US2174281A - Ferrous alloy - Google Patents

Ferrous alloy Download PDF

Info

Publication number
US2174281A
US2174281A US257686A US25768639A US2174281A US 2174281 A US2174281 A US 2174281A US 257686 A US257686 A US 257686A US 25768639 A US25768639 A US 25768639A US 2174281 A US2174281 A US 2174281A
Authority
US
United States
Prior art keywords
carbon
hardness
vanadium
steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US257686A
Inventor
James P Gill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vanadium Alloys Steel Co
Original Assignee
Vanadium Alloys Steel Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanadium Alloys Steel Co filed Critical Vanadium Alloys Steel Co
Priority to US257686A priority Critical patent/US2174281A/en
Priority to US264985A priority patent/US2174284A/en
Priority to US264986A priority patent/US2174285A/en
Priority to US264987A priority patent/US2174286A/en
Priority to US264984A priority patent/US2174283A/en
Priority to US264983A priority patent/US2174282A/en
Application granted granted Critical
Publication of US2174281A publication Critical patent/US2174281A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium

Definitions

  • This invention relates to alloy steels and more particularly to alloy steels which are especially suitable for use in the manufacture of tools or dies.
  • an important object of the present invention resides in the provision of an improved alloy steel of this character which can be hardened .to a Rockwell hardness in excess oi. C 60; whereby it oilers a high resistance to abrasion, and yet can be readily forged and annealed so as to be commercially machinable.
  • a feature of the invention which contributes to the accomplishment of the recited object consists in the discovery that by the employment of vanadium in a predetermined ratio in steels oi the type under discussion it is possible ta employ a carbon content far in excess of that employed in steels of this type that are in use at the pres- 5 cut time.
  • vanadium because of its extremelyv high affinity for carbon, will form carbides in the alloy, large amounts of which will not go into solid solution at the normal hardening and forging temperatures. Even in the hardened state the improved steel will have acomparatively tough matrix in which are embedded extremely hard carbides.
  • steels containing about 2.50% carbon or more have not heretofore been regarded as commercially forgeable, and an important feature of the present invention resides in the discovery, and the attendant disclosure, that such steels may be rendered readily foregable by incorporating in them approximately three times as 5 much vanadium as carbon present.
  • Steels 50* prepared have extremely high resistance to wear, can be hardened extremely hard, some of them even as high as Rockwell C 70, yet they can be annealed to a hardness of under 2'75 Brinell, at 10 which hardness they are commercially machinable.
  • a steel was made containing 1.95% carbon, 1.20% silicon, .35% manganese, and 5.12% vana- 20 .dium, which, by quenching in water from 1750 F., produced a hardness of Rockwell C 69, and by quenching from temperatures as high as 2200 F. obtained a hardness as high as Rockwell C 67.
  • This steel was also annealed to a hardness of 255 Brinell, at which hardness it could be readily machined. The steel was readily forgeable and forged with about the same ease as would a 1.00% carbon tool steel.
  • a heat of steel was prepared containing 3.05% carbon, 1.01% silicon, 32% manganese, and 9.60% vanadium, which it was possible to harden 85 to approximately Rockwell C 70 from 1600" F. and to Rockwell C 6'7 from 2200 F.
  • This steel was annealed to a hardness of 255 Brinell, at which hardness it could be readily machined. It likewise forged with the same ease as a carbon tool steel of about 1.00% carbon content.
  • a vanadium content of from about 3.00% to 50 about 11.00%.
  • a heat of steel was made containing 3.10% carbon and 8.60% vanadium, to which was added 55 a tungsten content of 4.92%, and the material remained forgeable.
  • This heat of steel contained a carbon content of 2.94% and a vanadium content of 9.50%, to which was added 10.64% of tungsten.
  • the material remained forgeable and was found to reside within the premises of the invention herein disclosed.
  • Molybdenum and tungsten were added to determine the upper combined limit of both of these elements and it was found that as long as the combined amount of the two was under about 10.00% the material could be successfully forged, whereas if the combined amount exceeded this figure the material appeared to be no longer commercially forgeable.
  • Ingots were made of the base composition already described containing both tungsten and chromium, and also containing tungsten, molybdenum and chromium. With the chromium content as high as 5.00% and with the carbon content approximately 2.00% it was found that either tungsten or molybdenum, or both, could be added to a total percentage of approximately 12.00% and the material would still be commercially forgeable.
  • Hardened materal made of the base composition decreased slightly in hardness with an increase in tempering temperature, but the material containing tungsten and molybdenum, or both, with a chromium content of from 3.00% to 5.00% did not materially decrease in hardness when the quenched specimens were tem- 1800 pered as high as 1100 F.
  • Ingots were made similar to those to which tungsten, molybdenum and chromium were added, but with a lesser vanadium content; that is, with the vanadium content below 2.00%, and
  • An improved forgeabie, machinabie, and hardenable alloy steel said steel containing from about 1.25% to about 3.50% carbon, from not less than about 3.50% to about 10% molybdenum, from about 25% to about 5% chromium, and from about 3% to about 11% vanadium, the ratic of the vanadium to the carbon being in excess of about 2 to 1 and less than about 4 to 1, with the remainder of the alloy substantially all.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Description

