell to the rear face of the cathode structure in the adjacent unit by direct physical and projecting to one side thereof; an opposed cathode structure removably secured wholly within said frame and comprising a vertical flat metal screen having removably secured thereto on oneface thereof a plurality of spaced parallel closed hollow fins of the same screen material disposed transversely to the screen and entering the spaces between the graphite plates project ing from the aforesaid anode partition; and a permeable diaphragm covering said cathode structure; flexible metal electrical contactors wholly within the assembled cell frames connecting the rear face of the anode structure in each unit cell frame to the rear face of the cathode structure in the adjacent cell frameby direct physical contact; and terminals connecting the end unit cells wlth a source of current.
7. An electrolytic cell series of the bipolar elec-' trode filter-press typecomprising a plurality of abutting unit cells, each unit including in combination: a frame of non-conducting material; an anode structure rigidly secured wholly within the frame and functioning also as the sole partition between the unit cell and the adjacent unit and being composed of an imperforate vertical graphite partition having a plurality of spaced parallel graphite members disposed transversely to and projecting from one face of said partition and a plurality of flexible metal electrical connectors secured to the opposite face thereof; an opposed cathode structure removably secured wholly within the same frame and comprising a vertical flat metal screen having removably secured thereto on one face thereof a plurality of spaced parallel closed hollow tins of the same screen material disposed-transversely to the screen and entering the spaces between the graphite members projecting from the anode partition, and having flexible metal electrical connectors secured to the opposite face of said screen and in direct physical contact with the electrical connectors secured to the anode structure of the adjacent unit cell; a permeable diaphragm covering said cathode structure; and terminals connecting the end unit cells with a source of current. v
8. An electrolytic cell series of the bipolar electrode filter-press type comprising a plurality of abutting unit cells, each unit comprising in comaaeaoua bination: a frame of non-conducting material; an anode structure secured wholly within the frame and functioning also as the sole partition between the unit cell and the adjacent unit and comprised of an imperforate vertical graphite partition having a plurality of spaced parallel graphite members disposed transversely to and projecting from one face of said partition; an opposed cathode structure removably secured wholly within the same frame and composed of a vertical flat metal screen having removably secured thereto on one face thereof a plurality of spaced parallel closed hollow flns of the same screen material disposed transversely to the screen and entering the spaces between the graphite members projecting from the anode partition; and a permeable diaphragm covering said cathode structure; flexible metal contactors wholly within the assembled cell frames electrically connecting the rear face of the anode structure in each unit cell to the rear face of the cathode structure in the-adjacent cell frame by direct physical contact; the space within a single unit cell frame between said anode and said connecting the end unit cells with a source oi current.
RALPH M. HUNTER. LAWRENCE B. OTIS. ROBERT D. BLUE.
US252634A 1939-01-24 1939-01-24 Electrolytic cell Expired - Lifetime US2282058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US252634A US2282058A (en) 1939-01-24 1939-01-24 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US252634A US2282058A (en) 1939-01-24 1939-01-24 Electrolytic cell

Publications (1)

Publication Number Publication Date
US2282058A true US2282058A (en) 1942-05-05

Family

ID=22956873

Family Applications (1)

Application Number Title Priority Date Filing Date
US252634A Expired - Lifetime US2282058A (en) 1939-01-24 1939-01-24 Electrolytic cell

Country Status (1)

Country Link
US (1) US2282058A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2858263A (en) * 1954-08-25 1958-10-28 Dow Chemical Co Diaphragm type electrolytic cell
US3236760A (en) * 1959-11-09 1966-02-22 Oronzio De Nora Impianti Cells for the production of chlorine from hydrochloric acid
US3337443A (en) * 1964-03-04 1967-08-22 Pittsburgh Plate Glass Co Electrolytic cell
US3984304A (en) * 1974-11-11 1976-10-05 Ppg Industries, Inc. Electrode unit
US4031001A (en) * 1975-08-29 1977-06-21 Hooker Chemicals & Plastics Corporation Electrolytic cell for the production of alkali metal hydroxides having removable orifices for metering fluids to the anode and cathode compartments
US4036727A (en) * 1974-11-11 1977-07-19 Ppg Industries, Inc. Electrode unit
US4740287A (en) * 1986-12-19 1988-04-26 Olin Corporation Multilayer electrode electrolytic cell
US4761216A (en) * 1987-04-01 1988-08-02 Olin Corporation Multilayer electrode
US4863596A (en) * 1988-02-29 1989-09-05 Amoco Corporation Cell alignment frame assembly
WO2022125758A1 (en) * 2020-12-10 2022-06-16 Eenotech, Inc. Water disinfection device configurations and materials

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2858263A (en) * 1954-08-25 1958-10-28 Dow Chemical Co Diaphragm type electrolytic cell
US3236760A (en) * 1959-11-09 1966-02-22 Oronzio De Nora Impianti Cells for the production of chlorine from hydrochloric acid
US3337443A (en) * 1964-03-04 1967-08-22 Pittsburgh Plate Glass Co Electrolytic cell
US3984304A (en) * 1974-11-11 1976-10-05 Ppg Industries, Inc. Electrode unit
US4036727A (en) * 1974-11-11 1977-07-19 Ppg Industries, Inc. Electrode unit
US4031001A (en) * 1975-08-29 1977-06-21 Hooker Chemicals & Plastics Corporation Electrolytic cell for the production of alkali metal hydroxides having removable orifices for metering fluids to the anode and cathode compartments
US4740287A (en) * 1986-12-19 1988-04-26 Olin Corporation Multilayer electrode electrolytic cell
US4761216A (en) * 1987-04-01 1988-08-02 Olin Corporation Multilayer electrode
US4863596A (en) * 1988-02-29 1989-09-05 Amoco Corporation Cell alignment frame assembly
WO2022125758A1 (en) * 2020-12-10 2022-06-16 Eenotech, Inc. Water disinfection device configurations and materials

Similar Documents

Publication Publication Date Title
US6080290A (en) Mono-polar electrochemical system with a double electrode plate
AU598043B2 (en) Multi-cell metal/air battery
US2282058A (en) Electrolytic cell
US1545384A (en) Apparatus for electrolyzing fused salts
EP0027016B1 (en) Improvement in an apparatus for electrolytic production of magnesium metal from its chloride
US3236760A (en) Cells for the production of chlorine from hydrochloric acid
SU1687033A3 (en) Electrolytic cell of filter-press type
US3498903A (en) Electrolytic diaphragm cell for production of chlorine,hydrogen and alkalies
US6187155B1 (en) Electrolytic cell separator assembly
US2177626A (en) Apparatus for the electrolytic manufacture of persulphuric acid and its salts
US2952604A (en) Electrolysis apparatus
TWI597389B (en) Electrolysis Device
US4299681A (en) Hydrochloric acid electrolyzer
US3247090A (en) Electrolytic cell
US3408281A (en) Vertical mercury cathode electrolytic cell with diaphragm enclosed perforated cathode support
US3654120A (en) Electrolytic cell including bipolar electrodes with resin-impregnated holes in the electrode body
JPS5822385A (en) Electrolytic cell for mgcl2
US1508758A (en) Electrolytic apparatus
US1075660A (en) Electrolytic cell.
GB779928A (en) Improvements in or relating to electrolytic cells
US1302824A (en) Electrolytic cell.
US1485461A (en) Electrolytic cell
US2161166A (en) Electrolytic cell
US1790249A (en) Electrode for electrolytic cells
JPS61113783A (en) Apparatus for electrolyzing molten chloride