US2170829A - Film and process for preparing same - Google Patents

Film and process for preparing same Download PDF

Info

Publication number
US2170829A
US2170829A US57636A US5763636A US2170829A US 2170829 A US2170829 A US 2170829A US 57636 A US57636 A US 57636A US 5763636 A US5763636 A US 5763636A US 2170829 A US2170829 A US 2170829A
Authority
US
United States
Prior art keywords
deformation
film
water
cellulose
pellicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US57636A
Inventor
Frederick M Meigs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US57636A priority Critical patent/US2170829A/en
Priority claimed from US57634A external-priority patent/US2170827A/en
Application granted granted Critical
Publication of US2170829A publication Critical patent/US2170829A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/402Amides imides, sulfamic acids
    • D06M13/425Carbamic or thiocarbamic acids or derivatives thereof, e.g. urethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid

Definitions

  • This invention relates to flexible, cellulosic pellicles and particularly to such pellicles which have been rendered resistant to change in dimensions caused by variation in humidity conditions.
  • Cellulosic pellicles which are obtained by coagulation or precipitation from aqueous or alkaline aqueous dispersions of cellulose or cellulose derivatives, as for example, pellicles of regenerated cellulose, glycol cellulose, cellulose glycollic acid, low esterified or etherified cellulose such as lowly etherified methyl and ethyl cellulose and lowly esterified cellulose acetate, are particularly useful as wrapping materials. It is essential, however, that these pellicles be flexible and further that this flexibility be maintained. Cellulosic pellicles of this character seem to depend on the presence of moisture to impart flexibility and the softeners which have been used heretofore have been selected because of their hygroscopic nature.
  • Regenerated cellulose pellicles are quite sensitive to changes in moisture content, not only as regards flexibility, but also as regards dimensions. Increase in moisture content causes a swelling of the cellulosic structure, while decrease in moisture content causes a ⁇ shrinking apparently due in part to collapse ofgthe cellulose micelles and in part to the loss of water molecules from between the micelles.
  • Regenerated cellulose wrapping tissues are subject, therefore, to-two major defects which develop simultaneously and which are primarily dependent on the softener, namely embrittlement and deformation.
  • embrittlement and deformation Previous attempts to control or prevent embrittlement, however, have not been successful in controlling the deformation for, as mentioned above, the softeners selected have been highly hygroscopic and have really resulted in greater sensitivity to moisture conditions, thereby increasing the expansion and contraction of wrapping tissues or similar pellicular structures.
  • the degree of deformation which may be called simply deformation, is the per cent change in length of a cellulosic pellicle as measured in the machine direction in accordance with the following procedure: Strips of material are allowed to come to equilibrium with an atmosphere of substantially relative humidity at a temperature of 35 C. and their length accuratelymeasured. The strips are then allowed to reach equilibrium in an atmosphere of substantially 0% relative humidity at the same temperature and their length again accurately measured. The difference in length divided by the length as originally measured multiplied by gives the per cent deformation over the given humidity range at 35 C. and figures so obtained are conveniently called the deformation. Thus, a sample strip having an original length of 10 inches and a contraction in length of 0.42 inch would be said to have a deformation of 4.2.
  • a pellicle of regenerated cellulose suitable for use as a wrapping tissue which will show a degree of deformation of not in excess of 3.0. when tested in accordance with the method described above.
  • This object also includes the production of a regenerated cellulose pellicle which is comthe manufacture of re-- bined with a softening material and which shows a deformation not in excess of 3.0.
  • the above and other objects of the invention may be accomplished by impregnating into the cellulosic pellicle, preferably while the latter is in a wet or gel state, an appreciably water-soluble; high-boiling (i. e. relatively non-volatile at ordinary temperatures and pressures).
  • limitedly hygroscopic material which is stable, essentially colorless and odorless, preferably non-toxic and which is preferably also a softening agent for the cellulosic material.
  • the extent of the reduction in deformation which may be obtained depends on the particular impregnant used and to a certain extent. on the amount employed.
  • the term limitedly hygroscopic is intended to include substances which will absorb 1-80% of their weight of water when exposed alone in a thin layer to an atmosphere of substantially 95% over a period of hours.
