US2268172A - Resuscitator - Google Patents

Resuscitator Download PDF

Info

Publication number
US2268172A
US2268172A US39769941A US2268172A US 2268172 A US2268172 A US 2268172A US 39769941 A US39769941 A US 39769941A US 2268172 A US2268172 A US 2268172A
Authority
US
United States
Prior art keywords
oxygen
valve
tube
chamber
inhalation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
George J Sinnett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32093741&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US2268172(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US39769941 priority Critical patent/US2268172A/en
Application granted granted Critical
Publication of US2268172A publication Critical patent/US2268172A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0009Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration
    • A61M16/0012Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration by Venturi means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7879Resilient material valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86839Four port reversing valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86863Rotary valve unit
    • Y10T137/86871Plug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • Y10T137/87708With common valve operator
    • Y10T137/8778Spring biased
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • Y10T137/87909Containing rotary valve

Definitions

  • This invention relates to apparatus for treating patients who are unable to breathe normally, such as perons suifering'from gas asphyxiation,
  • vention relates to an improvement in the resuscitator phase of the apparatus and it may be incorporated in adevice which is not provided with either the aspirator or the inhalator devices.
  • my improved resuscitator the oxygen forced into the patient's lungs during resuscita tion passes through a part of the resuscitator which is contacted only by pure oxygen and it,
  • One object of this invention is to provide an improved resuscitator of the Venturi type in which the oxygen while passing to the patient's lungs during inhalation does not come in. contact with any part of the mechanism through which exhaled gases have passed.
  • the invention is an improvement upon the appa ratus shown in United States Patent No. 1,049,346 to' J. H. Drfiger.
  • Fig. 2 is an enlarged side elevation of the control valve and associated parts removed from the apparatus of Fig. 1;
  • Fig. 3 is a partial section on the line 3-3 of Fig. 2, and showing the control valve in aspirator position;
  • Fig. 8 is an enlarged section on the line 8-8- of Fig. 7;
  • Fig. 9 is an enlarged side elevation of the re- 7 moved resuscitator mechanism
  • Fig. 4 is a section on the line 4-4 of Fig. 2,
  • Fig. 5 is a section like that of Fig. 4, but showing the control valve in inhalator position;
  • Fig. 6 is a vertical section of the control valve in inh'alator position
  • Fig. 7 is a partial vertical section of the control
  • Fig. 10 is a plan view of the removed resuscitator mechanism
  • Fig. 11 is an enlarged section on the line ll--ll of Fig. 10; I
  • Fig. 12 is an enlarged plan view of the resusci tator toggle mechanism for. controlling the inhalation and exhalation periods;
  • Fig. 13 is a side elevation oi the toggle mechanism with partsbroken away and shown in section;
  • Fig. 14 is a diagrammatic view showing the source of oxygen, the control valve, the resuscitator mechanism, the aspiratormechanism, the inhalation bag and the face mask in position on the patient;
  • Fig. 15 is an enlarged vertical section through the face mask valve
  • Fig. 16 is an enlarged vertical section through the aspirator mechanism.
  • the tank 0 contains a source of oxygen normally under high pressure.
  • This oxygen is led from the tank through the pressure gauge G which registers-the pressure of the oxygen in the tank, thence to a pressure regulator PR. which reduces the pressure of the oxygen to approximately 15 lbs. persquare inch, and thence to the controi valve C. V.'
  • the pressure regulator is preferably a two-stage regulator but a one-stage regulator may be used if desired.
  • the handle 20 is used to vary the pressure of the oxygen emerging from the regulator and by turning this handle the pressure may be varied above or below the aforesaid 15 1bs.pe'r square inch.
  • of the controlvalve'QV. may be moved to the three positions indicated respectively by the letters R, A and I in Fig. 1.
  • the oxygen entering the control valve C.V. (Fig. 14) through the conduit 25 is directed by the valve through the conduit 26 directly to the resuscitator mechanism II.
  • the oxygen entering the control valve through the conduit 25 is directed by said valve through the conduit 21 directly to the aspirator mechanism Hi.
  • the h'andle 2! is moved to the position I the oxygen entering the control valve is directed by the control valve to the rubber inhalation bag I9.
  • 1 is secured to the upper end of the tapered control valve member 30 which is freely rotatable in the casting 3
  • the oxygen at approximately lfitlbs. pressure per square inch enters the valve from the conduit 25 through the port 32.
  • the control valve member 39 is in the position shown in Figs. and '1, and the oxygen entering the port 32 is conducted by the inclined valve channel 33 to the conduit 34 and thence directly downwardly to the inhalation bag l9.
  • the screw 35 serves to adjust the size of the end of the passage 34 to control the rate of flow of oxygen into the inhalation bag l9, depending upon how much the inner end of the screw obstructs the entrance to the passage 34.