Patented Sept. 26, 1939 "UNITED STATES FERROUS ALLOY James P. Gill, Latrobe, Pa., assignor to Vanadium-Alloys Steel Company, Latrobe, Pa., a corporation of Pennsylvania No Drawing. Application February 21, 1939,.
Serial No. 257,686
1 Claim.
This invention relates to alloy steels and more particularly to alloy steels which are especially suitable for use in the manufacture of tools or dies.
5 At present there are a number, of steels of this nature in use but as a rule, in order to make them conform to the general requirements of ready forgeability and machinability, they are not sufiiciently hard to offer a high resistance to abrasion. With this in mind, an important object of the present invention resides in the provision of an improved alloy steel of this character which can be hardened .to a Rockwell hardness in excess oi. C 60; whereby it oilers a high resistance to abrasion, and yet can be readily forged and annealed so as to be commercially machinable.
A feature of the invention which contributes to the accomplishment of the recited object consists in the discovery that by the employment of vanadium in a predetermined ratio in steels oi the type under discussion it is possible ta employ a carbon content far in excess of that employed in steels of this type that are in use at the pres- 5 cut time. Thus, it has been found that the element vanadium, because of its extremelyv high affinity for carbon, will form carbides in the alloy, large amounts of which will not go into solid solution at the normal hardening and forging temperatures. Even in the hardened state the improved steel will have acomparatively tough matrix in which are embedded extremely hard carbides.
In my Patent No. 2,105,114, granted January 11, 1938, the fact was disclosed that carbon con-. tents up to 1.25% or 1.50% could be employed in molybdenum steels as long as there was also present a vanadium content in excess of two and one-half to one and below three and one-half to one of the carbon content. Thiswas an important discovery, but to repeat, it did not offer the wear resistance which forms the subject matter of the present invention. What I have now discovered is that steels having carbon contents in excess of 1.25% and less than about 3.50% carbon may be prepared as long as the steel contains a vanadium content of approximately three times the amount of carbon present. Accordingly, in an alloy steel of the character under discussion having a carbon content in excess of about 1.25% and less than about 3.50% the vanadium content would range from about 3.00% to about 11.00%.
To repeat, steels containing about 2.50% carbon or more have not heretofore been regarded as commercially forgeable, and an important feature of the present invention resides in the discovery, and the attendant disclosure, that such steels may be rendered readily foregable by incorporating in them approximately three times as 5 much vanadium as carbon present. Steels 50* prepared have extremely high resistance to wear, can be hardened extremely hard, some of them even as high as Rockwell C 70, yet they can be annealed to a hardness of under 2'75 Brinell, at 10 which hardness they are commercially machinable.
In establishing the premises of my invention several series of heats of steel were prepared, some of which will be described in the ensuing paragraphs.
I Heat No. 1
A steel was made containing 1.95% carbon, 1.20% silicon, .35% manganese, and 5.12% vana- 20 .dium, which, by quenching in water from 1750 F., produced a hardness of Rockwell C 69, and by quenching from temperatures as high as 2200 F. obtained a hardness as high as Rockwell C 67. This steel was also annealed to a hardness of 255 Brinell, at which hardness it could be readily machined. The steel was readily forgeable and forged with about the same ease as would a 1.00% carbon tool steel.
Heat No. 2
A heat of steel was prepared containing 3.05% carbon, 1.01% silicon, 32% manganese, and 9.60% vanadium, which it was possible to harden 85 to approximately Rockwell C 70 from 1600" F. and to Rockwell C 6'7 from 2200 F. This steel was annealed to a hardness of 255 Brinell, at which hardness it could be readily machined. It likewise forged with the same ease as a carbon tool steel of about 1.00% carbon content.
Having made the discovery that when the '-vanadiu'm-earbon ratio was approximately that as given that such a material could be readily 45 forged and annealed and hardened to extremely high hardnesses, other alloys were then added, to the base composition given, namely, a carbon content of from about 1.25% to about 3.50% ,and
a vanadium content of from about 3.00% to 50 about 11.00%.
Heat No. 3
A heat of steel was made containing 3.10% carbon and 8.60% vanadium, to which was added 55 a tungsten content of 4.92%, and the material remained forgeable.
Heat No. 4
This heat of steel contained a carbon content of 2.94% and a vanadium content of 9.50%, to which was added 10.64% of tungsten. The material remained forgeable and was found to reside within the premises of the invention herein disclosed.
