US2152206A - Fuel and air mixer - Google Patents

Fuel and air mixer Download PDF

Info

Publication number
US2152206A
US2152206A US87070A US8707036A US2152206A US 2152206 A US2152206 A US 2152206A US 87070 A US87070 A US 87070A US 8707036 A US8707036 A US 8707036A US 2152206 A US2152206 A US 2152206A
Authority
US
United States
Prior art keywords
fuel
cup
manifold
air mixer
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US87070A
Inventor
James O Neal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US87070A priority Critical patent/US2152206A/en
Application granted granted Critical
Publication of US2152206A publication Critical patent/US2152206A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M29/00Apparatus for re-atomising condensed fuel or homogenising fuel-air mixture
    • F02M29/02Apparatus for re-atomising condensed fuel or homogenising fuel-air mixture having rotary parts, e.g. fan wheels

Definitions

  • My present device is intended for installation in the gas stream between the carburetor and the intake manifold of internal combustion engines and has as its primary object the more complete atomization of the ingoing charge of fuel laden air. It is well known that the average carburetor in general use is not highly eflicient in atomizing the fuel except when the motor is under full load and turning at its peak speed. The majority of engines do not provide an even flow of power asthe load is reduced particularly when throttled appreciably. The normal cause of this is that the butterfly valve used in the average car as a throttle is normally turned partly crosswise in the intake manifold immediately above the carburetion jet.
  • My gas mixer is so arranged that the ingoing charge is first forced away from the manifold walls and directed toward the center of the manifold. Here it impinges upon a cup-like deflector which tends to send it back out to the walls of the manifolds.
  • the inward deflector and the outward deflector are both formed of thin material, preferably sheet metaLtheir joint action produces eddies which give a whirling or agitating action to the incoming charge assuring more thorough and complete mixture of the air and fuel vapor.
  • my device would serve little practical purpose if the motor, upon which it is installed, is operated under full power conditions, in fact under full throttle conditions it will unquestionably reduce the amount of. gas that can be passed through the manifold. This, however, is the exceptional case and when motors are operated under such conditions my device should not be used except in the modified form illustrated.
  • Figure 2 is a top plan view of the same.
  • Figure 4 illustrates in. vertical sectional view a typical intake manifold showing the point where my device should be installed. 7
  • Figure 5 shows a vertical sectional view of a modified form of my device where it is desirable not to restrict the gas flow.
  • this flange makes with the outwardly extending flange 8 is a matter dependent in a degree upon the manifold velocity, it should be sufficient to direct the gases inwardly from the walls of the manifold it yet not so flat as to cause undue obstruction or reduce substantially the cross-sectional area of the intake manifold.
  • This flange should be made of relatively thin metal so that when in place it will present a sharp upper edge. This has been found to substantially increase the turbulence by causing an area of reduced pressure where the gases ascending will tend to curl into void l8 thus creating the desirable eddy producing a complete intermingling of the ingoing air and fuel.
  • Cup 24 should be spaced well above the upper margin of flange l4 so that there will be no undue restriction of the manifold opening.
  • the most convenient and effective manner of supporting cup 24 appears to be a single plate as 28, secured to member 6 and brazed, welded or otherwise secured to cup 24.
  • This plate or supporting rib 28 should be so positioned in the intake manifold that its plane is normal or at right angles to the plane of rotation on the butterfly valve 30. If this is not so placed it is conceivable that when the butterfly valve is partly open, in which case it directs the major part of the charge j to one side wall, this plate might itself serve as a baffle to prevent the opposite side of cup 24 having full effect on the incoming charge.
  • Figure illustrates a modified form of my construction in which an insert or spacer is placed between the carburetor and the intake manifold with anincreased inside diameter; by this means my device may be used without reducing the area of the intake passageway.
  • This form is particularly desirable for full load operation.
  • a fuel mixing device comprising an atomizing cup having the edge portion thereof formed into vanes disposed angularly in relation to said cup and having passages therebetween whereby the mixture passing through said passages will follow a whirling course.
  • a fuel mixing device comprising a concavoconvex atomizing cup having the edge portion thereof formed into vanes disposed angularly in relation to said cup and having passages therebetween whereby the mixture passing through said passages will follow a whirling course.

