US2174281A - Ferrous alloy - Google Patents
Ferrous alloy Download PDFInfo
- Publication number
- US2174281A US2174281A US257686A US25768639A US2174281A US 2174281 A US2174281 A US 2174281A US 257686 A US257686 A US 257686A US 25768639 A US25768639 A US 25768639A US 2174281 A US2174281 A US 2174281A
- Authority
- US
- United States
- Prior art keywords
- carbon
- hardness
- vanadium
- steel
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title description 8
- 239000000956 alloy Substances 0.000 title description 8
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 title description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 29
- 229910052799 carbon Inorganic materials 0.000 description 29
- 229910000831 Steel Inorganic materials 0.000 description 24
- 239000010959 steel Substances 0.000 description 24
- 235000019589 hardness Nutrition 0.000 description 20
- 229910052720 vanadium Inorganic materials 0.000 description 17
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 17
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 13
- 229910052721 tungsten Inorganic materials 0.000 description 13
- 239000010937 tungsten Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 11
- 229910052750 molybdenum Inorganic materials 0.000 description 11
- 239000011733 molybdenum Substances 0.000 description 11
- 239000011651 chromium Substances 0.000 description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 8
- 229910052804 chromium Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 5
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 229910000851 Alloy steel Inorganic materials 0.000 description 3
- 229910001315 Tool steel Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- HJIYJLZFNBHCAN-UHFFFAOYSA-N [V].[C] Chemical compound [V].[C] HJIYJLZFNBHCAN-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- VMXUWOKSQNHOCA-UKTHLTGXSA-N ranitidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-UKTHLTGXSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
Definitions
- This invention relates to alloy steels and more particularly to alloy steels which are especially suitable for use in the manufacture of tools or dies.
- an important object of the present invention resides in the provision of an improved alloy steel of this character which can be hardened .to a Rockwell hardness in excess oi. C 60; whereby it oilers a high resistance to abrasion, and yet can be readily forged and annealed so as to be commercially machinable.
- a feature of the invention which contributes to the accomplishment of the recited object consists in the discovery that by the employment of vanadium in a predetermined ratio in steels oi the type under discussion it is possible ta employ a carbon content far in excess of that employed in steels of this type that are in use at the pres- 5 cut time.
- vanadium because of its extremelyv high affinity for carbon, will form carbides in the alloy, large amounts of which will not go into solid solution at the normal hardening and forging temperatures. Even in the hardened state the improved steel will have acomparatively tough matrix in which are embedded extremely hard carbides.
- steels containing about 2.50% carbon or more have not heretofore been regarded as commercially forgeable, and an important feature of the present invention resides in the discovery, and the attendant disclosure, that such steels may be rendered readily foregable by incorporating in them approximately three times as 5 much vanadium as carbon present.
- Steels 50* prepared have extremely high resistance to wear, can be hardened extremely hard, some of them even as high as Rockwell C 70, yet they can be annealed to a hardness of under 2'75 Brinell, at 10 which hardness they are commercially machinable.
- a steel was made containing 1.95% carbon, 1.20% silicon, .35% manganese, and 5.12% vana- 20 .dium, which, by quenching in water from 1750 F., produced a hardness of Rockwell C 69, and by quenching from temperatures as high as 2200 F. obtained a hardness as high as Rockwell C 67.
- This steel was also annealed to a hardness of 255 Brinell, at which hardness it could be readily machined. The steel was readily forgeable and forged with about the same ease as would a 1.00% carbon tool steel.
- a heat of steel was prepared containing 3.05% carbon, 1.01% silicon, 32% manganese, and 9.60% vanadium, which it was possible to harden 85 to approximately Rockwell C 70 from 1600" F. and to Rockwell C 6'7 from 2200 F.
- This steel was annealed to a hardness of 255 Brinell, at which hardness it could be readily machined. It likewise forged with the same ease as a carbon tool steel of about 1.00% carbon content.
- a vanadium content of from about 3.00% to 50 about 11.00%.
- a heat of steel was made containing 3.10% carbon and 8.60% vanadium, to which was added 55 a tungsten content of 4.92%, and the material remained forgeable.
- This heat of steel contained a carbon content of 2.94% and a vanadium content of 9.50%, to which was added 10.64% of tungsten.
- the material remained forgeable and was found to reside within the premises of the invention herein disclosed.
- Molybdenum and tungsten were added to determine the upper combined limit of both of these elements and it was found that as long as the combined amount of the two was under about 10.00% the material could be successfully forged, whereas if the combined amount exceeded this figure the material appeared to be no longer commercially forgeable.