  • the valve 60 (Figs. 14 and 15) operates as a check valve on inhalation.
  • is loosened so that the coil spring 62 exerts no pressure on the valve disk 63; thus the disk 63 rests lightly upon the valve seat 64.
  • the ports 65 When the patient exhales the exhaled gases force the disk 63 upwardly against-the slight force of gravity and the weight of the spring and. the gases pass out to the atmosphere through. the ports 65.
  • the disk 63 is sucked downwardly against the seat 64 so that no air enters the valve during inhalation. Any exhaled gases which do not pass out to the atmosphere through this valve 65 pass through the exhalation tube 41 the passage 42 and thence out to the atmosphere through the valve passage 39 (Fig. 6).
  • a flap valve 10 (Figs. 6, '1 and 8) serves to permit oxygen to pass out of the inhalation bag 19 into the valve channel 36 but prevents exhaled gases from entering said bag.
  • This flap valve rests upon the valve seat 1
  • a slight negative pressure is created in the inhalation tube 40 (Fig. 14') and is communicated through the passages 38, 31 and 36 (Fig. 6) to the flap valve.
  • This negative pressure raises the flap valve 19 until it contacts the wires 12: and permits oxygen to flow from the inhalation bag 19 around the edges of the flap valve 10 into the passage 36 and thence to the patient.
  • the flap valve drops down against the valve seat 1
  • This flap valve does not obstruct the flow of oxygen from the control valve passage 33, through the passage 34 to the inha ation bag, since that oxygen flows around the edge of the flap valve mechanism through the passage 14 which surrounds said mechanism.
  • the patient inhales, removing oxygen from the inhalation bag 19, it is slightly deflated so that the depth and duration of each inhalation may be observed.
  • the oxygen flowing from the tank 0 through the control valve C.V. fills the inhalation bag during each period of exhalation.
  • the control valve member 39 assumes the position shown in Fig. 3. In this position the oxygen entering the valve through the tube 25 and port 32 is directed by the valve passage 88 vertically downwardly into the port 81 and outwardly into the tube ,21.
  • the tube 21 communicates with the aspirator mechanism 18 (Figs. 14 and 16).
  • the tube 21 terminates in an orifice 82 of restricted cross section leading into the chamber 83.
  • the orifice 84 is located substantially opposite the restricted orifice 82 and it extends outwardly from the chamber to the atmosphere.
  • the walls 85 diverge outwardly as shown in Fig. 16.
  • the tube 86 leads to a Jar 81 (Fig. 14) and the tube 88 leads to the aspirator tube 89 which has a restricted opening at its end.
  • the face mask M When used as an aspirator the face mask M is removed and the end of aspirator tube 89 is inserted in the patients mouth.
  • the oxygen passes from the tank 0 through the control valve C.V., the tube 21 and the restricted orifice 82. As it passes from the orifice 82 through the chamber 83, and through the orifice 84 to the atmosphere, its speed is greatly accelerated and it rapidly sucks air from the tube 86 and carries it out through the orifice 84 to the atmosphere.
  • This action continuously creates negative pressure in the tube 36 so long as the control valve remains in aspirator position permitting the oxygen to be forced through the tube 21.
  • the negative pressure in the tube 86 (Fig.
  • the aspirator serves to withdraw mucus and fluids continuously and rapidly until the breathing passages are free. It is then shut oil by rotating the control valve handle 2
  • the control valve member 30 assumes the position shown in Fig. 4. In this position the oxygen entering the control valve C.V. through the tube 25 and port 32 is directed by the inclined control valve passage 90 downwardly into the port 9
  • the tube 26 communicates with the oxygen distributing chamber or valve chamber 92 (Fig. 11) in which the is located a vertically movable two-part valve 93, 94, the member 94 being secured to the valve-stem 95 and the member 93 being made of fiber and being slidable longitudinally of the stem 95.
  • the tapered end 95 of the valve stem 95 serves to prevent the oxygen from passing downwardly into the passage 109 when the valve stem 95 is lowered as shown in Fig. 13.
  • the member 93 of thevalve is spaced downwardly from its seat (as shown in Fig. 13) permitting oxygen to flow upwardly into the passages 96 and 91 (Fig. 11 and thence through the tube 98 and the inhalation tube 40 (Fig. 14) to the patients lungs.
  • the oxygen is passed at a pressure of about 15 lbs. per square inch directly from the control valve C.V. to the valve chamber 92 and thence to the patient.
  • the screw 99 (Fig. 11) may be used to adjust the size of the entrance to the tube 91.
  • valve stem 95 When the valve stem 95 is elevated to the position shown in Fig. 11, the valve member 93 is seated preventing the now or oxygen upwardly to the inhalation tube and the tapered end 95 of the valve stem'95 is elevated permitting oxygen to pass downwardly into the passage I00.
  • the passage I communicates with the tube IOI which has an orifice I02 of restricted cross section so that the speed of the oxygen passing through this orifice is accelerated.
  • the orifice I02 communicates with a tube I 03 which has an orifice I04 of slightly larger cross section than that of the orifice I02.
  • a port I05 aflfords communication between the interior oi the tube I03 and the chamber I00. This port is of larger cross section than that of the orifice I04.