Description

' J. o. NEAL 2,152,206
FUEL AND AIR MIXER March 28-, 1939.
Filed June 24, 1936 I, INVENTOR dame 5 QCII M TTORNEYS Patented Mar. 28, 1939 UNITED STATES FUEL AND AIR MIXER James 0. Neal, Bremerton, Wash.
Application June 24,
3 Claims.
'My present invention relates to carburetion in internal combustion engines and more particularly to a fuel and air mixer.
My present device is intended for installation in the gas stream between the carburetor and the intake manifold of internal combustion engines and has as its primary object the more complete atomization of the ingoing charge of fuel laden air. It is well known that the average carburetor in general use is not highly eflicient in atomizing the fuel except when the motor is under full load and turning at its peak speed. The majority of engines do not provide an even flow of power asthe load is reduced particularly when throttled appreciably. The normal cause of this is that the butterfly valve used in the average car as a throttle is normally turned partly crosswise in the intake manifold immediately above the carburetion jet. This tends to pass the larger part of the charge up one side of the intake manifold forcing the greater part of the charge against the manifold wall just above the butterfly valve and. in a prolongation of the planeof the valve. Of. course, when the valve is standing parallel to the axis of the manifold passageway, the air passes equally around it. But this is the unusual condition, particularly in motor car operation, where motors are habitually throttled and rarely ever are operated with open throttle except, possibly, in racing and under full load.
My gas mixer is so arranged that the ingoing charge is first forced away from the manifold walls and directed toward the center of the manifold. Here it impinges upon a cup-like deflector which tends to send it back out to the walls of the manifolds. However, as the inward deflector and the outward deflector are both formed of thin material, preferably sheet metaLtheir joint action produces eddies which give a whirling or agitating action to the incoming charge assuring more thorough and complete mixture of the air and fuel vapor. Admittedly my device would serve little practical purpose if the motor, upon which it is installed, is operated under full power conditions, in fact under full throttle conditions it will unquestionably reduce the amount of. gas that can be passed through the manifold. This, however, is the exceptional case and when motors are operated under such conditions my device should not be used except in the modified form illustrated.
My invention provides a smoothness of operation at speeds less than the maximum load condition of the motor, which adds so much to 1936, Serial No. 87,070
the comfort, flexibility, and smoothness of operation that a small fraction of the peak eificiency can well be sacrificed by those persons who do not operate their motors over long periods with the throttle entirely open. Under the conditions outlined my device, due to its ability to give a more uniform and homogenous mixture, produces the fullest amount of power that a given amount of fuel is, at present, capable of generating; and as a result, under almost all conditions, will show a net saving in fuel over the conventional arrangement.
Other and more specific objects will be apparent from the following description taken in connection with the accompanying drawing, wherein Figure 1 is a side elevation of my device.
Figure 2 is a top plan view of the same.
Figure 3 is a cross-sectional view taken along the line 3-3 of Figure 2, the same being shown in elevation.
Figure 4 illustrates in. vertical sectional view a typical intake manifold showing the point where my device should be installed. 7
Figure 5 shows a vertical sectional view of a modified form of my device where it is desirable not to restrict the gas flow.
Referring to the drawing, throughout which like reference characters indicate like parts, 6 designates the base or supporting members for my device. This has an outwardly extending flange 8 formed so as to either be inserted under the usual carburetor gasket It as shown in Figure 4, or it may be placed so as to extend entirely underneath and to be engaged by the carburetor securing bolts II and I2. Secured to flange 8 and preferably made a part of same is the inwardly directed annular flange l4 forming a venturi. The exact angle that this flange makes with the outwardly extending flange 8 is a matter dependent in a degree upon the manifold velocity, it should be sufficient to direct the gases inwardly from the walls of the manifold it yet not so flat as to cause undue obstruction or reduce substantially the cross-sectional area of the intake manifold. This flange, further, should be made of relatively thin metal so that when in place it will present a sharp upper edge. This has been found to substantially increase the turbulence by causing an area of reduced pressure where the gases ascending will tend to curl into void l8 thus creating the desirable eddy producing a complete intermingling of the ingoing air and fuel. For sake of clarity I have