- Ingots were made of the base composition already described containing both tungsten and chromium, and also containing tungsten, molybdenum and chromium. With the chromium content as high as 5.00% and with the carbon content approximately 2.00% it was found that either tungsten or molybdenum, or both, could be added to a total percentage of approximately 12.00% and the material would still be commercially forgeable.
- Hardened materal made of the base composition decreased slightly in hardness with an increase in tempering temperature, but the material containing tungsten and molybdenum, or both, with a chromium content of from 3.00% to 5.00% did not materially decrease in hardness when the quenched specimens were tem- 1800 pered as high as 1100 F.
- Ingots were made similar to those to which tungsten, molybdenum and chromium were added, but with a lesser vanadium content; that is, with the vanadium content below 2.00%, and
- An improved forgeabie, machinabie, and hardenable alloy steel said steel containing from about 1.25% to about 3.50% carbon, from not less than about 3.50% to about 10% molybdenum, from about 25% to about 5% chromium, and from about 3% to about 11% vanadium, the ratic of the vanadium to the carbon being in excess of about 2 to 1 and less than about 4 to 1, with the remainder of the alloy substantially all.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Forging (AREA)
Description
Patented Sept. 26, 1939 "UNITED STATES FERROUS ALLOY James P. Gill, Latrobe, Pa., assignor to Vanadium-Alloys Steel Company, Latrobe, Pa., a corporation of Pennsylvania No Drawing. Application February 21, 1939,.
Serial No. 257,686
1 Claim.
This invention relates to alloy steels and more particularly to alloy steels which are especially suitable for use in the manufacture of tools or dies.
5 At present there are a number, of steels of this nature in use but as a rule, in order to make them conform to the general requirements of ready forgeability and machinability, they are not sufiiciently hard to offer a high resistance to abrasion. With this in mind, an important object of the present invention resides in the provision of an improved alloy steel of this character which can be hardened .to a Rockwell hardness in excess oi. C 60; whereby it oilers a high resistance to abrasion, and yet can be readily forged and annealed so as to be commercially machinable.
A feature of the invention which contributes to the accomplishment of the recited object consists in the discovery that by the employment of vanadium in a predetermined ratio in steels oi the type under discussion it is possible ta employ a carbon content far in excess of that employed in steels of this type that are in use at the pres- 5 cut time. Thus, it has been found that the element vanadium, because of its extremelyv high affinity for carbon, will form carbides in the alloy, large amounts of which will not go into solid solution at the normal hardening and forging temperatures. Even in the hardened state the improved steel will have acomparatively tough matrix in which are embedded extremely hard carbides.
In my Patent No. 2,105,114, granted January 11, 1938, the fact was disclosed that carbon con-. tents up to 1.25% or 1.50% could be employed in molybdenum steels as long as there was also present a vanadium content in excess of two and one-half to one and below three and one-half to one of the carbon content. Thiswas an important discovery, but to repeat, it did not offer the wear resistance which forms the subject matter of the present invention. What I have now discovered is that steels having carbon contents in excess of 1.25% and less than about 3.50% carbon may be prepared as long as the steel contains a vanadium content of approximately three times the amount of carbon present. Accordingly, in an alloy steel of the character under discussion having a carbon content in excess of about 1.25% and less than about 3.50% the vanadium content would range from about 3.00% to about 11.00%.
To repeat, steels containing about 2.50% carbon or more have not heretofore been regarded as commercially forgeable, and an important feature of the present invention resides in the discovery, and the attendant disclosure, that such steels may be rendered readily foregable by incorporating in them approximately three times as 5 much vanadium as carbon present. Steels 50* prepared have extremely high resistance to wear, can be hardened extremely hard, some of them even as high as Rockwell C 70, yet they can be annealed to a hardness of under 2'75 Brinell, at 10 which hardness they are commercially machinable.
In establishing the premises of my invention several series of heats of steel were prepared, some of which will be described in the ensuing paragraphs.
I Heat No. 1
A steel was made containing 1.95% carbon, 1.20% silicon, .35% manganese, and 5.12% vana- 20 .dium, which, by quenching in water from 1750 F., produced a hardness of Rockwell C 69, and by quenching from temperatures as high as 2200 F. obtained a hardness as high as Rockwell C 67. This steel was also annealed to a hardness of 255 Brinell, at which hardness it could be readily machined. The steel was readily forgeable and forged with about the same ease as would a 1.00% carbon tool steel.