  • the Jet of oxygen passes through tube I03 it sucks air from the chamber I06 through the port I05 and forces that air together with the oxygen through the orifice I04.
  • An orifice I01 aflords communication between the chamber I00 and the passage I08 which leads to the atmosphere.
  • the lower end 01 the negative pressure tube IIO communicates with the chamber I05.
  • This negative pressure resuscitator mechanism is designed to move about two litres of gas through the tube H0 in a four second interval when the oxygen enters the tube I00 at a pressure of 15 lbs. per square inch and two litres of exhaled gas each four seconds is the average rate of exhalation of a human being.
  • the intensity of the negative pressure in the tube IIO may be varied by rotating the handle 20 (Figs. 1 and 14) to either increase or decrease the pressure at which the oxygen is delivered to the tube I00.
  • valve stem 95 which controls the change from suction in the tube H0 to positive pressure of oxygen in the tubes 95, 91 is.
  • valve stem 95 is forced downwardly from the position shown in Fig. 11 to the position shown in Fig. 13, seating the tapered end 95 of the valve stem and opening the valve member 93.
  • a separate valve I40 (Fig. 11) is secured to the yoke I28 by the stem HI and when the yoke is forced downwardly from the position of Fig. 11 to the position of Fig. 13, the valve I40 seats in the port II I closing communication through the negative pressure tube II 0.
  • the diaphragm I2I is alternately moved up and down by the positive pressure created in the patients lungs by the oxygen and by the negative pressure created in his lungs during exhalation.
  • the toggle When the toggle is in the position of Fig. 11 the oxygen entering through the conduit 25 is forced down through the tube IOI creating negative pressure or suction in the tube I I0. This negative pressure is transmitted to the patients lungs through the chamber H2 and tube H3 and gradually exhausts the gases from his lungs.
  • of the face mask valve 60 (Figs. 15 and 14) is screwed down to the position shown in Fig. 15.
  • This causes the coil spring 62 to exert pressure on the valve disk 53 tending to keep it closed at all times.
  • this increased gessure in the mask causes the valve disk 53 0 move upwardly slightly compressing the spring 62 and the oxygen rushes out between the edge of the disk 03 and its seat. Consequently during inhalation does not come in contact with any part of the mechanism through which exhaled gases have passed.
  • Venturi chamber an exhalation conduit afiording communication between said Venturi chamber and the patient, and an oxygen inlet conduit leading from said source of oxygen, the improvemade without departing from the spirit and scope of the invention as set forth in them:- pended claims.
  • a resuscitator of the Venturi type operated by oxygen under pressure comprising a valve chamber, an oxygen inlet conduit connected to said valve chamber, an inhalation conduit leading directly from said valve chamber to the patient, a Venturi conduit leading directly from said valve chamber to a Venturi chamber and a valve in said valve chamber adapted, to open communication between said oxygen inlet conduit and said inhalation conduit during inhalation by the patient and to open communication between said oxygen inlet conduit and said Venturi conduit during exhalation by the patient, whereby the oxygen which is conducted to the patient during inhalation does not come in contact with any part of the mechanism through which exhaled gases have passed.
  • a resuscitator of the Venturi type operated by oxygen under pressure the improvement which comprises a valve chamber, an oxygen inlet conduit connected to said valve chamber, an inhalation conduit leading directly from said valve chamber to the patient, a Venturi conduit leading directly from said valve chamber to a the oxygen which is conducted to the patient ment which comprises an oxygen distributing chamber continuously communicating with said oxygen inlet conduit during operation of the apparatus as a resuscitator, a Venturi conduit leading from said oxygen distributing chamber to said Venturi chamber, an inhalation conduitv leading from said oxygen distributing chamber to the patient, and valve means adapted throughout each period of exhalation to open communication between said oxygen distributing chamber and said Venturi chamber, and throughout each period of inhalation to open communication between said oxygen distributing chamber and the patient through said inhalation conduit.
  • a resuscitator of the Venturi type having a source of oxygen under positive pressure, a Venturi chamber, an oxygen inlet conduit affording communication between said source of oxygen and said Venturi chamber and an exhalation conduit affording communication between said Venturi chamber and the patient
  • the improvement which comprises an inhalation conduit leading from said oxygen inlet conduit prior to the junction of said oxygen inlet conduit with said Venturi chamber, said inhalation conduit affording communication between said oxygen inlet conduit and the patient, and valve means constructed and arranged to open communication between said oxygen inlet conduit and said Venturi chamber throughout each period of exhalation and to open communication between said oxygen inlet conduit and the patient through said inhalation conduit throughout each period of inhalation, whereby the oxygenwhich passes to the patient during inhalation does not pass through said Venturi chamber.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Description