  • the test for hygroscopicity is carried out as follows: A small sample of about 0.5-2.0 grams of thoroughly dried material is spread evenly over the bottom of a weighing bottle (conveniently about 2 in diameter and 1 6" deep) and the weight of the sample accurately measured. The open weighing bottle is then placed in a chamber in which an atmosphere of substantially 95% relative humidity and a temperature of 25 C. is maintained. The humid atmosphere may be maintained conveniently by means of a sulfuric acid solution (9 parts of water to 1 part sulfuric acid) contained within the chamber.
  • the sample after 120 hours exposure, during which time the material is occasionally agitated as by gently tipping the container to cause the material to flow over the bottom of the weighing bottle, is reweighed accurately and the percentage increase in weight based on the original weight of the sample represents the hyg'roscopicity'of the material.
  • 1 gram of a substance absorbs 0.25 gram of water under the conditions described, it will be said to have a hygroscopicity of 25.
  • the test of water-solubility is applied first to determine the suitability of substances for use in the practice of the invention. If the substance is at least 1% and not more than 40% soluble in water at 20 C. its utility is indicated. In the case where the solubility is more than 40%, the hygroscopicity should be determined and in the event that this value should be above 80. the substance will be useless for the purposes of the invention.
  • the third physical criterion relates to volatility.
  • the substances must be high-boiling, that is, substantially non-volatile at ordinary temperatures and pressures, and should be preferably though not necessarily liquids. Obviously, if substances of appreciable volatility were to be used, they would eventually disappear from the,
  • substances having limited hygroscopicity and appropriate boiling-point and which are at least 4% soluble in water at 20 C. will be used to impregnate the cellulosic pellicles to effect a reduction in deformation.
  • Substances of this character may be introduced into the pellicles desired to use a substance which soluble, it may be convenient to by adding a water should more than 25% by volume of such solvent in the Water-solvent mixture be necessary.
  • the principal objective of the invention relates to the reduction of deformation, it is a part of the invention to provide also a flexible pellicle. This can be done frequently by of the impregnating agent so that it will be at one and the same time a softener and a deformation reducing agent. For simplicity, such an agent may be termed a nondeforming softener. Obviously, other properties may be combined with these in certain agents, which will have particular advantage.
  • the non-deforming agents which are particularly suitable for use there are a number of esters of carbamic acid or substituted carbamic acid. Of particular interest are the esters derived from ether-alcohols. Generally speaking, the esters having the following typical structure will be useful:
  • R represents any organic alcoholic residue which may contain within itself hydroxyl, ether, ester, ketone or other modifying group. It is particularly desirable that R contain one of more ether groups, that is to say, that R is preferably an ether-alcohol residue.
  • the groups R1 and R2 may be hydrogen or an organic substituent group.
  • the preferred alcoholic residue B may be derived from n-butoxyethanol, n-butoxyethoxyethanol, iso-butoxyethoxyethanol.
  • esters to be useful in the practice of the invention must satisfy certain requirements as to hygroscopicity, water solubility and non-volatility and consequently such reactants and methods of manufacture will be chosen as will provide simple non-resinous organic esters of appropriate properties.
  • her of' compounds are listed in the following table together with data as to water-solubility and deformation, the latter figures being obtained when regenerated cellulose pellicles were impregnated as will be described in more detail below.
  • the impregnating agents of the invention may be a predetermined amount of glycerol in the sheet after the drying operation, which latter removes all but about 68% water, based on the weight of the cellulose.
  • the amount of glycerol in the final product is of the order of and it has been found that a bath containing about 4-6% glycerol will give the desired results.
  • the gel pellicle is impregnated with a bath which may contain conveniently about 4- 6% of the non-deforming agent.
  • a bath which may contain conveniently about 4- 6% of the non-deforming agent.
  • the final product will contain a suitable amount of non-deforming agent.
  • the amount of such agent in the final product will be adjusted to suit the desired properties expected in the final sheet so that the bath concentration maybe more or less than 4% as occasion demands. been found however that the effectiveness humidities, a 6% solution may be found advantageous.
  • a gel sheet of regenerated cellulose may be impregnated with a 4% aqueous solutiomof butoxy-ethoxyethyl carbamate.
  • the resultant sheet after drying shows a deformation of about 2.1, whereas a similar sheet impregnated with glycerol shows a deformation of 4.0-4.4.