Two additional heats of steel were made containing 3.12% carbon and 10.10% vanadium, and 3.14% carbon and 10.10% vanadium, to which were respectively added 15.58% tungsten and 24.50% tungsten, but neither of these steels appeared to be commercially forgeable. It has therefore concluded that with the carbon on the higher side of the carbon range about 12.00% tungsten was the maximum that should be added in order to maintain the material commercially forgeable. In order to determine the upper limit of molybdenum, heats were prepared constantly increasing the amount of molybdenum present and it was found that the material was not commercially forgeable inthe higher carbon range after the molybdenum content exceeded about 10.00%. Molybdenum and tungsten were added to determine the upper combined limit of both of these elements and it was found that as long as the combined amount of the two was under about 10.00% the material could be successfully forged, whereas if the combined amount exceeded this figure the material appeared to be no longer commercially forgeable.
Ingots were made of the base composition already described containing both tungsten and chromium, and also containing tungsten, molybdenum and chromium. With the chromium content as high as 5.00% and with the carbon content approximately 2.00% it was found that either tungsten or molybdenum, or both, could be added to a total percentage of approximately 12.00% and the material would still be commercially forgeable. It was found, however, that an ingot of 3.25% carbon, 8.90% vanadium, 10.79% tungsten, and 4.12% chromium forged with considerable diiiiculty, which would indicate that in the presence of about 10.00% of tungsten or molybdenum, or a total of both, that a chromium content higher than 5.00% could not be added and still obtain a. commercially forgeablematerial. All of these compositions naturally contain varying amounts of silicon, generally less than 1.50%, and a manganese content generally less than .75%, and additionally they also contain the customary small amounts of impurities of sulphur and phosphorus.
The purpose of adding other alloying ingredients to the base composition was to alter the physical properties of the alloy so that the material would have red hardness or would retain its hardness up to temperatures of approximately 1100' F. Hardened materal made of the base composition decreased slightly in hardness with an increase in tempering temperature, but the material containing tungsten and molybdenum, or both, with a chromium content of from 3.00% to 5.00% did not materially decrease in hardness when the quenched specimens were tem- 1800 pered as high as 1100 F.
Ingots were made similar to those to which tungsten, molybdenum and chromium were added, but with a lesser vanadium content; that is, with the vanadium content below 2.00%, and
none of the ingots so made could be successfully forged, which is indicative of the fact that it is the presence of the carbon-vanadium ratio that positions which were prepared and is indicative of the manner in which the material forged:
Heat Si Mn W Mo Cr Va Remarks 1136.. 3.05 1.01 .32 9.60 Readil [or cable. 1137-.. 1.95 1.20 .35 5.12 D0 8 1138... 3.10 .82.... 8.00 Forgeable. 1139... 2.04 .72 .37 9.50 Do.
1140. 2.10 1.31 .31 5.30 Readily iorgeable. 1141... 2.09 1.41 .29 5.12 1 D0.
1144... 3.12 .72...- 10.10 Not iorgeable. 1145... 3.14 .90 .35 10.10 D0.
1147... 2.00 .96 .37 5.05 Readily iorgeable. 1148... 1.99 .89 .38 5.05 Not iorgeable. 1150... 1.99 .99 .40 6.00 Forgeable. 1161... 2.00 .83 .27 6.30 Do.
The following table shows the Brinell hardness that was obtained after annealing some of these materials at a temperature of 1650 F.:
Brinell hardness alter annealing Heat number HEAT 1136 Fracture Quenching temperature, "F. grain size HEAT 1137 HEAT. 1141 The following table shows the hardness obtained' expressed in the Rockwell C scale on a few of the heats when quenched from different quenching temperatures:
Degrees Fahrenheit 5 Heat number 20 of the basicccmposition when'quenched from 1600" F. and tempered at 1050 F. for 1% hours showed a hardness of 47 Rockwell C and when quenched from 2200 I. and tempered at 1050 F. for 1% hours showed a hardness of 5'! Rock- I sion of as much as 10 to 1 over that of carbon tool steel containing 1.00% carbon and hardened to a Rockwell hardness of C 67.
Having thus described the invention, what I claim as new and desire to secure by Letters Patent of the United States is:
An improved forgeabie, machinabie, and hardenable alloy steel, said steel containing from about 1.25% to about 3.50% carbon, from not less than about 3.50% to about 10% molybdenum, from about 25% to about 5% chromium, and from about 3% to about 11% vanadium, the ratic of the vanadium to the carbon being in excess of about 2 to 1 and less than about 4 to 1, with the remainder of the alloy substantially all.
iron.
- JAMES P. GILL.
US257686A 1939-02-21 1939-02-21 Ferrous alloy Expired - Lifetime US2174281A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US257686A US2174281A (en) 1939-02-21 1939-02-21 Ferrous alloy
US264985A US2174284A (en) 1939-02-21 1939-03-30 Ferrous alloy
US264986A US2174285A (en) 1939-02-21 1939-03-30 Ferrous alloy
US264987A US2174286A (en) 1939-02-21 1939-03-30 Ferrous alloy
US264984A US2174283A (en) 1939-02-21 1939-03-30 Ferrous alloy
US264983A US2174282A (en) 1939-02-21 1939-03-30 Ferrous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US257686A US2174281A (en) 1939-02-21 1939-02-21 Ferrous alloy