indicated in Figures 1 and 3, the normal position of the manifold wall by the dotted line 20. It will thus be seen thatany hydrocarbon Vapor that might condense upon the Walls of the manifold l6 will run down and be trapped in the pocket at 18. If the pocket should be filled, the hydrocarbon vapor will be sucked off the sharp edge 22 and thus be taken up into the air stream where it will be thoroughly intermingled with the ingoing charge. Disposed co-axially above flanges l4 and 8 is a cup-like deflector 24. This should preferably be made of thin material also to the end that the interior of the cup 26 will form another area of reduced pressure and the gases passing around the cup will tend to curl over the edges thereby starting additional eddies in the center of the manifold. Cup 24 should be spaced well above the upper margin of flange l4 so that there will be no undue restriction of the manifold opening.
The most convenient and effective manner of supporting cup 24 appears to be a single plate as 28, secured to member 6 and brazed, welded or otherwise secured to cup 24. This plate or supporting rib 28 should be so positioned in the intake manifold that its plane is normal or at right angles to the plane of rotation on the butterfly valve 30. If this is not so placed it is conceivable that when the butterfly valve is partly open, in which case it directs the major part of the charge j to one side wall, this plate might itself serve as a baffle to prevent the opposite side of cup 24 having full effect on the incoming charge.
It has been found from experience that the heighth of cup 24 above the upper edge 22 of flange l4 determines the amount of restriction placed in the intake manifold. Further, it has been determined that for cars operating under different conditions it is desirable to have this spacing adjustable to the end that a driver who drives a good deal on the road at relatively high speed can have a greater spacing while persons driving commercial cars or private cars at more reduced speeds can get a greater degree of effectiveness from my device by decreasing this spacing. I have, therefore, provided a central post 32 which is threaded and secured at its lower end. This post, or stud, may be suitably secured to cross-member 28 in any suitable manner. I have illustrated a very effective means that of slitting the end of the stud as at 34- and either riveting or soldering the two members together. Cup 24 is then pierced for post 32 and secured in fixed relationship thereto by the lock nuts 36 and 31.
It will be apparent, it is believed, that by adjusting these two nuts any position, within the range of stud 32, can be provided for cup 24.
It has further been determined that if the whirling action can be given to the ingoing charge of fuel gas and air the operating efiiciency is peculiarly improved, there is less likelihood of condensed liquid fuel being left on the intake manifold walls and the maximum flow can be provided. This follows the general movement of fluids through an orifice as is best exemplified by the action of water passing through a funnel. To accomplish this I provide about the periphery of cup 24, a plurality of short vanes 40. These are so pitched that each will tend to provide the rotary, or swirling, action of the gas column in the same sense. It is believed this construction is clearly portrayed in Figures 1 and 2.
Figure illustrates a modified form of my construction in which an insert or spacer is placed between the carburetor and the intake manifold with anincreased inside diameter; by this means my device may be used without reducing the area of the intake passageway. This form is particularly desirable for full load operation.
The foregoing description and the accompanying drawing are believed to clearly disclose a preferred embodiment of my invention but it will be understood that this disclosure is merely il1ustrative and that such changes in the invention may be made as are fairly within the scope and spirit of the following claims.
I claim:
1. A fuel mixing device comprising an atomizing cup having the edge portion thereof formed into vanes disposed angularly in relation to said cup and having passages therebetween whereby the mixture passing through said passages will follow a whirling course.
2. A fuel mixing device comprising a concavoconvex atomizing cup having the edge portion thereof formed into vanes disposed angularly in relation to said cup and having passages therebetween whereby the mixture passing through said passages will follow a whirling course.
3. A fuel mixing device comprising an atomizing cup having the edge portion thereof formedinto vanes disposed angularly in relation to said cup and having passages therebetween, and a converging flange below said cup adapted to direct the mixture against said vanes.
JAMES o. NEAL.
US87070A 1936-06-24 1936-06-24 Fuel and air mixer Expired - Lifetime US2152206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US87070A US2152206A (en) 1936-06-24 1936-06-24 Fuel and air mixer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87070A US2152206A (en) 1936-06-24 1936-06-24 Fuel and air mixer