  • Both sheets contain approximately 14% of ;the impregnating agent.
  • the product - is flexible, durable, transparent and shows a reduction in deformation as compared with the glycerin softened sheet amounting to approximately 50%.
  • the hygroscopicity of the compound chosen for use will determine, in large measure, the amount of reduction in deformation which will be observed.
  • compounds having a hygroscopicity of from 60 to will show in most cases a deformation of the order of 2.7 to 3.0, while if the hygroscopicity is from 25 to 60, a deformation of the order of 2.3 to 3.0 will usually be obtained, and if the hygroscopicity is from 1 to 25 a deformation of about 2.3 or less (usually of the order of 2.0 to 2.3) will be achieved in most instances.
  • any variation in properties which may be desired in the finished product can'be secured by proper selection of a non-deforming agent or non-deforming softener in accordance with the principles set forth herein.
  • the cellulosic pellicles obtainable by means of the present invention are particularly suited to wrapping purposes since the reduced deformation substantially eliminates warping, swelling, wrinkling and breakage. Similarly, the lamination of such pellicles to materials such as paper or fabric is facilitated since there is less tendency for the laminated product to curl, buckle or wrinkle. When stacks of sheets are stored, there is a lesser tendency for contiguous sheets to stick-a common experience with glycerol-softened sheets. Generally, the durability, particularly at low temperatures of 0 C. or less, is improved. The process described is especially advantageous from an economic viewpoint inasmuch as it offers a method of producing this new type of cellulosic'pellicle without alteration of present manufacturing equipment.
  • the cellulosic pellicle be impregnated with a solution of the non-deforming agent while the pellicle is in the gel state, i. e., before it is dried and while it still contains a. large amount of water, it is within the broad scope of the invention to impregnate a film which has been dried and then rewetted.
  • the broad scope of the invention includes the treatment of other types of cellulose film cast from aqueous or aqueous alkaline solutions.
  • the non-deforming agents referred to above may be used with advantage in the treatment of films produced from cuprammonium cellulose solutions, from aqueous alkaline solutions of glycol cellulose or cellulose glycollic acid, from aqueous alkaline solutions of lowly etherified cellulose, e. g. lowly etherified methyl cellulose or lowly etherified ethyl cellulose, or from aqueous alkaline solutions of lowly esterified cellulose, e. g. lowly esterified cellulose acetate.
  • Water-sensitive film suitable for use as a wrapping tissue formed from an aqueous alkaline cellulosic solution and containing, as a deformation-restricting agent, a softening agent for said film comprising a carbamic acid ester having a hygroscopicity of from 1 to 80, a boiling point of at least C. at a pressure of 12 mm. of mercury, and a solubility of at least 1% in water at 20 C., said ester being present in sufficient quantity to restrict the deformation of the film to a maximum of 3.0.
  • a softening agent for said film comprising a carbamic acid ester having a hygroscopicity of from 1 to 80, a boiling point of at least C. at a pressure of 12 mm. of mercury, and a solubility of at least 1% in water at 20 C., said ester being present in sufficient quantity to restrict the deformation of the film to a maximum of 3.0.
  • Regenerated cellulose film suitable for use as awrapping tissue containing, as a deformation-restricting agent, a softening agent for said film comprising a carbamic acid ester having a hygroscopicity of from 1 to 80, a. boiling point of at least 135 C. at a pressure of 12 mm. of
  • Regenerated cellulose film as defined in claim 5 characterized in that said ester is butoxyethoxyethyl carbamate.
  • Regenerated cellulose film as defined in claim 5 characterized in that said ester is isobutoxy-ethoxyethyl carbamate.
  • a process for reducing the deformation of water-sensitive film formed from an aqueous alkaline cellulosic solution which comprises impregnating said film with an aqueous solution containing a sufilcient quantity of a deformationrestricting agent to restrict the deformation of the film to a maximum of 3.0, said deformation-restricting agent being a softener for said film and comprising a carbamic acid ester having a hygroscopicity of from to 1 to 80, a boiling point of at least 135 C. at a pressure of 12 mm. of mercury, and a solubility of at least 1% in water at 20 C.
  • a process for reducing the deformation of water-sensitive film as defined in claim 9 characterized in that said ester is butoxy-ethoxyethyl carbamate.
  • a process for reducing the deformation of water-sensitive film as defined in claim 9 characterized in that said ester is iso-butoxyethoxyethyl carbamate.
  • a process for reducing the deformation of water-sensitive film as defined in claim 9 characterized in that said ester is butoxyethyl carbamate.
  • a process for reducing the deformation of 14 A process for reducing the deformation of ethoxyethyl carbamate.