Dec. 30, 1941. G NE T 2,268,172
RESUS CITATOR Filed June 12, 1941 3 Sheets-Sheet 1 fwerzafar Dec. 30, 1941. G. J. SINNETT RESUSCI'I'ATOR Filed June 12, 1941 3 Sheets-Sheet 2 G. J. SINNETT RESUSCITATOR Dec'. 30, 1941.
Filed June 12, 1941 3 Sheets-Sheet 3 Patented Dec 30, 1941 UNITED STATES PATENT ER, 2,260,112
to John ILEmerson, Camb Application June 12, 1941. Serial-No. 397,699
4Claims. (01.12849) This invention relates to apparatus for treating patients who are unable to breathe normally, such as perons suifering'from gas asphyxiation,
. drowning or the like.
. vention, however, relates to an improvement in the resuscitator phase of the apparatus and it may be incorporated in adevice which is not provided with either the aspirator or the inhalator devices. In my improved resuscitator, the oxygen forced into the patient's lungs during resuscita tion passes through a part of the resuscitator which is contacted only by pure oxygen and it,
does not touch any parts of the resuscitator which are contacted by exhaled gases or mucus.
One object of this invention is to provide an improved resuscitator of the Venturi type in which the oxygen while passing to the patient's lungs during inhalation does not come in. contact with any part of the mechanism through which exhaled gases have passed. In this aspect the invention is an improvement upon the appa ratus shown in United States Patent No. 1,049,346 to' J. H. Drfiger.
' Other objects relate to the construction and mode of operation, and will be apparent from a consideration of the following description and the accompanying drawings which exemplify one embodiment of the invention chosen for the purpose of illustration.
In the drawings:
Fig. lisaplanviewofan my invention;
Fig. 2 is an enlarged side elevation of the control valve and associated parts removed from the apparatus of Fig. 1;
Fig. 3 is a partial section on the line 3-3 of Fig. 2, and showing the control valve in aspirator position;
apparatus embodying valve on the line 1-1 of Fig. 5. showing the valve in inhalator position;
Fig. 8 is an enlarged section on the line 8-8- of Fig. 7;
Fig. 9 is an enlarged side elevation of the re- 7 moved resuscitator mechanism;
Fig. 4 is a section on the line 4-4 of Fig. 2,
showing the control valve in resuscitator position;
Fig. 5 is a section like that of Fig. 4, but showing the control valve in inhalator position;
Fig. 6 is a vertical section of the control valve in inh'alator position Fig. 7 is a partial vertical section of the control Fig. 10 is a plan view of the removed resuscitator mechanism;
Fig. 11 is an enlarged section on the line ll--ll of Fig. 10; I
Fig. 12 is an enlarged plan view of the resusci tator toggle mechanism for. controlling the inhalation and exhalation periods;
Fig. 13 is a side elevation oi the toggle mechanism with partsbroken away and shown in section; I
Fig. 14 is a diagrammatic view showing the source of oxygen, the control valve, the resuscitator mechanism, the aspiratormechanism, the inhalation bag and the face mask in position on the patient;
Fig. 15 is an enlarged vertical section through the face mask valve; and
Fig. 16 is an enlarged vertical section through the aspirator mechanism.
Referring to Fig. 14 the tank 0 contains a source of oxygen normally under high pressure. This oxygen is led from the tank through the pressure gauge G which registers-the pressure of the oxygen in the tank, thence to a pressure regulator PR. which reduces the pressure of the oxygen to approximately 15 lbs. persquare inch, and thence to the controi valve C. V.' The pressure regulator is preferably a two-stage regulator but a one-stage regulator may be used if desired. The handle 20 is used to vary the pressure of the oxygen emerging from the regulator and by turning this handle the pressure may be varied above or below the aforesaid 15 1bs.pe'r square inch.
The handle 2| of the controlvalve'QV. may be moved to the three positions indicated respectively by the letters R, A and I in Fig. 1. When moved to the position It (Fig. 1)' the oxygen entering the control valve C.V. (Fig. 14) through the conduit 25 is directed by the valve through the conduit 26 directly to the resuscitator mechanism II. when the handle 2| is moved to the posi tion A, the oxygen entering the control valve through the conduit 25 is directed by said valve through the conduit 21 directly to the aspirator mechanism Hi. When the h'andle 2! is moved to the position I the oxygen entering the control valve is directed by the control valve to the rubber inhalation bag I9. Referring to Figs. 2, 3,- 5 and 6, the handle 2| 1 is secured to the upper end of the tapered control valve member 30 which is freely rotatable in the casting 3|. The oxygen at approximately lfitlbs. pressure per square inch enters the valve from the conduit 25 through the port 32. when the hande 2| points to I (Fig. l) the control valve member 39 is in the position shown in Figs. and '1, and the oxygen entering the port 32 is conducted by the inclined valve channel 33 to the conduit 34 and thence directly downwardly to the inhalation bag l9. The screw 35 serves to adjust the size of the end of the passage 34 to control the rate of flow of oxygen into the inhalation bag l9, depending upon how much the inner end of the screw obstructs the entrance to the passage 34.