Publications (1)

Publication Number Publication Date
US2152206A true US2152206A (en) 1939-03-28

Family

ID=22202937

Family Applications (1)

Application Number Title Priority Date Filing Date
US87070A Expired - Lifetime US2152206A (en) 1936-06-24 1936-06-24 Fuel and air mixer

Country Status (1)

Country Link
US (1) US2152206A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3467072A (en) * 1966-08-31 1969-09-16 Energy Transform Combustion optimizing devices and methods
US4011850A (en) * 1975-07-30 1977-03-15 Knox Sr Kenneth L Fuel vaporizer for internal combustion engines
US4105003A (en) * 1975-08-08 1978-08-08 Funk Raymond E Fuel distribution system
US4163436A (en) * 1977-05-25 1979-08-07 Albert Fugett Gasoline miser
US4307697A (en) * 1975-10-02 1981-12-29 Ong Siak Hoo Complex swirl static mixer for engines
US4375801A (en) * 1981-10-01 1983-03-08 Eckman Donald E Charge mixing carburetor plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3467072A (en) * 1966-08-31 1969-09-16 Energy Transform Combustion optimizing devices and methods
US4011850A (en) * 1975-07-30 1977-03-15 Knox Sr Kenneth L Fuel vaporizer for internal combustion engines
US4105003A (en) * 1975-08-08 1978-08-08 Funk Raymond E Fuel distribution system
US4307697A (en) * 1975-10-02 1981-12-29 Ong Siak Hoo Complex swirl static mixer for engines
US4163436A (en) * 1977-05-25 1979-08-07 Albert Fugett Gasoline miser
US4375801A (en) * 1981-10-01 1983-03-08 Eckman Donald E Charge mixing carburetor plate

Similar Documents

Publication Publication Date Title
US1627161A (en) Method and means for homogenizing fluid-fuel mixtures
US3938967A (en) Device for post-atomization for combustion engines using a compressed mixture and an external ignition
US1113041A (en) Gaseous-fuel mixer
US2152206A (en) Fuel and air mixer
US4092966A (en) Fuel vaporizing and mixing device for gasoline engines
US2714503A (en) Carburetor jet
US1937875A (en) Gaseous fuel mixer
US4015575A (en) Intake system with focusing means
US2498190A (en) Mixing device
US2080440A (en) Carburetor
US1610507A (en) Auxiliary air inlet and mixing device
US4375801A (en) Charge mixing carburetor plate
US3934569A (en) Apparatus and method for atomizing fuel-air mixture in a carburetion system
US1756805A (en) Rotary vaporizing carburetor
US4100905A (en) Fuel vaporizer
US3294381A (en) Carburetor
US3325152A (en) Apparatus for providing a fuel-air mixture
US2791409A (en) Carburetors
US1473052A (en) Mixing attachment for engine fuel intakes
US2383697A (en) Turbulence producing valve
US1453656A (en) Gaseous-fuel mixer
CA1061666A (en) Method and device for improving the carburation of internal-combustion engines
US1423170A (en) Homogenizes
US2421580A (en) Fuel atomizer for internal-combustion engines
US1676958A (en) Fuel-mixing device