Description

Patented Aug. 29, 1939 7 UNITED STATES 2,170,829 FILM ANDPROCESS FOR PREPARING SAME Frederick M. Melgs,
Wilmington, Del., assignor,
by mesne assignments, to E. I. du Pont de Nemours & Company, Wilmington, Del., a corporation of Delaware No Drawing. Application January 4. 1936, Serial No. 57,636
) I 16 Claims.
This invention relates to flexible, cellulosic pellicles and particularly to such pellicles which have been rendered resistant to change in dimensions caused by variation in humidity conditions.
Cellulosic pellicles which are obtained by coagulation or precipitation from aqueous or alkaline aqueous dispersions of cellulose or cellulose derivatives, as for example, pellicles of regenerated cellulose, glycol cellulose, cellulose glycollic acid, low esterified or etherified cellulose such as lowly etherified methyl and ethyl cellulose and lowly esterified cellulose acetate, are particularly useful as wrapping materials. It is essential, however, that these pellicles be flexible and further that this flexibility be maintained. Cellulosic pellicles of this character seem to depend on the presence of moisture to impart flexibility and the softeners which have been used heretofore have been selected because of their hygroscopic nature. It has been considered necessary to have the softener assist, by virtue of its hygroscopicity, in the retention of a suitable amount of moisture although the softener has possessed, also, a certain degree of lubricating or plasticizing action so that the pellicle does not become too brittle when practically all of the moisture has been removed. In the absence of a softener other than water, these pellicles become so brittle when dried as to be substantially useless as wrapping tissues. In the presence of the hygroscopic softeners of the prior art, the loss of moisture is retarded and generally speaking, the flexibility is maintained by the moisture present.
Regenerated cellulose pellicles, (for convenience the invention will be described in terms of this species) are quite sensitive to changes in moisture content, not only as regards flexibility, but also as regards dimensions. Increase in moisture content causes a swelling of the cellulosic structure, while decrease in moisture content causes a\shrinking apparently due in part to collapse ofgthe cellulose micelles and in part to the loss of water molecules from between the micelles.
Regenerated cellulose wrapping tissues are subject, therefore, to-two major defects which develop simultaneously and which are primarily dependent on the softener, namely embrittlement and deformation. Previous attempts to control or prevent embrittlement, however, have not been successful in controlling the deformation for, as mentioned above, the softeners selected have been highly hygroscopic and have really resulted in greater sensitivity to moisture conditions, thereby increasing the expansion and contraction of wrapping tissues or similar pellicular structures.
Thus it is that great care is required in wrapping boxes in regenerated cellulose pellicles to provide for these conditions. For example, if a cereal box is wrapped in regenerated cellulose sheeting (prepared in accordance with the prior commercial methods and softened with glycerin which is the usual hygroscopic softener) and set aside for storage, it may be subjected to a variety of humidity conditions before it reaches its ultimate consumer. During this time, if the hu midity is high, the regenerated cellulose may expand until the wrapper becomes'loose around the box and in some cases even baggy and wrinkled. On the other hand, if the humidity is low, loss of moisture from the regenerated cellulose will cause the wrapper to contract and this may cause buckling of the box walls, or if the box is sufliciently rigid, the wrapper itself may burst. Thus, under such a variety of humidity conditions, packages wrapped in regenerated cellulose sheeting may have an unsightly and undesirable appearance as the result of the deformation of the regenerated cellulose. Obviously, this defeats the very important purposes of regenerated cellulose wrappers which are intended to protect and beautify articles wrapped therein.
To overcome the troublesome deformation, wrapping machinery has been designed to allow for a certain slack or looseness in the wrap, This obviously will eliminate the eifects of contraction, but cannot help the expansion eifects; indeed, it makes them worse. The use of moistureproofed regenerated cellulose pellicles does not eliminate the trouble because the application of a moistureproofing coating retards but does not prevent the deformation, which latter is in the ultimate not appreciably affected. These practical means do nothing more than attempt to make the best of the situation and make use of regenerated cellulose sheeting as it is available. No attempt is made to change the inherent properties of the cellulosic material and so provide sheet of regenerated cellulose is made in such a way as to provide substantailly uniform tension in all directions, the degree of deformation will be substantially the same in all directions. Practically, however, regenerated cellulose pellicles are made in a continuous process wherein the pellicle, after its formation, is drawn through a series of treating and purifying baths and finally over a series of drying rolls. It is necessary, therefore, in order to advance the pellicle through the cycle of treatment, to apply a certain amount of tension on the pellicle in the direction of travel, usually referred to as the machine direction. This results in an appreciable difference in the degree of deformation if measured in the machine direction, as compared to the degree of deformation if measured at right angles to the machine direction, i. e. the transverse direction. However, in any given process the conditions are such that the degree of deformation in the machine and transverse directions usually bear a sufficiently constant relationship so that for test purposes it is usually sufficient to determine the degree of deformation in one direction only, usually the machine direction.