As shown by Fig. 6, when the control valve is in said inhalation position the upper end of the internal valve passage 36 registers with the passage 31 which communicates with the inhalation passage 38, to which the inhalation tube 49 is attached. The other internal valve passage 39 then registers with the passage 42 which communicates with the exhalation passage 43 to which the exhalation tube 4| is attached. The tube 49 communicates with the face mask tube 50 (Figs. 14 and 15) and the tube 4| communicates with the face mask tube 5|. These tubes communicate with a chamber 52 having an orifice 53 which communicates with the mask M enclosing the patients nose and mouth.
The valve 60 (Figs. 14 and 15) operates as a check valve on inhalation. The screw-threaded cap 6| is loosened so that the coil spring 62 exerts no pressure on the valve disk 63; thus the disk 63 rests lightly upon the valve seat 64. When the patient exhales the exhaled gases force the disk 63 upwardly against-the slight force of gravity and the weight of the spring and. the gases pass out to the atmosphere through. the ports 65. When the patient inhales, the disk 63 is sucked downwardly against the seat 64 so that no air enters the valve during inhalation. Any exhaled gases which do not pass out to the atmosphere through this valve 65 pass through the exhalation tube 41 the passage 42 and thence out to the atmosphere through the valve passage 39 (Fig. 6). v
A flap valve 10 (Figs. 6, '1 and 8) serves to permit oxygen to pass out of the inhalation bag 19 into the valve channel 36 but prevents exhaled gases from entering said bag. This flap valve rests upon the valve seat 1| but is free to move upwardly a short distance until it contacts: the crossed wires 12. Thus when the patient inhales, a slight negative pressure is created in the inhalation tube 40 (Fig. 14') and is communicated through the passages 38, 31 and 36 (Fig. 6) to the flap valve. This negative pressure raises the flap valve 19 until it contacts the wires 12: and permits oxygen to flow from the inhalation bag 19 around the edges of the flap valve 10 into the passage 36 and thence to the patient. As soon as the patient ceases an inhalation, the flap valve drops down against the valve seat 1| and remains there until the next inhalation. This flap valve does not obstruct the flow of oxygen from the control valve passage 33, through the passage 34 to the inha ation bag, since that oxygen flows around the edge of the flap valve mechanism through the passage 14 which surrounds said mechanism. When the patient inhales, removing oxygen from the inhalation bag 19, it is slightly deflated so that the depth and duration of each inhalation may be observed. The oxygen flowing from the tank 0 through the control valve C.V. fills the inhalation bag during each period of exhalation.
When the control valve handle 2| is turned to the letter A (Fig. 1) the control valve member 39 assumes the position shown in Fig. 3. In this position the oxygen entering the valve through the tube 25 and port 32 is directed by the valve passage 88 vertically downwardly into the port 81 and outwardly into the tube ,21. The tube 21 communicates with the aspirator mechanism 18 (Figs. 14 and 16). The tube 21 terminates in an orifice 82 of restricted cross section leading into the chamber 83. The orifice 84 is located substantially opposite the restricted orifice 82 and it extends outwardly from the chamber to the atmosphere. The walls 85 diverge outwardly as shown in Fig. 16. The tube 86 leads to a Jar 81 (Fig. 14) and the tube 88 leads to the aspirator tube 89 which has a restricted opening at its end.
When used as an aspirator the face mask M is removed and the end of aspirator tube 89 is inserted in the patients mouth. The oxygen passes from the tank 0 through the control valve C.V., the tube 21 and the restricted orifice 82. As it passes from the orifice 82 through the chamber 83, and through the orifice 84 to the atmosphere, its speed is greatly accelerated and it rapidly sucks air from the tube 86 and carries it out through the orifice 84 to the atmosphere. This action continuously creates negative pressure in the tube 36 so long as the control valve remains in aspirator position permitting the oxygen to be forced through the tube 21. The negative pressure in the tube 86 (Fig. 14) is transmitted to the jar 81, to the tube 88 and to the opening in the aspirator tube 89 where it functions to suck mucus and other fluids from the patients mouth and throat to the jar 81 where they are deposited. Thus the aspirator serves to withdraw mucus and fluids continuously and rapidly until the breathing passages are free. It is then shut oil by rotating the control valve handle 2| or the pressure regulator handle 20.
When the control valve handle 2| is turned to the letter R. (Fig. 1) the control valve member 30 assumes the position shown in Fig. 4. In this position the oxygen entering the control valve C.V. through the tube 25 and port 32 is directed by the inclined control valve passage 90 downwardly into the port 9| and outwardly into the tube 26. The tube 26 communicates with the oxygen distributing chamber or valve chamber 92 (Fig. 11) in which the is located a vertically movable two- part valve 93, 94, the member 94 being secured to the valve-stem 95 and the member 93 being made of fiber and being slidable longitudinally of the stem 95. The tapered end 95 of the valve stem 95 serves to prevent the oxygen from passing downwardly into the passage 109 when the valve stem 95 is lowered as shown in Fig. 13. When the valve stem is in this lowered position the member 93 of thevalve is spaced downwardly from its seat (as shown in Fig. 13) permitting oxygen to flow upwardly into the passages 96 and 91 (Fig. 11 and thence through the tube 98 and the inhalation tube 40 (Fig. 14) to the patients lungs. Hence on inhalation the oxygen is passed at a pressure of about 15 lbs. per square inch directly from the control valve C.V. to the valve chamber 92 and thence to the patient. The screw 99 (Fig. 11) may be used to adjust the size of the entrance to the tube 91.