Publications (1)

Publication Number Publication Date
US2174281A true US2174281A (en) 1939-09-26

Family

ID=22977319

Family Applications (1)

Application Number Title Priority Date Filing Date
US257686A Expired - Lifetime US2174281A (en) 1939-02-21 1939-02-21 Ferrous alloy

Country Status (1)

Country Link
US (1) US2174281A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2867532A (en) * 1957-01-16 1959-01-06 Crucible Steel Co America Wear resistant alloy steel
US4006013A (en) * 1972-12-28 1977-02-01 Outokumpu Oy Process for fining carbonaceous alloys of iron, nickel and/or cobalt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2867532A (en) * 1957-01-16 1959-01-06 Crucible Steel Co America Wear resistant alloy steel
US4006013A (en) * 1972-12-28 1977-02-01 Outokumpu Oy Process for fining carbonaceous alloys of iron, nickel and/or cobalt

Similar Documents

Publication Publication Date Title
US3411957A (en) Method of manufacturing a cast iron roll
US2280283A (en) Deep-hardening boron steels
JP3771254B2 (en) High speed steel manufactured by powder metallurgy
US3012879A (en) Nitrogen containing tool steels
US5094923A (en) Air hardening steel
US6146475A (en) Free-machining martensitic stainless steel
US3128175A (en) Low alloy, high hardness, temper resistant steel
US4395284A (en) Abrasion resistant machinable white cast iron
JPS60224754A (en) Alloy tool steel
US2996376A (en) Low alloy steel having high hardness at elevated temperatures
US2174281A (en) Ferrous alloy
US2174286A (en) Ferrous alloy
US2174282A (en) Ferrous alloy
US2174284A (en) Ferrous alloy
US2174283A (en) Ferrous alloy
US2708159A (en) Heat treated, hardened alloy steel elements
US3869037A (en) Ferrous alloy and abrasive resistant articles made therefrom
US2174285A (en) Ferrous alloy
US2297687A (en) Alloy and cutting tool
JPS6366386B2 (en)
US2585372A (en) Method of making low-alloy steel
US2883281A (en) Air hardening graphitic steel
US2575217A (en) Ferrous alloys and abrasive-resistant articles made therefrom
US3330652A (en) High speed steel
US2105220A (en) Ferrous metal