For the purposes of this specification the degree of deformation, which may be called simply deformation, is the per cent change in length of a cellulosic pellicle as measured in the machine direction in accordance with the following procedure: Strips of material are allowed to come to equilibrium with an atmosphere of substantially relative humidity at a temperature of 35 C. and their length accuratelymeasured. The strips are then allowed to reach equilibrium in an atmosphere of substantially 0% relative humidity at the same temperature and their length again accurately measured. The difference in length divided by the length as originally measured multiplied by gives the per cent deformation over the given humidity range at 35 C. and figures so obtained are conveniently called the deformation. Thus, a sample strip having an original length of 10 inches and a contraction in length of 0.42 inch would be said to have a deformation of 4.2.
It is the object of this invention to provide means for reducing the deformation of cellulosic pellicles. It is also an object of the invention to effect simultaneous softening and reduction of deformation. It is a further object to provide a method whereby the aforementioned objects may be accomplished in an economically feasible manner and without entailing essential modification of apparatus customarily used in the manufacture of such pellicles.
More specifically, it is the object of the invention to provide means for the production of cellulosic pellicles which will show less deformation than the cellulosic pellicles presently commercially available.
Specifically, it-is the object of the invention to produce a pellicle of regenerated cellulose suitable for use as a wrapping tissue which will show a degree of deformation of not in excess of 3.0. when tested in accordance with the method described above. This object also includes the production of a regenerated cellulose pellicle which is comthe manufacture of re-- bined with a softening material and which shows a deformation not in excess of 3.0.
The above and other objects of the invention may be accomplished by impregnating into the cellulosic pellicle, preferably while the latter is in a wet or gel state, an appreciably water-soluble; high-boiling (i. e. relatively non-volatile at ordinary temperatures and pressures). limitedly hygroscopic material which is stable, essentially colorless and odorless, preferably non-toxic and which is preferably also a softening agent for the cellulosic material. The extent of the reduction in deformation which may be obtained depends on the particular impregnant used and to a certain extent. on the amount employed.
The term limitedly hygroscopic is intended to include substances which will absorb 1-80% of their weight of water when exposed alone in a thin layer to an atmosphere of substantially 95% over a period of hours. The test for hygroscopicity is carried out as follows: A small sample of about 0.5-2.0 grams of thoroughly dried material is spread evenly over the bottom of a weighing bottle (conveniently about 2 in diameter and 1 6" deep) and the weight of the sample accurately measured. The open weighing bottle is then placed in a chamber in which an atmosphere of substantially 95% relative humidity and a temperature of 25 C. is maintained. The humid atmosphere may be maintained conveniently by means of a sulfuric acid solution (9 parts of water to 1 part sulfuric acid) contained within the chamber. The sample, after 120 hours exposure, during which time the material is occasionally agitated as by gently tipping the container to cause the material to flow over the bottom of the weighing bottle, is reweighed accurately and the percentage increase in weight based on the original weight of the sample represents the hyg'roscopicity'of the material. Thus if 1 gram of a substance absorbs 0.25 gram of water under the conditions described, it will be said to have a hygroscopicity of 25.
The test for hygroscopicity as outlined above is satisfactory for determining whether or not a given substance is suitable for the purposes of the invention. There may be other tests of equal utility for determining hygroscopicity which would give different numerical values. Obviously, such methods should be calibrated against the method outlined if they are chosen for use. Based on the method described, those substances suitable for use in the practice of the invention will have a hygroscopicity of 1 to 80.
Generally speaking, the test of water-solubility is applied first to determine the suitability of substances for use in the practice of the invention. If the substance is at least 1% and not more than 40% soluble in water at 20 C. its utility is indicated. In the case where the solubility is more than 40%, the hygroscopicity should be determined and in the event that this value should be above 80. the substance will be useless for the purposes of the invention.
The third physical criterion relates to volatility. The substances must be high-boiling, that is, substantially non-volatile at ordinary temperatures and pressures, and should be preferably though not necessarily liquids. Obviously, if substances of appreciable volatility were to be used, they would eventually disappear from the,
cellulosic pellicles rendering them thereby brittle, fragile and unsuitable for use as wrapping tisrelative humidity at a temperature of 25 C.
- proper choice C. or higher, at a pressure of 12 mm. of mercury and preferably of 15 C. or higher (at 12 mm.) will be suitable for use.