Heat No. 2
A heat of steel was prepared containing 3.05% carbon, 1.01% silicon, 32% manganese, and 9.60% vanadium, which it was possible to harden 85 to approximately Rockwell C 70 from 1600" F. and to Rockwell C 6'7 from 2200 F. This steel was annealed to a hardness of 255 Brinell, at which hardness it could be readily machined. It likewise forged with the same ease as a carbon tool steel of about 1.00% carbon content.
Having made the discovery that when the '-vanadiu'm-earbon ratio was approximately that as given that such a material could be readily 45 forged and annealed and hardened to extremely high hardnesses, other alloys were then added, to the base composition given, namely, a carbon content of from about 1.25% to about 3.50% ,and
a vanadium content of from about 3.00% to 50 about 11.00%.
Heat No. 3
A heat of steel was made containing 3.10% carbon and 8.60% vanadium, to which was added 55 a tungsten content of 4.92%, and the material remained forgeable.
Heat No. 4
This heat of steel contained a carbon content of 2.94% and a vanadium content of 9.50%, to which was added 10.64% of tungsten. The material remained forgeable and was found to reside within the premises of the invention herein disclosed.
Two additional heats of steel were made containing 3.12% carbon and 10.10% vanadium, and 3.14% carbon and 10.10% vanadium, to which were respectively added 15.58% tungsten and 24.50% tungsten, but neither of these steels appeared to be commercially forgeable. It has therefore concluded that with the carbon on the higher side of the carbon range about 12.00% tungsten was the maximum that should be added in order to maintain the material commercially forgeable. In order to determine the upper limit of molybdenum, heats were prepared constantly increasing the amount of molybdenum present and it was found that the material was not commercially forgeable inthe higher carbon range after the molybdenum content exceeded about 10.00%. Molybdenum and tungsten were added to determine the upper combined limit of both of these elements and it was found that as long as the combined amount of the two was under about 10.00% the material could be successfully forged, whereas if the combined amount exceeded this figure the material appeared to be no longer commercially forgeable.
Ingots were made of the base composition already described containing both tungsten and chromium, and also containing tungsten, molybdenum and chromium. With the chromium content as high as 5.00% and with the carbon content approximately 2.00% it was found that either tungsten or molybdenum, or both, could be added to a total percentage of approximately 12.00% and the material would still be commercially forgeable. It was found, however, that an ingot of 3.25% carbon, 8.90% vanadium, 10.79% tungsten, and 4.12% chromium forged with considerable diiiiculty, which would indicate that in the presence of about 10.00% of tungsten or molybdenum, or a total of both, that a chromium content higher than 5.00% could not be added and still obtain a. commercially forgeablematerial. All of these compositions naturally contain varying amounts of silicon, generally less than 1.50%, and a manganese content generally less than .75%, and additionally they also contain the customary small amounts of impurities of sulphur and phosphorus.
The purpose of adding other alloying ingredients to the base composition was to alter the physical properties of the alloy so that the material would have red hardness or would retain its hardness up to temperatures of approximately 1100' F. Hardened materal made of the base composition decreased slightly in hardness with an increase in tempering temperature, but the material containing tungsten and molybdenum, or both, with a chromium content of from 3.00% to 5.00% did not materially decrease in hardness when the quenched specimens were tem- 1800 pered as high as 1100 F.
Ingots were made similar to those to which tungsten, molybdenum and chromium were added, but with a lesser vanadium content; that is, with the vanadium content below 2.00%, and
none of the ingots so made could be successfully forged, which is indicative of the fact that it is the presence of the carbon-vanadium ratio that positions which were prepared and is indicative of the manner in which the material forged:
Heat Si Mn W Mo Cr Va Remarks 1136.. 3.05 1.01 .32 9.60 Readil [or cable. 1137-.. 1.95 1.20 .35 5.12 D0 8 1138... 3.10 .82.... 8.00 Forgeable. 1139... 2.04 .72 .37 9.50 Do.
1140. 2.10 1.31 .31 5.30 Readily iorgeable. 1141... 2.09 1.41 .29 5.12 1 D0.
1144... 3.12 .72...- 10.10 Not iorgeable. 1145... 3.14 .90 .35 10.10 D0.
1147... 2.00 .96 .37 5.05 Readily iorgeable. 1148... 1.99 .89 .38 5.05 Not iorgeable. 1150... 1.99 .99 .40 6.00 Forgeable. 1161... 2.00 .83 .27 6.30 Do.