When the valve stem 95 is elevated to the position shown in Fig. 11, the valve member 93 is seated preventing the now or oxygen upwardly to the inhalation tube and the tapered end 95 of the valve stem'95 is elevated permitting oxygen to pass downwardly into the passage I00. The passage I communicates with the tube IOI which has an orifice I02 of restricted cross section so that the speed of the oxygen passing through this orifice is accelerated. The orifice I02 communicates with a tube I 03 which has an orifice I04 of slightly larger cross section than that of the orifice I02. A port I05 aflfords communication between the interior oi the tube I03 and the chamber I00. This port is of larger cross section than that of the orifice I04. As the Jet of oxygen passes through tube I03 it sucks air from the chamber I06 through the port I05 and forces that air together with the oxygen through the orifice I04. An orifice I01 aflords communication between the chamber I00 and the passage I08 which leads to the atmosphere. The lower end 01 the negative pressure tube IIO communicates with the chamber I05. Some of the air is sucked from the chamber I00 through the port I05 as described above and the jet of combinedoxygen and air which emerges from the orifice I 04 sucks considerably more air from the chamber I06 and forces it out to the atmosphere through the orifice I01 and the Venturi passage I08. This action creates suction in the tube IIO.
This negative pressure resuscitator mechanism is designed to move about two litres of gas through the tube H0 in a four second interval when the oxygen enters the tube I00 at a pressure of 15 lbs. per square inch and two litres of exhaled gas each four seconds is the average rate of exhalation of a human being. The intensity of the negative pressure in the tube IIO may be varied by rotating the handle 20 (Figs. 1 and 14) to either increase or decrease the pressure at which the oxygen is delivered to the tube I00.
. The negative pressure created in the tube H0 is transmitted to the patientthrough the port III, the chamber H2 and tube II3, which communicates with the mask exhalation tube 4I through the passage 43. Thus when negative pressure is created in the tube IIO it sucks exhaled gases from the patients lungs and they are expelled to the atmosphere through the port I01 and passage I08. It will be observed that the oxygen which reaches the patient during inhalation through the tube 29, the chamber 92 and passages 96, 91, 98 and 00 does not come in contact with any part of the mechanism through which the exhaled gases pass. This permits thorough cleansing of the machine by merely disinfecting the mask.
The operation of the valve stem 95 which controls the change from suction in the tube H0 to positive pressure of oxygen in the tubes 95, 91 is.
accomplished by a toggle I20 and diaphragm I 2I (Figs. 11, 12 and 13) located in the chamber H2.
The edge of the diaphragm is clamped against the upper face of the member I23 by the clamping ring I22. One end of the toggle I20 passes loosely around th bolt I24 and this end oi! the toggle is prevented from sliding over the end of the bolt by the washer I25 and nut I25. The other end of the toggle I20 passes loosely through the yoke I29 which is mounted for vertical sliding movement on the two pins I29. At its center the two adjacent central ends of the toggle are pivotally mounted on the horizontal flange pieces I30. The spring I32 serves to force the adjacent central ends or the toggle toward each other at all times, thereby keeping them in engagement with the flange pieces I30, as shown in Figs. 12 and 13. These flange pieces I30 are an integral part of a U-shaped member I3I, the
base of which is secured to the center of the diaphragm. Thus as the center of the diaphragm I2I is forced downwardly from the position shown in Fig. 13, the U-shaped member I3I is also forced downwardly and carries the center 01 the toggle I 20 downwardly. This causes the two outer ends of the toggle to spring upwardly and the yoke I28 being secured to one end of the toggle is also carried upwardly along the pins I29. Since the valve stem 95 is secured to the yoke I23 the valve stem is also carried upwardly to the position of Fig. 11, seating the valve member 93 and elevating, the tapered end 95 of the stem 95. Conversely when the diaphragm I2I is moved upwardly to the position shown in Fig. 13 the ends 01' the toggle are forced downwardly and the valve stem 95 is forced downwardly from the position shown in Fig. 11 to the position shown in Fig. 13, seating the tapered end 95 of the valve stem and opening the valve member 93. A separate valve I40 (Fig. 11) is secured to the yoke I28 by the stem HI and when the yoke is forced downwardly from the position of Fig. 11 to the position of Fig. 13, the valve I40 seats in the port II I closing communication through the negative pressure tube II 0.