In the preferred form of the invention substances having limited hygroscopicity and appropriate boiling-point and which are at least 4% soluble in water at 20 C. will be used to impregnate the cellulosic pellicles to effect a reduction in deformation. .Substances of this character may be introduced into the pellicles desired to use a substance which soluble, it may be convenient to by adding a water should more than 25% by volume of such solvent in the Water-solvent mixture be necessary.
use of a portion of organic solvent entails additional expense, it is desirable to use those substances which are at least 4% soluble although the less soluble substances will find many useful applications. Although the principal objective of the invention relates to the reduction of deformation, it is a part of the invention to provide also a flexible pellicle. This can be done frequently by of the impregnating agent so that it will be at one and the same time a softener and a deformation reducing agent. For simplicity, such an agent may be termed a nondeforming softener. Obviously, other properties may be combined with these in certain agents, which will have particular advantage. Among the non-deforming agents which are particularly suitable for use there are a number of esters of carbamic acid or substituted carbamic acid. Of particular interest are the esters derived from ether-alcohols. Generally speaking, the esters having the following typical structure will be useful:
In the above formula R represents any organic alcoholic residue which may contain within itself hydroxyl, ether, ester, ketone or other modifying group. It is particularly desirable that R contain one of more ether groups, that is to say, that R is preferably an ether-alcohol residue. The groups R1 and R2 may be hydrogen or an organic substituent group. By way of example, the preferred alcoholic residue B may be derived from n-butoxyethanol, n-butoxyethoxyethanol, iso-butoxyethoxyethanol.
While their preparation is not a part of the present invention, it is understood that any of the methods As previously mentioned, the esters to be useful in the practice of the invention must satisfy certain requirements as to hygroscopicity, water solubility and non-volatility and consequently such reactants and methods of manufacture will be chosen as will provide simple non-resinous organic esters of appropriate properties.
As illustrative of specific materials which are useful in the practice of the invention, a numknown to the art may be employed.
her of' compounds are listed in the following table together with data as to water-solubility and deformation, the latter figures being obtained when regenerated cellulose pellicles were impregnated as will be described in more detail below.
. Table Approximate Water Deforma- Solubility tlon at 20 C.
M (a) Butoxy-ethoxyethylciirbamate (b) Iso-butoxy-ethoxyethylcarbamatahn (c) Butoxyethylcarbamate 5 (d) Ethoxy-ethoxyethylcarbamate a. .H a
The compounds listed in table'are representative and it is to be noted that simple organic chemical compounds are effective for the purposes of the invention. All of the substances listed-..satisfy the criteria for operability previously discussed.
The impregnating agents of the invention may be a predetermined amount of glycerol in the sheet after the drying operation, which latter removes all but about 68% water, based on the weight of the cellulose. Generally, the amount of glycerol in the final product is of the order of and it has been found that a bath containing about 4-6% glycerol will give the desired results.
Accordingly, in the practice of the present invention the gel pellicle is impregnated with a bath which may contain conveniently about 4- 6% of the non-deforming agent. After removal of excess bath, as by squeeze rolls and the removal of excess water by drying, the final product will contain a suitable amount of non-deforming agent. Obviously, the amount of such agent in the final product will be adjusted to suit the desired properties expected in the final sheet so that the bath concentration maybe more or less than 4% as occasion demands. been found however that the effectiveness humidities, a 6% solution may be found advantageous.
As aspecific example, a gel sheet of regenerated cellulose may be impregnated with a 4% aqueous solutiomof butoxy-ethoxyethyl carbamate. The resultant sheet, after drying shows a deformation of about 2.1, whereas a similar sheet impregnated with glycerol shows a deformation of 4.0-4.4. Both sheets contain approximately 14% of ;the impregnating agent. In this case the product -is flexible, durable, transparent and shows a reduction in deformation as compared with the glycerin softened sheet amounting to approximately 50%.
In the above table a number of compounds has been indicated, each of which is capable of use in the production of a regenerated cellulose pellicle which will show a deformation of not more than 3.0. It is to be understood that the compounds mentioned are illustrative. The list given is by no means exhaustive and this disclosure is intended to embrace all organic compounds or mixtures of the class defined which have properties as previously set forth. These compounds may be used alone or in combination with each other.
1' The hygroscopicity of the compound chosen for use will determine, in large measure, the amount of reduction in deformation which will be observed. Thus, compounds having a hygroscopicity of from 60 to will show in most cases a deformation of the order of 2.7 to 3.0, while if the hygroscopicity is from 25 to 60, a deformation of the order of 2.3 to 3.0 will usually be obtained, and if the hygroscopicity is from 1 to 25 a deformation of about 2.3 or less (usually of the order of 2.0 to 2.3) will be achieved in most instances. Thus, it can be seen that any variation in properties which may be desired in the finished product can'be secured by proper selection of a non-deforming agent or non-deforming softener in accordance with the principles set forth herein.