The following table shows the Brinell hardness that was obtained after annealing some of these materials at a temperature of 1650 F.:
Brinell hardness alter annealing Heat number HEAT 1136 Fracture Quenching temperature, "F. grain size HEAT 1137 HEAT. 1141 The following table shows the hardness obtained' expressed in the Rockwell C scale on a few of the heats when quenched from different quenching temperatures:
Degrees Fahrenheit 5 Heat number 20 of the basicccmposition when'quenched from 1600" F. and tempered at 1050 F. for 1% hours showed a hardness of 47 Rockwell C and when quenched from 2200 I. and tempered at 1050 F. for 1% hours showed a hardness of 5'! Rock- I sion of as much as 10 to 1 over that of carbon tool steel containing 1.00% carbon and hardened to a Rockwell hardness of C 67.
Having thus described the invention, what I claim as new and desire to secure by Letters Patent of the United States is:
An improved forgeabie, machinabie, and hardenable alloy steel, said steel containing from about 1.25% to about 3.50% carbon, from not less than about 3.50% to about 10% molybdenum, from about 25% to about 5% chromium, and from about 3% to about 11% vanadium, the ratic of the vanadium to the carbon being in excess of about 2 to 1 and less than about 4 to 1, with the remainder of the alloy substantially all.
iron.
- JAMES P. GILL.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US257686A US2174281A (en) | 1939-02-21 | 1939-02-21 | Ferrous alloy |
US264985A US2174284A (en) | 1939-02-21 | 1939-03-30 | Ferrous alloy |
US264986A US2174285A (en) | 1939-02-21 | 1939-03-30 | Ferrous alloy |
US264987A US2174286A (en) | 1939-02-21 | 1939-03-30 | Ferrous alloy |
US264984A US2174283A (en) | 1939-02-21 | 1939-03-30 | Ferrous alloy |
US264983A US2174282A (en) | 1939-02-21 | 1939-03-30 | Ferrous alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US257686A US2174281A (en) | 1939-02-21 | 1939-02-21 | Ferrous alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
US2174281A true US2174281A (en) | 1939-09-26 |
Family
ID=22977319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US257686A Expired - Lifetime US2174281A (en) | 1939-02-21 | 1939-02-21 | Ferrous alloy |
Country Status (1)
Country | Link |
---|---|
US (1) | US2174281A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2867532A (en) * | 1957-01-16 | 1959-01-06 | Crucible Steel Co America | Wear resistant alloy steel |
US4006013A (en) * | 1972-12-28 | 1977-02-01 | Outokumpu Oy | Process for fining carbonaceous alloys of iron, nickel and/or cobalt |
-
1939
- 1939-02-21 US US257686A patent/US2174281A/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2867532A (en) * | 1957-01-16 | 1959-01-06 | Crucible Steel Co America | Wear resistant alloy steel |
US4006013A (en) * | 1972-12-28 | 1977-02-01 | Outokumpu Oy | Process for fining carbonaceous alloys of iron, nickel and/or cobalt |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3411957A (en) | Method of manufacturing a cast iron roll | |
US2280283A (en) | Deep-hardening boron steels | |
JP3771254B2 (en) | High speed steel manufactured by powder metallurgy | |
US3012879A (en) | Nitrogen containing tool steels | |
US5094923A (en) | Air hardening steel | |
US6146475A (en) | Free-machining martensitic stainless steel | |
US3128175A (en) | Low alloy, high hardness, temper resistant steel | |
US4395284A (en) | Abrasion resistant machinable white cast iron | |
JPS60224754A (en) | Alloy tool steel | |
US2996376A (en) | Low alloy steel having high hardness at elevated temperatures | |
US2174281A (en) | Ferrous alloy | |
US2174286A (en) | Ferrous alloy | |
US2174282A (en) | Ferrous alloy | |
US2174284A (en) | Ferrous alloy | |
US2174283A (en) | Ferrous alloy | |
US2708159A (en) | Heat treated, hardened alloy steel elements | |
US3869037A (en) | Ferrous alloy and abrasive resistant articles made therefrom | |
US2174285A (en) | Ferrous alloy | |
US2297687A (en) | Alloy and cutting tool | |
JPS6366386B2 (en) | ||
US2585372A (en) | Method of making low-alloy steel | |
US2883281A (en) | Air hardening graphitic steel | |
US2575217A (en) | Ferrous alloys and abrasive-resistant articles made therefrom | |
US3330652A (en) | High speed steel | |
US2105220A (en) | Ferrous metal |