v The diaphragm I2I is alternately moved up and down by the positive pressure created in the patients lungs by the oxygen and by the negative pressure created in his lungs during exhalation. When the toggle is in the position of Fig. 11 the oxygen entering through the conduit 25 is forced down through the tube IOI creating negative pressure or suction in the tube I I0. This negative pressure is transmitted to the patients lungs through the chamber H2 and tube H3 and gradually exhausts the gases from his lungs.
When the gases have been exhausted from the patients lungs the negative pressure in the chamber H2 is increased to such an extent that it elevates the diaphragm I2I causing the toggle to trip and to close the valves I 40 and the tapered end of the valve stem 95. This shuts oil the flow of oxygen through the passage I00 and discontinues the creation of negative pressure in the tube IIO. As the tapered end 95 is closed the valve 93 is simultaneously opened and the oxygen entering through the tube 26 begins to flow to the patients lungs by way of the passages 95 and 91 and the tube 98. When the oxygen has filled the lungs to cause a normal inhalation it builds up positive pressure in the exhalation tube 4|, the connected tube I I3 and the toggle chamber II2. This positive pressure forces the diaphragm I 2| downwardly and thereby elevates the valves I40 and 93. The oxygen then is forced downwardly again through the passage I00 to again create suction in the tube I I0 which causes the next period of exhalation.
During use of the apparatus as a resuscitator the cap 5| of the face mask valve 60 (Figs. 15 and 14) is screwed down to the position shown in Fig. 15. This causes the coil spring 62 to exert pressure on the valve disk 53 tending to keep it closed at all times. However, if the positive pressure in the mask becomes higher than can safely be withstood by the patient, this increased gessure in the mask causes the valve disk 53 0 move upwardly slightly compressing the spring 62 and the oxygen rushes out between the edge of the disk 03 and its seat. Consequently during inhalation does not come in contact with any part of the mechanism through which exhaled gases have passed.
3. In a resuscitator of the Venturi type having a source of oxygen underv positive pressure, a
Venturi chamber, an exhalation conduit afiording communication between said Venturi chamber and the patient, and an oxygen inlet conduit leading from said source of oxygen, the improvemade without departing from the spirit and scope of the invention as set forth in them:- pended claims.
I claim:
1. In a resuscitator of the Venturi type operated by oxygen under pressure, the improvement which comprises a valve chamber, an oxygen inlet conduit connected to said valve chamber, an inhalation conduit leading directly from said valve chamber to the patient, a Venturi conduit leading directly from said valve chamber to a Venturi chamber and a valve in said valve chamber adapted, to open communication between said oxygen inlet conduit and said inhalation conduit during inhalation by the patient and to open communication between said oxygen inlet conduit and said Venturi conduit during exhalation by the patient, whereby the oxygen which is conducted to the patient during inhalation does not come in contact with any part of the mechanism through which exhaled gases have passed.
2. In a resuscitator of the Venturi type operated by oxygen under pressure, the improvement which comprises a valve chamber, an oxygen inlet conduit connected to said valve chamber, an inhalation conduit leading directly from said valve chamber to the patient, a Venturi conduit leading directly from said valve chamber to a the oxygen which is conducted to the patient ment which comprises an oxygen distributing chamber continuously communicating with said oxygen inlet conduit during operation of the apparatus as a resuscitator, a Venturi conduit leading from said oxygen distributing chamber to said Venturi chamber, an inhalation conduitv leading from said oxygen distributing chamber to the patient, and valve means adapted throughout each period of exhalation to open communication between said oxygen distributing chamber and said Venturi chamber, and throughout each period of inhalation to open communication between said oxygen distributing chamber and the patient through said inhalation conduit.
4. In a resuscitator of the Venturi type having a source of oxygen under positive pressure, a Venturi chamber, an oxygen inlet conduit affording communication between said source of oxygen and said Venturi chamber and an exhalation conduit affording communication between said Venturi chamber and the patient, the improvement which comprises an inhalation conduit leading from said oxygen inlet conduit prior to the junction of said oxygen inlet conduit with said Venturi chamber, said inhalation conduit affording communication between said oxygen inlet conduit and the patient, and valve means constructed and arranged to open communication between said oxygen inlet conduit and said Venturi chamber throughout each period of exhalation and to open communication between said oxygen inlet conduit and the patient through said inhalation conduit throughout each period of inhalation, whereby the oxygenwhich passes to the patient during inhalation does not pass through said Venturi chamber.
GEORGE J. SINNETT.
US39769941 1941-06-12 1941-06-12 Resuscitator Expired - Lifetime US2268172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US39769941 US2268172A (en) 1941-06-12 1941-06-12 Resuscitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US39769941 US2268172A (en) 1941-06-12 1941-06-12 Resuscitator