The cellulosic pellicles obtainable by means of the present invention are particularly suited to wrapping purposes since the reduced deformation substantially eliminates warping, swelling, wrinkling and breakage. Similarly, the lamination of such pellicles to materials such as paper or fabric is facilitated since there is less tendency for the laminated product to curl, buckle or wrinkle. When stacks of sheets are stored, there is a lesser tendency for contiguous sheets to stick-a common experience with glycerol-softened sheets. Generally, the durability, particularly at low temperatures of 0 C. or less, is improved. The process described is especially advantageous from an economic viewpoint inasmuch as it offers a method of producing this new type of cellulosic'pellicle without alteration of present manufacturing equipment.
While it is preferred that the cellulosic pellicle be impregnated with a solution of the non-deforming agent while the pellicle is in the gel state, i. e., before it is dried and while it still contains a. large amount of water, it is within the broad scope of the invention to impregnate a film which has been dried and then rewetted.
Although the invention has been described with specific reference to films of regenerated cellulose prepared by the viscose process since it is in this field that the invention is of greatest utility, it will be understood that the broad scope of the invention includes the treatment of other types of cellulose film cast from aqueous or aqueous alkaline solutions. Thus, the non-deforming agents referred to above may be used with advantage in the treatment of films produced from cuprammonium cellulose solutions, from aqueous alkaline solutions of glycol cellulose or cellulose glycollic acid, from aqueous alkaline solutions of lowly etherified cellulose, e. g. lowly etherified methyl cellulose or lowly etherified ethyl cellulose, or from aqueous alkaline solutions of lowly esterified cellulose, e. g. lowly esterified cellulose acetate.
Since the invention is capable of considerable variation and modification, any change from the above specific details and examples which conforms to the spirit of the invention is intended to be included within the scope of the claims.
No claim is made in this application to esters of carbamic acid and alcohols containing an ether group per se, or in combination with plastic materials other than film formed from aqueous cellulosic solutions.
I claim:
1. Water-sensitive film suitable for use as a wrapping tissue formed from an aqueous alkaline cellulosic solution and containing, as a deformation-restricting agent, a softening agent for said film comprising a carbamic acid ester having a hygroscopicity of from 1 to 80, a boiling point of at least C. at a pressure of 12 mm. of mercury, and a solubility of at least 1% in water at 20 C., said ester being present in sufficient quantity to restrict the deformation of the film to a maximum of 3.0.
2. Water-sensitive film as defined in claim 1 characterized in that said ester is butoxy-ethoxyethyl carbamate.
3. Water-sensitive film as defined in claim 1 characterized in that said ester is isobutoxyethoxyethyl carbamate.
4. Water-sensitive film as defined in claim 1 characterized in that said ester is butoxy-ethyl carbamate.
5. Regenerated cellulose film suitable for use as awrapping tissue containing, as a deformation-restricting agent, a softening agent for said film comprising a carbamic acid ester having a hygroscopicity of from 1 to 80, a. boiling point of at least 135 C. at a pressure of 12 mm. of
' mercury, and a solubility of at least 1% in water at 20 C., said ester being present in sufiicient quantity to restrict the deformation of the film to a maximum of 3.0.
6. Regenerated cellulose film as defined in claim 5 characterized in that said ester is butoxyethoxyethyl carbamate.
'7. Regenerated cellulose film as defined in claim 5 characterized in that said ester is isobutoxy-ethoxyethyl carbamate.
8. Regenerated cellulose film as defined in claim 5 characterized in that said ester is butoxyethyl carbamate.
9. A process for reducing the deformation of water-sensitive film formed from an aqueous alkaline cellulosic solution which comprises impregnating said film with an aqueous solution containing a sufilcient quantity of a deformationrestricting agent to restrict the deformation of the film to a maximum of 3.0, said deformation-restricting agent being a softener for said film and comprising a carbamic acid ester having a hygroscopicity of from to 1 to 80, a boiling point of at least 135 C. at a pressure of 12 mm. of mercury, and a solubility of at least 1% in water at 20 C.
10. A process for reducing the deformation of water-sensitive film as defined in claim 9 characterized in that said ester is butoxy-ethoxyethyl carbamate.
11. A process for reducing the deformation of water-sensitive film as defined in claim 9 characterized in that said ester is iso-butoxyethoxyethyl carbamate.
12. A process for reducing the deformation of water-sensitive film as defined in claim 9 characterized in that said ester is butoxyethyl carbamate.
13. A process for reducing the deformation of 14. A process for reducing the deformation of ethoxyethyl carbamate.
16. A process for reducing the deformation of film asdefined in claim 13 Characterized in that said ester is butoxyethyl carbamate.
FREDERICK M. MEIGS.
US57636A 1936-01-04 1936-01-04 Film and process for preparing same Expired - Lifetime US2170829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US57636A US2170829A (en) 1936-01-04 1936-01-04 Film and process for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57634A US2170827A (en) 1936-01-04 1936-01-04 Cellulosic pellicles and methods for producing same
US57636A US2170829A (en) 1936-01-04 1936-01-04 Film and process for preparing same