Publications (1)

Publication Number Publication Date
US2268172A true US2268172A (en) 1941-12-30

Family

ID=32093741

Family Applications (1)

Application Number Title Priority Date Filing Date
US39769941 Expired - Lifetime US2268172A (en) 1941-06-12 1941-06-12 Resuscitator

Country Status (1)

Country Link
US (1) US2268172A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2418034A (en) * 1943-05-29 1947-03-25 Gen Electric X Ray Corp Respiration apparatus
US2436853A (en) * 1944-04-10 1948-03-02 Edwin D Coleman Respiration apparatus
US2439016A (en) * 1943-10-19 1948-04-06 Scott Aviation Corp Breathing apparatus
US2468741A (en) * 1944-12-12 1949-05-03 John H Emerson Breathing apparatus
US2483722A (en) * 1945-05-02 1949-10-04 Bennett Vivian Ray Oxygen valve
US2523906A (en) * 1943-12-28 1950-09-26 Bendix Aviat Corp Pressure breathing oxygen regulator
US2544991A (en) * 1945-11-08 1951-03-13 Bendix Aviat Corp Pressure breathing regulator
US2567225A (en) * 1944-04-14 1951-09-11 Albert E Mckee Oxygen administration
US2567224A (en) * 1943-08-17 1951-09-11 Mckee Oxygen administration system
US2575513A (en) * 1948-09-10 1951-11-20 E & J Mfg Co Detachable aspirator
US2593046A (en) * 1944-05-29 1952-04-15 Albert E Mckee Oxygen administration
US2596178A (en) * 1948-10-12 1952-05-13 Seeler Henry Pressure responsive regulator
US2664881A (en) * 1952-01-28 1954-01-05 Seeler Henry Positive pressure resuscitator
US2782726A (en) * 1954-02-23 1957-02-26 Eddie J Perrin Multi-way valve unit with jet pump
US2908270A (en) * 1954-03-08 1959-10-13 Philip L Stanton Resuscitator
US2930375A (en) * 1957-09-25 1960-03-29 Globe Ind Inc Resuscitator
US2968474A (en) * 1957-09-25 1961-01-17 Chemetron Corp Vaporizer
US3077191A (en) * 1957-05-24 1963-02-12 Philip L Stanton Anesthetizing and resuscitating apparatus
US3083707A (en) * 1956-02-13 1963-04-02 Henry W Seeler Device for treatment of pulmonary diseases
US9631731B2 (en) 2012-03-23 2017-04-25 Victaulic Company Diverter valve

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2418034A (en) * 1943-05-29 1947-03-25 Gen Electric X Ray Corp Respiration apparatus
US2567224A (en) * 1943-08-17 1951-09-11 Mckee Oxygen administration system
US2439016A (en) * 1943-10-19 1948-04-06 Scott Aviation Corp Breathing apparatus
US2523906A (en) * 1943-12-28 1950-09-26 Bendix Aviat Corp Pressure breathing oxygen regulator
US2436853A (en) * 1944-04-10 1948-03-02 Edwin D Coleman Respiration apparatus
US2567225A (en) * 1944-04-14 1951-09-11 Albert E Mckee Oxygen administration
US2593046A (en) * 1944-05-29 1952-04-15 Albert E Mckee Oxygen administration
US2468741A (en) * 1944-12-12 1949-05-03 John H Emerson Breathing apparatus
US2483722A (en) * 1945-05-02 1949-10-04 Bennett Vivian Ray Oxygen valve
US2544991A (en) * 1945-11-08 1951-03-13 Bendix Aviat Corp Pressure breathing regulator
US2575513A (en) * 1948-09-10 1951-11-20 E & J Mfg Co Detachable aspirator
US2596178A (en) * 1948-10-12 1952-05-13 Seeler Henry Pressure responsive regulator
US2664881A (en) * 1952-01-28 1954-01-05 Seeler Henry Positive pressure resuscitator
US2782726A (en) * 1954-02-23 1957-02-26 Eddie J Perrin Multi-way valve unit with jet pump
US2908270A (en) * 1954-03-08 1959-10-13 Philip L Stanton Resuscitator
US3083707A (en) * 1956-02-13 1963-04-02 Henry W Seeler Device for treatment of pulmonary diseases
US3077191A (en) * 1957-05-24 1963-02-12 Philip L Stanton Anesthetizing and resuscitating apparatus
US2930375A (en) * 1957-09-25 1960-03-29 Globe Ind Inc Resuscitator
US2968474A (en) * 1957-09-25 1961-01-17 Chemetron Corp Vaporizer
US9631731B2 (en) 2012-03-23 2017-04-25 Victaulic Company Diverter valve

Similar Documents

Publication Publication Date Title
US2268172A (en) Resuscitator
US3537448A (en) Therapeutic intermittent positive pressure respirator
US3584621A (en) Respiratory apparatus
US3124124A (en) cross
US3485243A (en) Respirator with improved exhalation valve and control means
US4121579A (en) Ventilator and method
US4278110A (en) Demand responsive flow controller
US3581742A (en) Intermittent positive pressure breathing device
US3319627A (en) Intermittent positive pressure breathing apparatus
US2408136A (en) Resuscitator insufflator aspirator
US3859995A (en) Breathing assist apparatus
NO151139B (en) APPARATUS FOR ADMINISTRATING ANESTHESIA GAS
US3730180A (en) Pneumatically operated ventilator
US4109651A (en) Anesthetic gas exhaust system
US2208633A (en) Anesthetizing apparatus
GB875790A (en) Breathing control valve
US20090228018A1 (en) Anti-Choking Device
US3717147A (en) Resuscitator
US4566450A (en) Device to discourage growth of respiratory viruses
US3307542A (en) Lung ventilating equipment
GB748363A (en) Improvements in or relating to fluid actuated valves
US2364626A (en) Resuscitator
US4289126A (en) Pressure regulator for breathing apparatus
US2774352A (en) Breathing assistor valve
US2269904A (en) Resuscitator-aspirator-insufflator