Publications (1)

Publication Number Publication Date
US2170829A true US2170829A (en) 1939-08-29

Family

ID=26736741

Family Applications (1)

Application Number Title Priority Date Filing Date
US57636A Expired - Lifetime US2170829A (en) 1936-01-04 1936-01-04 Film and process for preparing same

Country Status (1)

Country Link
US (1) US2170829A (en)

Similar Documents

Publication Publication Date Title
US3472611A (en) Prevention of deterioration of cellulose-based records
US2170845A (en) Cellulosic structure and method for preparing same
US2170829A (en) Film and process for preparing same
US2407209A (en) Stabilization of nitrocellulose film base
US2170828A (en) Pellicle and process for preparing same
US2170827A (en) Cellulosic pellicles and methods for producing same
US2115132A (en) Manufacture of nonfibrous sheets and films
US2992156A (en) Method of treating paper prepared from partially acetylated cellulose fibers
US3103462A (en) Method of improving the strength characteristics of paper prepared from partially acylated cellulose fibers
US2170839A (en) Cellulosic pellicles and process for preparing same
US2170840A (en) Cellulosic film and process for preparing same
US2206046A (en) Cellulosic pellicles coated with antisticking agent
US2199927A (en) Cellulosic pellicle
US2273636A (en) Procedure for the dressing and softening of cellulose products
US2311910A (en) Cellulosic article
US2917397A (en) Cellulosic pellicle and method of preparation
US2459927A (en) Process of manufacturing regenerated cellulose sheet material
US2279339A (en) Cellulosic structure and method for making same
US2006661A (en) Process of treating regenerated cellulose articles
US2074349A (en) Cellulosic pellicles and method for preparing same
US3485575A (en) Modification of linerboard to improve retention of stiffness
US2431738A (en) Production of shkihkykoof
US2191897A (en) Plasticizing cellulosic articles
US1997857A (en) Moistureproof material
US2234016A (en) Cellulosic structure and process for producing same